半导体中的电子状态
- 格式:ppt
- 大小:1.16 MB
- 文档页数:143
第一章 半导体中的电子状态1.导体、半导体、绝缘体的划分:Ⅰ导体内部存在部分充满的能带,在电场作用下形成电流;Ⅱ绝缘体内部不存在部分充满的能带,在电场作用下无电流产生; Ⅲ半导体的价带是完全充满的,但与之上面靠近的能带间的能隙很小,电子易被激发到上面的能带,使这两个能带都变成部分充满,使固体导电。
2.电子的有效质量是*n m ,空穴的有效质量是*p m ;**np m m -=,电量等值反号,波矢k 与电子相同 能带底电子的有效质量是正值,能带顶电子的有效质量是负值。
能带底空穴的有效质量是负值,能带顶空穴的有效质量是正值。
3.半导体中电子所受的外力dtdkh f ⋅=的计算。
4.引进有效质量的意义:概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
第二章 半导体中杂质和缺陷能级1.施主能级:被施主杂质束缚的电子的能量状态称为施主能级E D ;施主能级很接近于导带底;受主能级:被受主杂质束缚的空穴的能量状态称为受主能级E A ;受主能级很接近于价带顶。
施主能级图 受主能级图2.浅能级杂质:杂质的电离能远小于本征半导体禁带宽度的杂质,电离后向相应的能带提供电子或空穴。
深能级杂质:能级位于禁带中央位置附近,距离相应允带差值较大。
深能级杂质起复合中心、陷阱作用;浅能级杂质起施主、受主作用。
3.杂质的补偿作用:半导体中同时含有施主和受主杂质,施主和受主先相互抵消,剩余的杂质发生电离。
在Ⅲ-Ⅴ族半导体中(Ga-As )掺入Ⅳ族杂质原子(Si ),Si 为两性杂质,既可作施主,亦可作受主。
设315100.1-⨯=cm N A ,316101.1-⨯=cm N D ;则316100.1-⨯=-=cm N N n A D 由p n n i ⋅=2,可得p 值;①p n ≈时,近似认为本征半导体,i F E E =;②p n μμ=时,本征电导p n σσ=; p n >>时,杂质能级靠近导带底;第三章 半导体中载流子的统计分布1.费米分布函数(简并半导体)⎪⎪⎭⎫ ⎝⎛⋅-+=Tk E E E f F 0exp 11)((本征);⎪⎪⎭⎫ ⎝⎛⋅-+=T k E E E f F 0exp 2111)((杂质);玻尔兹曼分布函数(非简并半导体) ⎪⎪⎭⎫ ⎝⎛⋅-=T k E A E f B0exp )(;2.费米能级:TF N F E ⎪⎭⎫⎝⎛∂∂==μ;系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。
第3章半导体中的电子状态半导体的许多物理性质与其内部电子的运动状态密切相关。
本章扼要介绍一些有关的基本概念。
§3-1 电子的运动状态和能带为了便于理解半导体中的电子运动状态和能带的概念,先复习一下孤立原子中的电子态和自由空间中的电子态概念。
一.原子中的电子状态和能级。
原子是由带正电荷的原子核和带负电荷的电子组成的,原子核的质量远大于电子的质量。
因此,可认为电子是在原子核的库仑引力作用下绕着原子核运动。
电子绕原子核运动遵从量子力学规律,处于一系列特定的运动状态,这些特定状态称量子态或电子态。
在每个量子态中,电子的能量(能级)是确定的。
处于确定状态的电子在空间有一定的几率分布。
在讨论电子运动时,也常采用经典力学的“轨道”概念,不过其实际含义是指电子在空间运动的一个量子态和几率分布。
对于原子中的电子,能级由低到高可分为E1﹑E2﹑E3﹑E4..等,分别对应于1s﹑2s﹑2p﹑3s…等一系列量子态。
如图3-1所示,内层轨道上的电子离原子核近,受到的束缚作用强,能级低。
越往外层,电子受到的束缚越弱,能级越高。
总之,在单个原子中,电子运动的特点是其运动状态为一些局限在原子核周围的局域化量子态,其能级取一系列分立值。
二.自由空间中的电子态和能级。
在势场不随位置变化的自由空间中,电子的运动状态满足下面的定态薛定格方程(3-1)该方程的解为平面波:(3-2)其中,称波函数,称能量谱值或本征值,V为空间体积,为平面波的波矢,其大小为波长倒数的2π倍,即k=2π/λ。
这里也起着量子数的作用,用来标志自由电子的运动状态。
E~~关系曲线如图3-2所示。
