发动机液压悬置解读
- 格式:ppt
- 大小:807.00 KB
- 文档页数:16
发动机悬置结构设计研究摘要:随着人类社会的和科学技术的不断发展,现阶段汽车已成为人们出行的主要交通工具。
如何提高汽车的舒适性和安全性就成为了人们最关心的问题,这就从减振、噪声、舒适性和行驶稳定性的角度,对发动机悬置系统提出了更高的要求。
本文对传统的发动机液压悬置系统进行了简单的分析,然后在传统的结构基础上加以设计改进,提出了一种主要依靠磁来减振的新发动机悬置系统,为以后发动机液压悬置系统的设计研发提供了一种新的思路。
关键词:新型;悬置系统;优化;磁1、导致汽车振动的振源主要有两方面的因素一个是由于汽车在路上行驶时,因为路面的状况而产生的随机振动;另外一个是汽车发动机在运转时产生的振动。
一般来说,因为路面状况而产生的振动对乘客的影响比发动机产生的振动大,但是现在随着路面条件的不断提高,由路面引起的振动对乘客的影响得到了一定的缓解;对乘客的感觉影响较大的是发动机运转时产生的振动,为了降低这个方面的影响,于是人们便研制出了发动机悬置系统。
2、现在发动机悬置的类型主要有以下两类:橡胶悬置和液压悬置橡胶悬置不能承受过高的温度,如果橡胶弹性元件用天然橡胶制成,那么该元件通常在七十摄氏度以上时便会失去其作用,并且橡胶材料在高频时容易产生动态硬化,相关实验数据显示,当发动机的振动频率比二百赫兹高的时候,橡胶悬置的动刚度会上升的很快。
正因为如此,使得橡胶悬置在高频和低频环境中顾此失彼,使橡胶悬置的减振效果降低。
现有的液压悬置系统是国外七、八十年代发展起来的一种新型的弹性隔振元件。
它是在传统的橡胶悬置基础上,增加了内部液体阻尼机构,利用内部液体在运动时会产生惯性和阻尼特性,从而衰减和吸收发动机振动。
它的原理类似于动力吸振器,在发动机低频振动时,液压悬置相当于橡胶弹簧和动力吸振器并联作用的机构,可以很好地控制发动机位移量,最大程度的降低振动传递率;在高频振动时,橡胶弹簧单独作用,由于液压悬置的橡胶主簧多采用天然橡胶,具有较小的阻尼,有利于降低振动的传递。
发动机悬置得结构、作用、设计要求1.概述:随着当前底盘、发动机技术得日臻完善,车辆得振动、噪声得控制转而成为各个整车厂在研发上得重中之重。
据统计分析在一个车辆系统得上万个零部件中,对振动起关键作用得大概有二百个。
它们又分别在整车得振动系统中起不同得作用。
这里仅对发动机产生得振动经由发动机悬置到车身得振动系统得结构、作用、设计要求给出一定程度得阐述与说明.振动情况及位置频率Hz路面激励得频率范围车体1~3座椅与驾驶员4~8发动机总成5~18前后桥10~16车轮共振11~15排气管机械系统12~22发动机得振动频率范围怠速抖动20~30车体弯曲扭转25~40方向盘抖动25~40发动机总成弯曲130~230排气管气体系统100~1000变速器噪声350~600进气系统噪声100~600发动机噪声1000~5000基于汽车振动学得相应设计优化,应最大可能得避免整车主要部件在各种工况下得振动耦合.悬置得作用概括来说就就是对发动机振动与路面激励得隔离与吸收,减少乘客舱中人所受得影响,降低其她零部件因为过多振动产生得疲劳破坏。
2.悬置系统得结构2.1布置概念:◆前轮驱动——较低排量,◆后轮驱动-—较大排量.质量发动机+变速箱发动机+变速箱+驱动轴转距约1/4得驱动转距T全部得驱动转距T转距纵向横向方向●动力总成横置,如尊驰、骏捷等。
4G63 4G64 4G934G18 等动力总成中华1、8T 宝来等车得动力总成。
2.2结构概念:●橡胶悬置悬置结构为橡胶+金属支架,在低频、大振幅得动刚度与滞后角变化小。
在高频、小振幅激励下得动刚度与滞后角变化不大,容易产生动态硬化现象,常用于发动机前后悬置,阻止发动机过渡扭转。
