半导体中的电子状态
- 格式:ppt
- 大小:1.16 MB
- 文档页数:143
第一章 半导体中的电子状态1.导体、半导体、绝缘体的划分:Ⅰ导体内部存在部分充满的能带,在电场作用下形成电流;Ⅱ绝缘体内部不存在部分充满的能带,在电场作用下无电流产生; Ⅲ半导体的价带是完全充满的,但与之上面靠近的能带间的能隙很小,电子易被激发到上面的能带,使这两个能带都变成部分充满,使固体导电。
2.电子的有效质量是*n m ,空穴的有效质量是*p m ;**np m m -=,电量等值反号,波矢k 与电子相同 能带底电子的有效质量是正值,能带顶电子的有效质量是负值。
能带底空穴的有效质量是负值,能带顶空穴的有效质量是正值。
3.半导体中电子所受的外力dtdkh f ⋅=的计算。
4.引进有效质量的意义:概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
第二章 半导体中杂质和缺陷能级1.施主能级:被施主杂质束缚的电子的能量状态称为施主能级E D ;施主能级很接近于导带底;受主能级:被受主杂质束缚的空穴的能量状态称为受主能级E A ;受主能级很接近于价带顶。
施主能级图 受主能级图2.浅能级杂质:杂质的电离能远小于本征半导体禁带宽度的杂质,电离后向相应的能带提供电子或空穴。
深能级杂质:能级位于禁带中央位置附近,距离相应允带差值较大。
深能级杂质起复合中心、陷阱作用;浅能级杂质起施主、受主作用。
3.杂质的补偿作用:半导体中同时含有施主和受主杂质,施主和受主先相互抵消,剩余的杂质发生电离。
在Ⅲ-Ⅴ族半导体中(Ga-As )掺入Ⅳ族杂质原子(Si ),Si 为两性杂质,既可作施主,亦可作受主。
设315100.1-⨯=cm N A ,316101.1-⨯=cm N D ;则316100.1-⨯=-=cm N N n A D 由p n n i ⋅=2,可得p 值;①p n ≈时,近似认为本征半导体,i F E E =;②p n μμ=时,本征电导p n σσ=; p n >>时,杂质能级靠近导带底;第三章 半导体中载流子的统计分布1.费米分布函数(简并半导体)⎪⎪⎭⎫ ⎝⎛⋅-+=Tk E E E f F 0exp 11)((本征);⎪⎪⎭⎫ ⎝⎛⋅-+=T k E E E f F 0exp 2111)((杂质);玻尔兹曼分布函数(非简并半导体) ⎪⎪⎭⎫ ⎝⎛⋅-=T k E A E f B0exp )(;2.费米能级:TF N F E ⎪⎭⎫⎝⎛∂∂==μ;系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。
第3章半导体中的电子状态半导体的许多物理性质与其内部电子的运动状态密切相关。
本章扼要介绍一些有关的基本概念。
§3-1 电子的运动状态和能带为了便于理解半导体中的电子运动状态和能带的概念,先复习一下孤立原子中的电子态和自由空间中的电子态概念。
一.原子中的电子状态和能级。
原子是由带正电荷的原子核和带负电荷的电子组成的,原子核的质量远大于电子的质量。
因此,可认为电子是在原子核的库仑引力作用下绕着原子核运动。
电子绕原子核运动遵从量子力学规律,处于一系列特定的运动状态,这些特定状态称量子态或电子态。
在每个量子态中,电子的能量(能级)是确定的。
处于确定状态的电子在空间有一定的几率分布。
在讨论电子运动时,也常采用经典力学的“轨道”概念,不过其实际含义是指电子在空间运动的一个量子态和几率分布。
对于原子中的电子,能级由低到高可分为E1﹑E2﹑E3﹑E4..等,分别对应于1s﹑2s﹑2p﹑3s…等一系列量子态。
如图3-1所示,内层轨道上的电子离原子核近,受到的束缚作用强,能级低。
越往外层,电子受到的束缚越弱,能级越高。
总之,在单个原子中,电子运动的特点是其运动状态为一些局限在原子核周围的局域化量子态,其能级取一系列分立值。
二.自由空间中的电子态和能级。
在势场不随位置变化的自由空间中,电子的运动状态满足下面的定态薛定格方程(3-1)该方程的解为平面波:(3-2)其中,称波函数,称能量谱值或本征值,V为空间体积,为平面波的波矢,其大小为波长倒数的2π倍,即k=2π/λ。
这里也起着量子数的作用,用来标志自由电子的运动状态。
E~~关系曲线如图3-2所示。
在波矢为的量子态中,自由电子的动量也有确定值(3-3)在波矢量子态中,自由电子的速度也有确定值(3-4)利用能量与波矢之间的关系,容易将速度公式改写为(3-5)总之,自由空间中电子的运动特点是在相当大的范围内自由运动,几率分布延展于整个体积V,能谱是连续的。
三.晶体中的电子态和能带。