半导体中的电子状态(精)
- 格式:doc
- 大小:138.00 KB
- 文档页数:14
基本概念题:第一章半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。
答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。
通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
1.2克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。
由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。
从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。
1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k关系决定。
1.4本征半导体既无杂质有无缺陷的理想半导体材料。
1.4空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
它引起的假想电流正好等于价带中的电子电流。
第3章半导体中的电子状态半导体的许多物理性质与其内部电子的运动状态密切相关。
本章扼要介绍一些有关的基本概念。
§3-1 电子的运动状态和能带为了便于理解半导体中的电子运动状态和能带的概念,先复习一下孤立原子中的电子态和自由空间中的电子态概念。
一.原子中的电子状态和能级。
原子是由带正电荷的原子核和带负电荷的电子组成的,原子核的质量远大于电子的质量。
因此,可认为电子是在原子核的库仑引力作用下绕着原子核运动。
电子绕原子核运动遵从量子力学规律,处于一系列特定的运动状态,这些特定状态称量子态或电子态。
在每个量子态中,电子的能量(能级)是确定的。
处于确定状态的电子在空间有一定的几率分布。
在讨论电子运动时,也常采用经典力学的“轨道”概念,不过其实际含义是指电子在空间运动的一个量子态和几率分布。
对于原子中的电子,能级由低到高可分为E1﹑E2﹑E3﹑E4..等,分别对应于1s﹑2s﹑2p﹑3s…等一系列量子态。
如图3-1所示,内层轨道上的电子离原子核近,受到的束缚作用强,能级低。
越往外层,电子受到的束缚越弱,能级越高。
总之,在单个原子中,电子运动的特点是其运动状态为一些局限在原子核周围的局域化量子态,其能级取一系列分立值。
二.自由空间中的电子态和能级。
在势场不随位置变化的自由空间中,电子的运动状态满足下面的定态薛定格方程(3-1)该方程的解为平面波:(3-2)其中,称波函数,称能量谱值或本征值,V为空间体积,为平面波的波矢,其大小为波长倒数的2π倍,即k=2π/λ。
这里也起着量子数的作用,用来标志自由电子的运动状态。
E~~关系曲线如图3-2所示。
在波矢为的量子态中,自由电子的动量也有确定值(3-3)在波矢量子态中,自由电子的速度也有确定值(3-4)利用能量与波矢之间的关系,容易将速度公式改写为(3-5)总之,自由空间中电子的运动特点是在相当大的范围内自由运动,几率分布延展于整个体积V,能谱是连续的。
三.晶体中的电子态和能带。
半导体中的电子状态引言随着科技的发展,半导体材料在电子行业中扮演了重要的角色。
半导体材料的特殊结构使得它们在导电性质上介于导体和绝缘体之间。
研究半导体中的电子状态对于了解半导体的导电机制和优化器件性能具有重要意义。
本文将介绍半导体中的电子状态,并探讨其在实际应用中的影响。
电子能级受限在半导体中,电子能级是受限的,这意味着电子只能取特定的能量值。
通过与能带理论相关联,我们可以将半导体中的电子能级划分为价带和导带。
价带是半满的,而导带是部分填充的。
能带间隙能带间隙(band gap)是指价带和导带之间不允许存在任何电子能级的能量差。
对于导体来说,能带间隙非常小,几乎可以忽略不计。
而对于绝缘体来说,能带间隙非常大,使得电子无法跃迁到导带中。
而半导体的能带间隙大小适中,介于导体和绝缘体之间。
能带间隙的大小决定了半导体的电导率和其他电学性质。
纯半导体中的电子状态在纯半导体中,没有掺杂物存在。
在绝对零度下,所有的价带都被填满,而导带都是空的。
这种状态下,半导体是非导电的。
当温度升高时,由于晶格的振动,一些电子可以跃迁到导带中,形成导电。
这种现象被称为本征激发。
杂质半导体中的电子状态杂质半导体是指在纯半导体中掺入其他原子,以改变半导体的电子状态。
当掺入杂质元素时,会形成杂质能级。
这些能级位于能带间隙的中间,可分为n型杂质能级和p型杂质能级。
n型杂质能级暗示占据了原本在导带的电子,而p型杂质能级暗示原本从价带“升级”的电子。
能带理论和电子迁移能带理论是半导体物理学中的基本概念之一。