●液力悬置悬置结构为橡胶形腔+液体(乙二醇)+金属支架,在低频、大振幅得激励下具有大阻尼;在高频、小振幅得激励下具有小刚度。
可根据实际与成本情况决定采用一个液压悬置还就是采用多个液压悬置。
常用于发动机左右悬置。
悬置系统发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。
引起零部件的损坏和乘坐的不舒适等。
所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。
成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。
确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。
一般来讲对发动机悬置系统有如下要求。
①能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。
同时在发动机大修前,不出现零部件损坏。
②能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。
③能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。
④保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。
悬置系统的激振源作用于发动机悬置系统的激振源主要如下:①发动机起动及熄火停转时的摇动;②怠速运转时的抖动;③发动机高速运转时的振动;④路面冲击所引起的车体振动;⑤大转矩时的摇动;⑥汽车起步或变速时转矩变化所引起的冲击;⑦过大错位所引起的干涉和破损。
作用在发动机悬置上的振动频率十分广泛。
按着振动频率可以把振动分为高频振动和低频振动。
频率低于30Hz 的低频振动源如下:①发动机低速运转时的转矩波动;②在发动机低速运转时由于惯性力及其力偶使动力总成产生的振功;③轮胎旋转时由于轮胎动平衡不好使车身产生的振动;④路面不平使车身产生的振动;⑤由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。
频率高于30Hz 的高频振动源如下:①在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动;②变速时产生的振动;③燃烧压力脉动使机体产生的振动;④发动机配气机构产生的振动;⑤曲轴的弯曲振动和扭振;⑥动力总成的弯曲振动和扭振;⑦传动轴不平衡产生的振动。
主动液压悬架工作原理宝子们,今天咱们来唠唠汽车里超酷的主动液压悬架的工作原理。
咱先想象一下啊,汽车在各种路面上跑,就像人在不同的地形上走路一样。
如果路面坑坑洼洼的,没有个好的“减震装备”,那可就颠得难受死了。
这时候,主动液压悬架就像汽车的贴心小助手一样闪亮登场啦。
主动液压悬架呢,它主要有几个超级重要的部分。
有传感器,这就像是汽车的小眼睛和小耳朵。
传感器可机灵啦,它能随时感觉到路面的情况。
比如说,当车轮压到一个小坑的时候,传感器马上就能察觉到这个震动,就像你不小心踩了个小石子,脚能马上感觉到一样。
它能检测到车身的高度变化、速度、加速度啥的好多信息呢。
然后呢,就轮到控制器出场啦。
控制器就像是个超级聪明的小脑袋。
它拿到传感器传来的那些信息后,就开始分析啦。
它就想啊,“前面这个坑洼得这么处理呢?”它会根据预设好的一些程序和算法,快速地做出决定。
这个决定就是要怎么调整悬架,让车里的人感觉最舒服。
就好像你要根据不同的路况,决定是大步走还是小步挪一样。
再说说液压执行机构吧。
这个部分可就是真正干活的啦。
它接到控制器的指令后,就开始对悬架的高度和刚度进行调整。
比如说,如果传感器告诉控制器前面有个大坑,控制器就会让液压执行机构把悬架变软一点,这样车轮掉进坑里的时候,就不会把那种剧烈的震动直接传到车里。
