半导体中的电子状态和结构
- 格式:ppt
- 大小:1.15 MB
- 文档页数:144
第一章半导体中的电子状态1.分类说明半导体材料的晶格结构与结合特性。
答:金刚石结构特点:每个原子周围有四个最邻近的原子,组成一个正四面体结构,配位数是4. 夹角109°28′。
金刚石结构可以看成是两个面心立方晶包沿立方体的空间对角线相互位移四分之一对角线套构而成。
闪锌矿结构特点:双原子复式结构,它是由两类原子各自组成的面心立方晶胞沿立方体的空间对角线相互位移四分之一对角线套构而成。
以共价键为主,结合特性具有不同程度的离子性,称为极性半导体。
2.什么是电子共有化运动?原子中内层电子和外层电子参与共有化运动有何不同?答:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去。
因而,电子可以在整个晶体上运动。
因为个原子中相似壳层上的电子才有相同能量,电子只能在相似壳层上转移,因此共有化运动的产生是由于不同原子的相似壳层之间的交叠。
由于内外层交叠程度很不相同,所以只有最外层电子的共有化运动才显著。
3.说明能级分裂成能带的根本原因以及内外层能带有何不同?答:根本原因,当周围n个原子相互靠近时,每个原子中的电子除受到本身原子的势场作用外,还要受到其他原子的作用,其结果是每一个n度简并的能级都分裂为n个彼此相距很近的能级;·内壳层原来处于低能级,共有化运动很弱,能级分裂的很小,能带窄。
外壳层电子原来处于高能级,共有化运动显著,能带分裂的厉害,能带宽。
4.原子中的电子自由电子和晶体中电子受势场作用情况有何不同?自由电子和晶体中电子运动情况有何不同?答: 孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,晶体中的电子是在严格周期性重复排列的势场中运动5.导体、半导体和绝缘体能带的区别?答:金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导电体。
绝缘体禁带宽度大,常温下激发到导带的电子很少,导电性差。
半导体知识点总结大全引言半导体是一种能够在一定条件下既能导电又能阻止电流的材料。
它是电子学领域中最重要的材料之一,广泛应用于集成电路、光电器件、太阳能电池等领域。
本文将对半导体的知识点进行总结,包括半导体基本概念、半导体的电子结构、PN结、MOS场效应管、半导体器件制造工艺等内容。
一、半导体的基本概念(一)电子结构1. 原子结构:半导体中的原子是由原子核和围绕原子核轨道上的电子组成。
原子核带正电荷,电子带负电荷,原子核中的质子数等于电子数。
2. 能带:在固体中,原子之间的电子形成了能带。
能带在能量上是连续的,但在实际情况下,会出现填满的能带和空的能带。
3. 半导体中的能带:半导体材料中,能带又分为价带和导带。
价带中的电子是成对出现的,导带中的电子可以自由运动。
(二)本征半导体和杂质半导体1. 本征半导体:在原子晶格中,半导体中的电子是在能带中的,且不受任何杂质的干扰。
典型的本征半导体有硅(Si)和锗(Ge)。
2. 杂质半导体:在本征半导体中加入少量杂质,形成掺杂,会产生额外的电子或空穴,使得半导体的导电性质发生变化。
常见的杂质有磷(P)、硼(B)等。
(三)半导体的导电性质1. P型半导体:当半导体中掺入三价元素(如硼),形成P型半导体。
P型半导体中导电的主要载流子是空穴。
2. N型半导体:当半导体中掺入五价元素(如磷),形成N型半导体。
N型半导体中导电的主要载流子是自由电子。
3. 载流子浓度:半导体中的载流子浓度与掺杂浓度有很大的关系,载流子浓度的大小决定了半导体的电导率。
4. 质量作用:半导体中载流子的浓度受温度的影响,其浓度与温度成指数关系。
二、半导体器件(一)PN结1. PN结的形成:PN结是由P型半导体和N型半导体通过扩散结合形成的。
2. PN结的电子结构:PN结中的电子从N区扩散到P区,而空穴从P区扩散到N区,当N区和P区中的载流子相遇时相互复合。
3. PN结的特性:PN结具有整流作用,即在正向偏置时具有低电阻,反向偏置时具有高电阻。