它描述了在不同能带之间电子的跃迁行为。
根据能带理论,当一个电子从价带跃迁到导带时,会在价带留下一个“空穴”(被电子跃迁到导带的位置)。
空穴的移动速度会影响半导体器件的工作性能。
由于空穴的速度较慢,限制了电子的迁移速度。
这也是为什么n型半导体比p 型半导体具有更好的导电性能的原因,因为电子比空穴移动速度更快。
电子状态与半导体器件性能的关系半导体中的电子状态与器件性能密切相关。
半导体物理半导体中的电子状态半导体物理:半导体中的电子状态半导体是一种在电性能上介于导体和绝缘体之间的材料。
半导体中的电子状态对于半导体器件的特性和性能起着至关重要的作用。
本文将探讨半导体中的电子状态,并介绍与之相关的几个重要概念。
1. 能带结构半导体中的电子状态与能带结构密切相关。
能带是将材料中的电子能级按照能量高低进行分类的一种方式。
在半导体中,一般存在两个主要的能带,即价带和导带。
价带是电子处于较低能量状态的能带,而导带则是电子处于较高能量状态的能带。
能带之间的能隙决定了电子的跃迁行为。
2. 杂质能级半导体中的杂质能级是指由掺入杂质引起的局部能量水平。
掺杂是通过向半导体中引入少量的杂质元素改变其电子状态。
掺入五价元素(如磷)会产生施主能级,该能级位于导带上方,提供自由电子;而掺入三价元素(如硼)会产生受主能级,该能级位于价带下方,吸收自由电子。
杂质能级的引入对半导体器件的性能起着决定性作用。
3. 载流子在半导体中,载流子是负责电荷传输的粒子。
主要有电子(负载流子)和空穴(正载流子)两种类型。
在纯净的半导体中,电子和空穴的浓度相等,称为本征半导体。
通过掺杂,可以改变载流子的浓度,从而实现半导体的导电性的调控。
4. 载流子的浓度与掺杂浓度的关系半导体材料的光、热、电等特性与掺杂浓度有关。
掺杂浓度越高,材料的导电性能越好。
在一定范围内,载流子浓度与掺杂浓度成正比。
然而,过高的掺杂浓度可能导致材料中的杂质能级相互重叠,从而影响器件的性能。
5. 半导体的禁带宽度禁带宽度是指价带和导带之间的能量间隔,决定了半导体材料的电导率。
半导体的禁带宽度较小,比绝缘体的小,但比导体的大。
通过控制禁带宽度,可以实现对半导体的电学性质调控。
总结:本文讨论了半导体中的电子状态。
通过对能带结构、杂质能级、载流子浓度与掺杂浓度关系,以及禁带宽度等概念的介绍,我们可以更好地理解半导体器件的工作原理和性能特点。
半导体物理作为一门重要的学科领域,对于现代电子技术的发展和应用具有重要意义。
第一篇 习题 半导体中的电子状态1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、 试指出空穴的主要特征。
1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。
1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。
求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。
第一篇 题解 半导体中的电子状态1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge 、Si 的禁带宽度具有负温度系数。
1-3、 解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A 、荷正电:+q ;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E nD 、m P *=-m n *。
1-4、 解:(1) Ge 、Si:a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;b )间接能隙结构c )禁带宽度E g 随温度增加而减小;(2) GaAs :a )E g (300K )= 1.428eV , Eg (0K) = 1.522eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、 解:(1) 由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a k d dE ka ka aE dk dE+=-=eVE E E E a kd dE a k E a kd dE a k a k a k ka tg dk dE ooo o 1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。