就好比你从高处往下跳的时候,有个软软的垫子接住你,就不会摔得那么疼啦。
如果是在高速行驶的时候,控制器可能会让液压执行机构把悬架变硬一些,这样车子就会更稳定,不会因为风啊或者路面的小起伏就晃来晃去的。
而且啊,主动液压悬架还能根据不同的驾驶模式来调整呢。
如果是舒适模式,那它就会更倾向于把悬架调得软软的,就像坐在云朵上一样。
要是运动模式呢,悬架就会相对硬一点,这样车子在转弯的时候就会更灵活,就像运动员在赛场上做各种灵活的动作一样。
咱再举个例子哈。
比如说你开着车去自驾游,在那种乡间的小土路上,路面坑洼不平。
这时候主动液压悬架的传感器就忙个不停啦,到处收集信息。
液压悬置阻尼角曲线液压悬置阻尼角曲线是指在液压悬置系统中,悬置阻尼随着车轮摆动角度的变化而变化的一条曲线。
这条曲线可以用来描述液压悬置系统的动态特性。
下面,我将分步骤阐述液压悬置阻尼角曲线的相关知识。
第一步:液压悬置系统的概念液压悬置系统是一种将油液作为介质,通过阻尼器来实现车辆减震的系统。
该系统由悬挂弹簧、阻尼器、液压箱等组成。
在车辆运动时,液压悬置系统可以有效地减少车辆的震动,提高车辆的行驶舒适性和稳定性。
第二步:液压悬置阻尼角曲线的含义液压悬置阻尼角曲线是指在液压悬置系统中,悬置阻尼随着车轮摆动角度的变化而变化的一条曲线。
该曲线表明了液压悬置系统在不同车轮摆动角度下的阻尼特性。
第三步:液压悬置阻尼角曲线的构成液压悬置阻尼角曲线通常由三段组成:线性段、过渡段和非线性段。
在线性段中,悬置阻尼随着车轮摆动角度的变化呈线性变化;在过渡段中,悬置阻尼随着车轮摆动角度的变化从线性变化逐渐转变为非线性变化;在非线性段中,悬置阻尼随着车轮摆动角度的变化呈非线性变化。
第四步:液压悬置阻尼角曲线的作用液压悬置阻尼角曲线可以用来描述液压悬置系统的动态特性,并可以通过调整悬置阻尼角曲线来改变液压悬置系统的阻尼特性。
通过调整液压悬置系统的阻尼特性,可以实现车辆行驶的舒适性、稳定性和操控性的优化。
第五步:液压悬置阻尼角曲线的实验为了确定液压悬置阻尼角曲线,通常需要进行实验。
常用的实验方法包括碰撞试验、振动试验和道路试验等。
在实验过程中,可以通过测量车轮的摆动角度和悬置阻尼的变化来确定液压悬置阻尼角曲线。
综上所述,液压悬置阻尼角曲线是液压悬置系统中一个重要的参数,它可以用来描述液压悬置系统的动态特性,并可以通过调整阻尼特性来优化车辆的行驶舒适性、稳定性和操控性。
液压悬架详细资料大全液压悬架是由感测器和控制器等组成闭环控制系统,根据车辆的运行状态,按照设定的控制规律向执行机构适时发出控制命令。
基本介绍•中文名:液压悬架•外文名:The hydraulic suspension•优点:实用升降自如,后期维护成本低•普遍采用:电液控制液压悬架•缺点:反应有点慢•学科:机械工程简介,控制过程,套用,优点,缺点,简介液压悬架是由感测器和控制器等组成闭环控制系统,根据车辆的运行状态,按照设定的控制规律向执行机构适时发出控制命令。
控制过程工程车辆主动悬架系统普遍采用的是电液控制液压悬架,其控制过程:通过调节油液流动,在调整阻尼系数同时锁死悬架或调节车身高度.由于在大吨位野外运输中,工程运输车或越野车承载重,运输途中路面不平造成的颠簸有可能对物件和车辆本身造成损伤,所以主动悬架采取变阻尼和自动调节车身高度等使车辆得到更精确和平稳的运行。
电子控制的主动式液压悬架能根据悬架的质量和加速度等,利用液压部件主动地控制汽车的振动。
主动式液压悬架在汽车重心附近安装有纵向、横向加速度和横摆陀螺仪感测器,用来采集车身振动、车轮跳动、车身高度和倾斜状态等信号,这些信号被输入到控制单元ECU,ECU根据输入信号和预先设定的程式发出控制指令,控制伺服电机并操纵前后执行油缸工作。
液压悬挂系统能够根据路面的情况自动调整悬挂液压缸的伸缩量,保证每个轮胎所承受的载荷相同。