半导体物理复习归纳————————————————————————————————作者: ————————————————————————————————日期:一、半导体的电子状态1、金刚石结构(Si、Ge)Si、Ge原子组成,正四面体结构,由两个面心立方沿空间对角线互相平移1/4个空间对角线长度套构而成。
由相同原子构成的复式格子。
2、闪锌矿结构(GaAs)3-5族化合物分子构成,与金刚石结构类似,由两类原子各自形成的面心立方沿空间对角线相互平移1/4个空间对角线长度套构而成。
由共价键结合,有一定离子键。
由不同原子构成的复式格子。
3、纤锌矿结构(ZnS)与闪锌矿结构类似,以正四面体结构为基础,具有六方对称性,由两类原子各自组成的六方排列的双原子层堆积而成。
是共价化合物,但具有离子性,且离子性占优。
4、氯化钠结构(NaCl)沿棱方向平移1/2,形成的复式格子。
5、原子能级与晶体能带原子组成晶体时,由于原子间距非常小,于是电子可以在整个晶体中做共有化运动,导致能级劈裂形成能带。
6、脱离共价键所需的最低能量就是禁带宽度。
价带上的电子激发为准自由电子,即价带电子激发为导带电子的过程,称为本征激发。
7、有效质量的意义a.有效质量概括了半导体内部势场的作用(有效质量为负说明晶格对粒子做负功)b.有效质量可以直接由实验测定c.有效质量与能量函数对于k的二次微商成反比。
能带越窄,二次微商越小,有效质量越大。
8、测量有效质量的方法回旋共振。
当交变电磁场角频率等于回旋频率时,就可以发生共振吸收。
测出共振吸收时电磁波的角频率和磁感应强度,就可以算出有效质量。
为能观测出明显的共振吸收峰,要求样品纯度较高,且实验要在低温下进行。
9、空穴价带中空着的状态被看成带正电的粒子,称为空穴。
这是一种假想的粒子,其带正电荷+q,而且具有正的有效质量m p*。
10、轻/重空穴重空穴:有效质量较大的空穴轻空穴:有效质量较小的空穴11、间接带隙半导体导带底和价带顶处于不同k值的半导体。
半导体物理半导体中的电子状态半导体物理:半导体中的电子状态在现代科技的宏伟画卷中,半导体无疑是一颗璀璨的明珠。
从智能手机到超级计算机,从新能源汽车到航天航空,半导体的身影无处不在。
而要深入理解半导体的奇妙特性,关键就在于探究半导体中的电子状态。
让我们先来了解一下什么是半导体。
半导体,顾名思义,其导电性能介于导体和绝缘体之间。
常见的半导体材料有硅、锗等。
在半导体中,电子的行为和在导体、绝缘体中有着显著的差异。
在半导体晶体中,原子按照一定的规律紧密排列,形成晶格结构。
电子所处的能态不再是像在自由空间中那样连续分布,而是被分成一系列离散的能级,这些能级形成了所谓的能带。
能带可以分为导带和价带。
价带是能量较低的能带,其中的电子被原子束缚得较为紧密,一般情况下不能参与导电。
而导带是能量较高的能带,其中的电子能够在电场的作用下自由移动,从而形成电流。
在绝对零度时,半导体中的电子刚好填满价带,而导带中则没有电子。
随着温度的升高,部分电子会获得能量,从价带跃迁到导带,在导带中形成自由电子,同时在价带中留下空穴。
自由电子和空穴都能参与导电,这是半导体导电的关键机制。
半导体中的电子状态还受到杂质的显著影响。
杂质原子可以分为施主杂质和受主杂质。
施主杂质能够释放出电子,增加导带中的电子浓度;受主杂质则能够接受电子,增加价带中的空穴浓度。
通过控制杂质的种类和浓度,可以精确地调节半导体的导电性能,这就是半导体掺杂技术。
比如在硅晶体中掺入少量的磷元素,磷是五价原子,在与硅原子形成共价键时,会多出一个电子。
这个电子很容易进入导带,使硅成为 n 型半导体,电子成为主要的载流子。
而如果掺入少量的硼元素,硼是三价原子,会形成一个空穴,使硅成为 p 型半导体,空穴成为主要的载流子。
半导体中的电子状态还与晶体缺陷有关。
晶体缺陷会在能带中引入能级,影响电子的跃迁和导电过程。
此外,外电场的作用也会改变半导体中电子的状态。
当施加外电场时,电子和空穴会在电场力的作用下发生定向移动,形成电流。
半导体物理半导体中的电子状态半导体物理:半导体中的电子状态半导体是一种在电性能上介于导体和绝缘体之间的材料。