当对应能带极小值;当)(得令(2)()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧⨯-=⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=⨯=⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=----------kg k d dE h m kg k d dE h m k n k n 271234401222*271234401222*10925.110625.61028.2110925.110625.61028.2121带顶带底则答:能带宽度约为1.1384Ev ,能带顶部电子的有效质量约为1.925x10-27kg ,能带底部电子的有效质量约为-1.925x10-27kg 。
第二篇 习题-半导体中的杂质和缺陷能级2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n 型半导体。
2-3、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p 型半导体。
2-4、掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响。
2-5、两性杂质和其它杂质有何异同?2-6、深能级杂质和浅能级杂质对半导体有何影响?2-7、何谓杂质补偿?杂质补偿的意义何在?第二篇题解半导体中的杂质与缺陷能级2-1、解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。
它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,并同时向导带提供电子或向价带提供空穴。
2-2、解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主。
施主电离成为带正电离子(中心)的过程就叫施主电离。
施主电离前不带电,电离后带正电。
例如,在Si中掺P,P为Ⅴ族元素,本征半导体Si为Ⅳ族元素,P掺入Si中后,P的最外层电子有四个与Si 的最外层四个电子配对成为共价电子,而P的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子。
这个过程就是施主电离。
n型半导体的能带图如图所示:其费米能级位于禁带上方2-3、解:半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主。
受主电离成为带负电的离子(中心)的过程就叫受主电离。
受主电离前带不带电,电离后带负电。
例如,在Si中掺B,B为Ⅲ族元素,而本征半导体Si为Ⅳ族元素,P 掺入B中后,B的最外层三个电子与Si的最外层四个电子配对成为共价电子,而B倾向于接受一个由价带热激发的电子。
这个过程就是受主电离。
p型半导体的能带图如图所示:其费米能级位于禁带下方2-4、解:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。
掺杂半导体又分为n型半导体和p型半导体。
例如,在常温情况下,本征Si中的电子浓度和空穴浓度均为1.5╳1010cm-3。
当在Si中掺入1.0╳1016cm-3后,半导体中的电子浓度将变为1.0╳1016cm-3,而空穴浓度将近似为 2.25╳104cm-3。
半导体中的多数载流子是电子,而少数载流子是空穴。
2-5、解:两性杂质是指在半导体中既可作施主又可作受主的杂质。
如Ⅲ-Ⅴ族GaAs中掺Ⅳ族Si。
如果Si替位Ⅲ族As,则Si为施主;如果Si替位Ⅴ族Ga,则Si为受主。
所掺入的杂质具体是起施主还是受主与工艺有关。
2-6、解:深能级杂质在半导体中起复合中心或陷阱的作用。
浅能级杂质在半导体中起施主或受主的作用。
2-7、当半导体中既有施主又有受主时,施主和受主将先互相抵消,剩余的杂质最后电离,这就是杂质补偿。
利用杂质补偿效应,可以根据需要改变半导体中某个区域的导电类型,制造各种器件。
第三篇习题-半导体中载流子的统计分布3-1、对于某n型半导体,试证明其费米能级在其本征半导体的费米能级之上。
即E Fn>E Fi。
3-2、试分别定性定量说明:(1)在一定的温度下,对本征材料而言,材料的禁带宽度越窄,载流子浓度越高;(2)对一定的材料,当掺杂浓度一定时,温度越高,载流子浓度越高。
3-3、若两块Si样品中的电子浓度分别为2.25×1010cm-3和6.8×1016cm-3,试分别求出其中的空穴的浓度和费米能级的相对位置,并判断样品的导电类型。
假如再在其中都掺入浓度为2.25×1016cm-3的受主杂质,这两块样品的导电类型又将怎样?3-4、含受主浓度为8.0×106cm-3和施主浓度为7.25×1017cm-3的Si材料,试求温度分别为300K和400K时此材料的载流子浓度和费米能级的相对位置。
3-5、试分别计算本征Si 在77K 、300K 和500K 下的载流子浓度。