液压悬挂系统也是车身的提升系统,可以均匀抬高车身的高度,当某一轮胎需要更换时,可关闭这个轮胎的悬挂系统而使其它悬挂升起,要更换的轮胎被方便拆下而不需要其它设备。
套用这种技术基本上只有一个汽车品牌掌握,那就是著名的雪铁龙汽车品牌,虽然国内非常的少见进口雪铁龙的身影。
但是这种悬架其一优点安全性强,其一缺点没有在国内C5和国内雪铁龙车上大量使用。
在启动汽车时,底盘升至初始位置,在熄火时底盘降至最低,一般来说离地面2CM左右,在越野时底盘升至最高20-25CM,高速行驶时底盘降至最低2-4CM左右。
整车技术部设计指南73发动机悬置设计5.1 概述汽车的乘坐舒适性——NVH(Noise-噪声、Vibration-振动和 Harshness-声振舒适性)越来越受到人们的重视和关注,因为噪声、振动和舒适性,是衡量汽车制造质量的一个综合问题,它给汽车用户的感觉是最直接和最表面的。
作为汽车动力源的发动机是汽车主要的振动激励源之一,其气缸燃气压力、转速及输出转矩的周期性波动及不平衡惯性力(矩)既激起发动机动力总成本身的刚体振动和弹性振动,又激起汽车动力传动的扭转振动和弯曲振动等,从而导致十分严重的振动、噪声及结构问题,最终传递给车身,引起整车振动与噪声。
汽车动力总成悬置系统是指动力总成(包括发动机、离合器及变速箱等)与车架或车身之间通过弹性悬置元件连接而成的系统,发动机动力总成的振动与路面激励力是通过弹性悬置元件传给车身,该项系统性能设计的好坏直接关系到发动机振动向车体的传递,影响整车的 NVH 特性。
因此,最大限度的减小发动机动力总成所产生的振动及噪声向车身传递,是汽车减振和降噪的主要研究内容之一。
5.2、悬置系统功能介绍5.2.1 悬置总成的功用a)悬置系统的首要作用即最基本的作用是支承动力总成的动、静载荷,并使发动机动力总成在所有方向上的位移处于可接受的范围内,不与前舱内其它零部件发生干涉;b)隔离发动机动力总成的振动,最大限度地降低从发动机动力总成传递到车身/车架上的振动,能有效的降低振动及噪音;c)在汽车做紧急制动、加速或受其它外界负荷的作用下时,发动机不应有过大的位移;d)隔离由于轮胎及车身的抖动而产生的振动和噪音通过悬置系统而传向发动机动力总成,降低振动及噪音;e)悬置系统元件需有足够的使用寿命。
5.3 动力总成悬置系统设计方法5.3.1 设计需解决的问题a)主要起支撑减振的作用,因而,悬置必须要能够支撑起动力总成,并且保证其三整车技术部设计指南74个方向的位移和绕三个轴的转角在一定的限度内;b)发动机自身振动的隔离,即不让发动机不平衡力所造成的振动过分地传向车向车f i f IDLE / 2身,这就要求各悬置的固有频率与各激励源的频率必须满足的条件,其中,f i为各悬置的固有频率,f IDLE为怠速时各激励源的频率。
帕拉梅拉液压悬架技术原理
小伙伴们!今天咱们来聊聊帕拉梅拉的液压悬架技术原理。
这可挺有趣的呢!
首先啊,咱得知道液压悬架就是靠液压系统来工作的。
它里面有一些特殊的部件,像液压泵啦、液压缸之类的东西。
那这些部件是咋协同工作的呢?嗯,这就是个关键问题啦。
一般来说,液压泵会把液压油输送到液压缸里。
这里面我觉得这个输送过程还挺巧妙的。
当然啦,这不是随随便便就送过去的,得根据车辆行驶的状况来控制送油的量。
比如说,当车经过一个小坑洼的时候,它怎么知道要送多少油呢?这就涉及到传感器啦。
车上有各种传感器,它们会收集路面信息、车辆速度、车身姿态这些数据。
然后呢,根据这些数据,控制系统就会告诉液压泵该怎么做。
接下来就是液压缸发挥作用的时候了。
液压缸收到液压油之后呢,就会改变自己的长度或者说行程吧。
为啥要这么做呢?这是为了调整悬架的高度和硬度呀!你想啊,如果一直都是一种状态,那开车得多难受啊。
有时候我们想要软一点的悬架,有时候又希望硬一点,对吧?