半导体中的电子状态对于半导体器件的特性和性能起着至关重要的作用。
本文将探讨半导体中的电子状态,并介绍与之相关的几个重要概念。
1. 能带结构半导体中的电子状态与能带结构密切相关。
能带是将材料中的电子能级按照能量高低进行分类的一种方式。
在半导体中,一般存在两个主要的能带,即价带和导带。
价带是电子处于较低能量状态的能带,而导带则是电子处于较高能量状态的能带。
能带之间的能隙决定了电子的跃迁行为。
2. 杂质能级半导体中的杂质能级是指由掺入杂质引起的局部能量水平。
掺杂是通过向半导体中引入少量的杂质元素改变其电子状态。
掺入五价元素(如磷)会产生施主能级,该能级位于导带上方,提供自由电子;而掺入三价元素(如硼)会产生受主能级,该能级位于价带下方,吸收自由电子。
杂质能级的引入对半导体器件的性能起着决定性作用。
3. 载流子在半导体中,载流子是负责电荷传输的粒子。
主要有电子(负载流子)和空穴(正载流子)两种类型。
在纯净的半导体中,电子和空穴的浓度相等,称为本征半导体。
通过掺杂,可以改变载流子的浓度,从而实现半导体的导电性的调控。
4. 载流子的浓度与掺杂浓度的关系半导体材料的光、热、电等特性与掺杂浓度有关。
掺杂浓度越高,材料的导电性能越好。
在一定范围内,载流子浓度与掺杂浓度成正比。
然而,过高的掺杂浓度可能导致材料中的杂质能级相互重叠,从而影响器件的性能。
5. 半导体的禁带宽度禁带宽度是指价带和导带之间的能量间隔,决定了半导体材料的电导率。
半导体的禁带宽度较小,比绝缘体的小,但比导体的大。
通过控制禁带宽度,可以实现对半导体的电学性质调控。
总结:本文讨论了半导体中的电子状态。
通过对能带结构、杂质能级、载流子浓度与掺杂浓度关系,以及禁带宽度等概念的介绍,我们可以更好地理解半导体器件的工作原理和性能特点。
半导体物理作为一门重要的学科领域,对于现代电子技术的发展和应用具有重要意义。
半导体物理第一章半导体中的电子状态单电子近似:即假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。
该势场是具有与晶格同周期的周期性势场。
1.1半导体的晶格结构和结合性质1.大量的硅、锗原子组合成晶体靠的是共价键结合,他们的晶体结构与碳原子组成的一种金刚石晶格都属于金刚石型结构。
2.闪锌矿型结构(见课本8页)1.2半导体中电子的状态和能带1.Φ(r,t)=Ae i(k.r−wt) k为平面波的波数2.k=|k|=2л/λ波的传播方向为与波面法线平行3.在晶体中波函数的强度也随晶格周期性变化,所以在晶格中各点找到该电子的概率也具有周期性变化的性质。
这反映了电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动,这种运动称为电子在晶体内的公有化运动。
1.3半导体中的电子的运动有效质量1.导带低电子的有效能量1h2(d2Edk2)k=0=1m n∗2.引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中的电子外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
3.能量带越窄二次微商越小,有效质量越大。
内层电子的能量带越窄,有效质量大;外层电子的能量带宽,有效质量小。
1.4本征半导体的到点机构空穴1.可以认为这个空状态带有正电。
2.正电荷为空状态所有,它带的电荷是+q。
3.空穴:通常把价带中空着的状态看成是带正电的粒子,称为空穴。
.空穴不仅带有正电荷+q,而且还具有正的有效质量。
4引进空穴概念后,就可以把价带中大量电子对电流的贡献用少量的空穴表达出来。
半导体中除了导电带上电子导体作用外,价带中还有空穴的导电作用,这就是本征半导体的导电机构。
1.6 硅和锗的能带结构硅和锗的禁带宽度是随温度变化的,在T=0K时,硅和锗的禁带宽度E g分别趋近于1.70eV和0.7437eV.随着温度的升高,E g按如下规律减小E g(T)=E g(0)- -aT2T+β,式中E g(T)和E g(0)分别表示温度为T和0K时的禁带宽度,a,β为温度系数。