3-6、Si 样品中的施主浓度为4.5×1016cm -3,试计算300K 时的电子浓度和空穴浓度各为多少?3-7、某掺施主杂质的非简并Si 样品,试求E F =(E C +E D )/2时施主的浓度。
第三篇 题解 半导体中载流子的统计分布3-1、证明:设n n 为n 型半导体的电子浓度,n i 为本征半导体的电子浓度。
显然n n > n iin i n F F F c c F c c E E T k E E N T k E E N >⎪⎪⎭⎫⎝⎛--⋅>⎪⎪⎭⎫ ⎝⎛--⋅则即00exp exp即得证。
3-2、解:(1) (1) 在一定的温度下,对本征材料而言,材料的禁带宽度越窄,则跃迁所需的能量越小,所以受激发的载流子浓度随着禁带宽度的变窄而增加。
由公式Tk E v c i g eN N n 02-=也可知道,温度不变而减少本征材料的禁带宽度,上式中的指数项将因此而增加,从而使得载流子浓度因此而增加。
(2)对一定的材料,当掺杂浓度一定时,温度越高,受激发的载流子将因此而增加。
由公式可知,这时两式中的指数项将因此而增加,从而导致载流子浓度增加。
3-3、解:由 200i n p n =⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⋅=Tk E E N p Tk E E N n V F V Fc c 0000exp exp 和()()()()⎪⎪⎩⎪⎪⎨⎧⨯≈⨯⨯==⨯=⨯⨯==--3316210022023101021001201103.3108.6105.1100.11025.2105.1cm n n p cm n n p i i可见,型半导体本征半导体n p n p n →>→≈02020101又因为 Tk E E v v F e N p 00--=,则⎪⎪⎩⎪⎪⎨⎧+=⎪⎪⎭⎫ ⎝⎛⨯⨯⋅+=⎪⎪⎭⎫ ⎝⎛⋅+=+≈⎪⎪⎭⎫⎝⎛⨯⨯⋅+=⎪⎪⎭⎫ ⎝⎛⋅+=eV E E p N T k E E eV E E p N T k E E v v n v F v v v v F 331.0103.3101.1ln 026.0ln 234.0100.1101.1ln 026.0ln 319020210190101 假如再在其中都掺入浓度为2.25×1016cm -3的受主杂质,那么将出现杂质补偿,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。
答:第一种半导体中的空穴的浓度为1.1x1010cm -3,费米能级在价带上方0.234eV 处;第一种半导体中的空穴的浓度为3.3x103cm -3,费米能级在价带上方0.331eV 处。
掺入浓度为2.25×1016cm -3的受主杂质后,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。
3-4、解:由于杂质基本全电离,杂质补偿之后,有效施主浓度 317*1025.7-⨯≈-=cm N N N A D D则300K 时,电子浓度 ()31701025.7300-⨯=≈cm N K n D空穴浓度 ()()()3217210001011.31025.7105.1300-⨯≈⨯⨯==cm n n K p i费米能级()eVE E p N T k E E v v v VF 3896.01011.3100.1ln 026.0ln 21900+=⎥⎦⎤⎢⎣⎡⨯⨯⋅+=⎪⎪⎭⎫⎝⎛⋅+=在400K 时,根据电中性条件 *00D N p n += 和 20i p n p n = 得到()()()()()()⎪⎪⎩⎪⎪⎨⎧⨯=⨯⨯==⨯≈⨯+⨯+⨯-=++-=--317821320382132171722*010249.7103795.1100.1103795.12100.141025.71025.724*cmp n n cm n N N p p i i D D费米能级()()eV E E p K K K N T k E E v v p v v F 0819.01025.7300400101.1ln 026.0300400300ln 172319230+=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⨯⎪⎭⎫ ⎝⎛⨯⨯⋅+=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯⋅+=答:300K 时此材料的电子浓度和空穴浓度分别为7.25 x1017cm -3和3.11x102cm -3,费米能级在价带上方0.3896eV 处;400 K 时此材料的电子浓度和空穴浓度分别近似为为7.248 x1017cm -3和1.3795x108cm -3,费米能级在价带上方0.08196eV 处。