还有哦,整个液压悬架系统的维护也是很重要的。
这个环节可以根据实际情况自行决定什么时候去检查呀之类的。
但是千万不能完全不管它,要是出了问题,开车的体验肯定大打折扣!这一点一定要记住啊!
怎么样,小伙伴们,现在对帕拉梅拉的液压悬架技术原理是不是有了一点新的认识呢?希望我的讲解能让你们对这个神奇的技术多一些了解!。
【涨姿势】原来发动机悬置系统这么有用!众所周知,在现代车辆设计中,发动机均是采用弹性支承安装的,称之为“悬置”。
其有四个基本功能:1、固定并支承汽车动力总成。
2、承受动力总成内部因发动机旋转和平移质量产生的往复惯性力及力矩。
3、承受汽车行驶过程中作用于动力总成上的一切动态力。
4、隔离由于路面不平及车轮受路面冲击引起的车身振动向动力总成传递。
理想的发动机悬置,为衰减因路面和发动机怠速燃气压力不均匀引起的低频大幅振动,应具有低频高刚度、大阻尼的特性;为降低车内噪声,提高操纵稳定性,应具有高频小刚度、小阻尼的特性。
所以,总体上要求悬置要具有频变和幅变特性。
V3ET采用的发动机悬置系统就完全符合上述功能。
其悬置系统是与国际知名企业共同开发,采用欧洲主流的全新发动机悬置结构和四点悬置布置。
改善整车舒适性V3ET的四点发动机悬置,前悬置固定发动机上,后悬置固定在变速器上,取消旧状态的辅助支撑,辅助支撑过定位影响隔振效果;四点悬置载荷分布更合理,经过多体动力学分析,从而达到更好的解耦率与整车NVH。
噪音低,舒适性好。
V3ET的发动机前、后悬置楔形结构的线性特征非常有益于隔振,可以充分提升驾驶室的舒适性。
提升整车可靠性V3ET的发动机前、后悬置的楔形结构在X、Y、Z方向上均有限位,动力总成在极限位移上避免了与周围零件产生运动干涉,充分提升整车可靠性。
V3ET的发动机悬置同时给欧洲主流车型(奔驰、MAN等)匹配与供货,产品质量高,PPM值达到4.1,目前在中国市场应用广泛,可靠性已得到充分验证。
所以说,V3ET的发动机悬置系统对提升整车的舒适性和可靠性发挥了极大的作用。
大家以后选车就照着V3ET这样的选噢~。
液压悬置还分为解耦式和非解耦式?他们有什么区别呢?液压悬置分非解耦式悬置和解耦式悬置。
它们具体有什么差别呢?请听下文详解。
非解耦式悬置非解耦式液压悬置为第一代液压悬置,其常见的有两种,一种是阻尼孔的非解耦式悬置,一种是惯性通道的非解耦式悬置。
1.阻尼孔式非解耦式液压悬置如图1所示,有橡胶主簧、上液室、下液室、液体和阻尼孔构成。
上、下液室经阻尼孔相连,液压悬置在振动作用下压缩时上液室受泵动,液体经阻尼孔流入下液室,拉伸时上液室体积增加产生真空度,下液室的液体又经过阻尼孔被吸入上液室,由于阻尼孔直径较小,液体流动时产生较大阻尼,消耗振动能量。
2.惯性通道的非解耦式液压悬置如图2所示,其与阻尼孔式非解耦式悬置最大的区别在于连接上、下液室的不是阻尼孔而是惯性通道,这种液压悬置受到振动激励时,上、下液室产生压力波动,引起液体经惯性通道流动,于是通道内形成振动液柱,液柱在运动中产生惯性阻力。
此惯性阻尼效应远大于外形尺寸相同的阻尼孔式非解耦式液压悬置。
图1 阻尼孔式非解耦式悬置图2 惯性通道的非解耦式悬置图3 非解耦式悬置与橡胶悬置阻尼比较图4 非解耦式悬置与橡胶悬置刚度比较这两种非解耦式液压悬置都能显著改善低频的隔振性能,并不能改善高频时的隔振性能。
如图3,4是非解耦式液压悬置与橡胶悬置的刚度和阻尼比较。
解耦式悬置解耦式液压悬置为第二代液阻悬置,根据解耦盘/膜的结构可以分为固定解耦膜式和浮动解耦盘式两种。