在波矢为的量子态中,自由电子的动量也有确定值(3-3)在波矢量子态中,自由电子的速度也有确定值(3-4)利用能量与波矢之间的关系,容易将速度公式改写为(3-5)总之,自由空间中电子的运动特点是在相当大的范围内自由运动,几率分布延展于整个体积V,能谱是连续的。
三.晶体中的电子态和能带。
半导体中的电子状态引言随着科技的发展,半导体材料在电子行业中扮演了重要的角色。
半导体材料的特殊结构使得它们在导电性质上介于导体和绝缘体之间。
研究半导体中的电子状态对于了解半导体的导电机制和优化器件性能具有重要意义。
本文将介绍半导体中的电子状态,并探讨其在实际应用中的影响。
电子能级受限在半导体中,电子能级是受限的,这意味着电子只能取特定的能量值。
通过与能带理论相关联,我们可以将半导体中的电子能级划分为价带和导带。
价带是半满的,而导带是部分填充的。
能带间隙能带间隙(band gap)是指价带和导带之间不允许存在任何电子能级的能量差。
对于导体来说,能带间隙非常小,几乎可以忽略不计。
而对于绝缘体来说,能带间隙非常大,使得电子无法跃迁到导带中。
而半导体的能带间隙大小适中,介于导体和绝缘体之间。
能带间隙的大小决定了半导体的电导率和其他电学性质。
纯半导体中的电子状态在纯半导体中,没有掺杂物存在。
在绝对零度下,所有的价带都被填满,而导带都是空的。
这种状态下,半导体是非导电的。
当温度升高时,由于晶格的振动,一些电子可以跃迁到导带中,形成导电。
这种现象被称为本征激发。
杂质半导体中的电子状态杂质半导体是指在纯半导体中掺入其他原子,以改变半导体的电子状态。
当掺入杂质元素时,会形成杂质能级。
这些能级位于能带间隙的中间,可分为n型杂质能级和p型杂质能级。
n型杂质能级暗示占据了原本在导带的电子,而p型杂质能级暗示原本从价带“升级”的电子。
能带理论和电子迁移能带理论是半导体物理学中的基本概念之一。
它描述了在不同能带之间电子的跃迁行为。
根据能带理论,当一个电子从价带跃迁到导带时,会在价带留下一个“空穴”(被电子跃迁到导带的位置)。
空穴的移动速度会影响半导体器件的工作性能。
由于空穴的速度较慢,限制了电子的迁移速度。
这也是为什么n型半导体比p 型半导体具有更好的导电性能的原因,因为电子比空穴移动速度更快。
电子状态与半导体器件性能的关系半导体中的电子状态与器件性能密切相关。
半导体物理半导体中的电子状态半导体物理:半导体中的电子状态半导体是一种在电性能上介于导体和绝缘体之间的材料。
半导体中的电子状态对于半导体器件的特性和性能起着至关重要的作用。
本文将探讨半导体中的电子状态,并介绍与之相关的几个重要概念。
1. 能带结构半导体中的电子状态与能带结构密切相关。
能带是将材料中的电子能级按照能量高低进行分类的一种方式。
在半导体中,一般存在两个主要的能带,即价带和导带。
价带是电子处于较低能量状态的能带,而导带则是电子处于较高能量状态的能带。
能带之间的能隙决定了电子的跃迁行为。
2. 杂质能级半导体中的杂质能级是指由掺入杂质引起的局部能量水平。
掺杂是通过向半导体中引入少量的杂质元素改变其电子状态。
掺入五价元素(如磷)会产生施主能级,该能级位于导带上方,提供自由电子;而掺入三价元素(如硼)会产生受主能级,该能级位于价带下方,吸收自由电子。
杂质能级的引入对半导体器件的性能起着决定性作用。
3. 载流子在半导体中,载流子是负责电荷传输的粒子。
主要有电子(负载流子)和空穴(正载流子)两种类型。
在纯净的半导体中,电子和空穴的浓度相等,称为本征半导体。
通过掺杂,可以改变载流子的浓度,从而实现半导体的导电性的调控。
4. 载流子的浓度与掺杂浓度的关系半导体材料的光、热、电等特性与掺杂浓度有关。
掺杂浓度越高,材料的导电性能越好。
在一定范围内,载流子浓度与掺杂浓度成正比。
然而,过高的掺杂浓度可能导致材料中的杂质能级相互重叠,从而影响器件的性能。
5. 半导体的禁带宽度禁带宽度是指价带和导带之间的能量间隔,决定了半导体材料的电导率。
半导体的禁带宽度较小,比绝缘体的小,但比导体的大。
通过控制禁带宽度,可以实现对半导体的电学性质调控。
总结:本文讨论了半导体中的电子状态。
通过对能带结构、杂质能级、载流子浓度与掺杂浓度关系,以及禁带宽度等概念的介绍,我们可以更好地理解半导体器件的工作原理和性能特点。
半导体物理作为一门重要的学科领域,对于现代电子技术的发展和应用具有重要意义。