1.惯性通道--解耦盘式液压悬置,解耦盘式液阻悬置为一盘状结构(金属或塑料),可以在小范围内上下移动,一般低频大振幅激励时,解耦盘处于上极点或下极点,此时流体仅能通过惯性通道在上下液室流动;而在高频小振幅下,惯性通道自锁,解耦盘将在小位移范围内上下运动,上下液室的流体一方面可以通过解耦盘的上下运动而达到压力平衡,另一方面上下液室的流体也可以通过解耦盘的外沿流通;结构如图5所示。
2.惯性通道解耦膜式液压悬置,低频大振幅下,解耦膜被拉伸到较大位置,刚度较大,流体仅能通过惯性通道流通。
典型液压悬置及结构特点典型的液压悬置有圆锥形、梯形、长腰型以及衬套型以下几种,每种结构都有其性能特点,下面就逐一进行介绍。
1、圆锥形液压悬置一般作为左右支撑悬置使用。
图1 典型圆锥型液压悬置结构优点:1、三向刚度比例可调范围大,X:Y:Z=(0.6-1):(0.6-1):1,动静比在1.3~1.7之间。
2、三向限位要求容易实现,X、Z可限位,一般Y向有两个方向限位3、液压元件(流道、底膜(皮碗)、解耦膜(盘)、节流盘(拉头)比较容易实现共用。
图2 圆锥形液压悬置剖视图4、阻尼角峰值频率易于调整,解耦效果比较容易实现;5、如果有节流盘的解耦,可以在较大频率范围(200HZ或250HZ以内)实现小振幅解耦;局限性:1、需要较大的Z向空间,如果需要对上跳进行限位,则对Z向空间尺寸要求更高。
2、组件数量多,装配工艺复杂,需要注意产品的尺寸链控制避免出现液体泄漏问题。
3、需要对密封筋的装配变形尺寸和空间进行仔细核对,还要注意皮碗在水下灌装是的工艺问题。
4、注意零件极限变形时底膜(皮碗)与下盖的空间关系,避免在预压时就顶死底座,导致动刚度升高。
同时还要注意底盖排气孔的位置和毛刺方向。
5、成本相对较高。
图3 皮碗顶死底座导致动刚度过大的整改案例6、零件承受较大侧向载荷时,需要注意结构件的强度能否满足要求。
2、梯形液压悬置一般作为左、右悬置支撑使用。
图4 典型的梯形液压悬置结构优点:1、阻尼角峰值频率易调,解耦效果容易实现2、能够承受较大的纵向冲击载荷;3、三向静刚度比例易调,X:Y:Z=(0.7-2):(0.6-0.8):14、限位:X、Z可限位,一般Y 向只一个方向限位5、容易在零件上搭载其他附件(如膨胀箱,蓄电池)6、能够在车身大梁较小的Y向空间条件下实现零件布置局限性:1、侧向刚度较小调整范围有限,可能会导致动力总成Y向刚体模态偏低,2、侧向限位比较不好实现;3、液压元件的共用性相对差;4、托臂跟部的设计强度和工艺缺陷需要特别关注;5、密封筋的装配变形尺寸和空间需要仔细校核;6、关注底膜的最大变形空间是否会产生干涉;7、梯形液压悬置一般不会设置节流盘,所以高频动刚度硬化频率较低(130HZ);8、金属骨架以铝件为主,成本相对较高。
发动机悬置系统的初步设计(一)1 发动机悬置系统的功用及激振力分析发动机悬置系统(以下简称悬置系统)应该具备:①隔振功能;②支承限位功能;③降噪等功能。
发动机总成本身是一个内在的振动源, 同时又受到来自外部的各种振动干扰, 使其处于复杂的振动状态, 引起周围零件的损坏和乘坐的不舒适等。
其中:燃烧激振频率, 是由发动机气缸内混合气燃烧, 曲轴输出脉冲扭矩, 导致发动机上反作用力矩的波动, 从而使发动机产生周期性的扭转振动, 其振动频率实际上就是发动机的发火频率,计算公式为[2] :其中: f1——点火干扰频率, Hz; n——发动机转速, r/min; i——发动机气缸数; —发动机的冲程系数(2 或4)。
惯性力激振频率, 是由发动机不平衡的旋转质量和往复运动的质量所引起的惯性激振力和激振力矩的频率。
它与发动机的缸数无关, 但惯性力的不平衡量与发动机缸数和结构特征有着密切关系。
计算公式为[2]:其中: f2——惯性力激振频率, Hz; n——发动机转速, r /min; Q——比例系数(一级不平衡惯性力或力矩Q=1、二级不平衡惯性力或力矩Q=2)选用的直列四缸发动机(见图3), 其主要激振力为低速区段的二阶扭矩波动和高速区段的二阶惯性力, 表达式为(1-3)[3]:式中, γ为总成布置倾斜角(通常指布置后曲轴与水平面的夹角); m 为单缸活塞及往复运动部分质量; r 为曲柄半径; λ为曲柄半径与连杆长度之比(λ=r/L); ω为发动机曲轴角速度(ω=2πn /60); Me0 为发动机输出扭矩平均值; A 为2、3 缸中心线至动力总成重心的纵向X 距离。
2 发动机悬置系统支承点位置的最佳设计在确定悬置系统支承点位置时, 应该考虑到低速(怠速)和高速时的不同要求。
发动机总成在低速运转时, 其自身的弹性振动影响较小, 将其看成刚体, 按照刚体运动理论进行研究; 高速时自身弹性振动影响较大, 必须通过试验得到其弹性振动形态, 选择振幅最小的位置, 即将悬置系统支承点布置在弹性振动的节点位置上。
发动机悬置的简介1,为什么称为悬置?在现代车辆设计中,发动机均是采用弹性支承安装的,称之为“悬置”。
2,发动机悬置主要功能是什么?- 固定并支承汽车动力总成- 承受动力总成内部因发动机旋转和平移质量产生的往复惯性力及力矩- 承受汽车行驶过程中作用于动力总成上的一切动态力- 隔离由于路面不平度及车轮所受路面冲击引起的车身振动向动力总成传递理想的发动机悬置,为衰减因路面和发动机怠速燃气压力不均匀引起的低频大幅振动,应具有低频高刚度、大阻尼的特性;为降低车内噪声,提高操纵稳定性,应具有高频小刚度、小阻尼的特性。
所以,总体上要求悬置要具有频变和幅变特性。
现有的发动机悬置有很多类型,主要有橡胶悬置、空气弹簧悬置、液压悬置、半主动悬置和主动悬置等多种结构形式。
每种结构都有其不同的特性特点及优缺点,在不同的发展阶段有不同的应用。
3,发动机悬置主要破坏形式是?发动机悬置的主要材料是橡胶,发动机悬置收到自身振动及其路面振动载荷,使橡胶处于变频变载荷幅值的状态中,由此橡胶悬置主要破坏形式是疲劳破坏而导致橡胶主簧失效,因此橡胶主簧的疲劳对整个悬置系统的寿命起着决定性的作用。
4,如何评价悬置系统的好坏?一,悬置的六个自由度的固有频率(三个平移方向和三个转动)1.要大于地面激励频率(一般为5Hz);2.要小于发动机激励频率(N*n/30*C,n为怠速转速,N为发动机缸数,C为发动机冲程数一般为4)的1/1.414;3.各个自由度的固有频率要有一定的间隔,1Hz以上;二,悬置系统的解耦率要求,特别是垂直方向和沿曲轴方向的解耦率要求达到80左右。
三,发动机悬置的隔振效果要求在80%或者隔振20dB, 并且怠速下,悬置隔振后的振动加速度在50Hz以内的频谱上的峰值要求小于20mg(对于轿车而言);在50——500Hz其要求小于5mg。
目录发动机悬置的结构、作用、设计要求 (2)1.1 悬置的作用 (2)1.2 悬置的设计要求 (2)1.3 悬置的设计结构 (2)1.4 悬置的布置 (5)1.5 悬置系统设计程序 (9)1.1 悬置系统安装要求 (10)发动机悬置的结构、作用、设计要求1.1 悬置的作用悬置元件既是弹性元件又是减振装置,其特性直接关系到发动机振动向车体的传递,并影响整车的振动与噪声。
1.2 悬置的设计要求1.2.1 能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。
同时在发动机大修前,不出现零部件损坏。
1.2.2 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。
1.2.3 能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。
1.2.4 保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。
1.3 悬置的设计结构1.3.1 发动机悬置软垫的设计-金属板件和橡胶组成1.3.1.1 悬置软垫的负荷通常前悬置位于发功饥机体前端或机体前部两侧,与后悬置相比、远离动力总成的质心,因此动力总成的垂直静负荷主要由后悬置承担,而前悬置主要承受扭转负荷。
对后悬置来说.距离动力总成的主惯性轴较近,承受较小的扭转负荷及振幅。
同时,由于它处于发动机动力输出端,受传动系不平衡力的严重干扰和外部轴向推力的冲击,当发动机输出最大转矩时.支承点出现的最大反作用力也应由后悬挂来承担。
所以后悬置的垂直刚度较大,也起着限制动力总成前后位移的作用。
悬置系统同样还承受了汽车行驶在平平道路上的颠簸、冲击、汽车制动及转向时所产生的动负荷。
1.3.1.2 悬置软垫的机构形式在设计发动机悬置时。
必须充分的考虑悬置的使用日的,例如支承的质量和限制的位移等,选择合理的形状。
悬置的基本形式有三中,即压缩式、剪切式和倾斜式。
给出了这二种悬置的基本特性及用途。
通常采用倾斜式的悬置结构,利用这种悬置的弹性特性,支点设定可以获得较大的自由度。
汽车液压悬架的工作原理
汽车液压悬架的工作原理可以概括为以下几点:
1. 组成
液压悬架系统主要由弹簧、减震器、液压作动缸等组成。
2. 工作原理
当车轮遇到路面颠簧时,会带动液压工作缸活塞运动,从而压缩或展开高压室中的油液。
3. 压力控制
通过调节溢流阀,可以控制压力,进而改变悬架的刚度和减震特性。
4.自适应优点
液压悬架可以根据车辆行驶状态和路面情况,自动调节减震特性,实现自适应控制。
5.负反馈
车体震动可以即时反馈调节液压系统,形成负反馈,有效抑制和消除车辆颠簧。
6.节能
当车辆处于直线匀速行驶时,液压系统不再工作,达到节能目的。
7.Fail-safe设计
液压系统出现故障时,汽车可以依靠剩余的机械弹簧起到基本减震作用。
总体上,液压悬架系统通过自适应调节和动力分配,实现了车辆的理想减震和平顺性,从而确保驾乘舒适性和车轮更好的路感。
油气悬架系统工作原理
液压油气悬架系统是一种利用液压油进行调节悬架柱高度和改变悬架后汽车坐垫行程
的一种悬架系统,它可以使得汽车在不同路况下能够获得超乎平庸的悬架感受。
液压油气悬架系统一般由三部分组成,分别是液压动力单元、罐体和悬架单元。
液压
动力单元是由一个液压油泵和一个比例控制器组成的,它的作用是将液压油提供给悬架单元,比例控制器用来对现有动力单元的压力进行调节,确保悬架系统的最佳工作状态。
而
罐体就是油液储存单元,它可以存储液压油,以达到液压动力单元持续提供液压油的目的,此外,罐体还可以起到减少振动抖动的作用。
悬架单元的主要功能是将液压动力单元提供
的液压油转换为可调节悬架杆的高度,从而调整汽车的悬架行程,并确保汽车在不同行驶
状态下可以获得最佳悬架状态。
液压油气悬架系统在汽车行驶过程中有很大的优势,一是它可以减少振动传递到车身上,使乘客在汽车行驶时享受更加舒适的驾驶体验;二是它能够自动调节悬架杆的高度,
从而确保汽车在各种路况下可以获得最佳的悬架状态;三是它的操作自动化,可以根据不
同状态的悬架高度和行程作出调整;四是它可以节省汽车的燃油,较高的悬架行程可以减
少汽车的滚动阻力,从而改善汽车的燃油经济性。