环氧乙烷合成聚乙二醇
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
性质聚乙二醇(PEG),又称聚氧乙烯(oxyethylene)或聚环氧乙烷(PEO),是一种合成的亲水生物相容性聚合物。
分子量<100,000的通常被称为PEG,而分子量>100,000的PEG聚合物被归类为PEO。
聚乙二醇是通过环氧乙烷开环聚合反应合成的,PEG 可以聚合成线性、分支、y形或多臂等几何形状。
PEG聚合物是两亲性的,可溶于水和许多有机溶剂(如二氯甲烷、乙醇、甲苯、丙酮和氯仿)。
低分子量(Mw <1,000)的聚乙二醇是粘稠无色的液体,而高分子量的聚乙二醇是蜡质、白色的固体,熔点与分子量成正比,熔点的上限约为67℃。
应用聚乙二醇无毒,通常无免疫原性,被FDA批准为可用于药物配方、食品和化妆品中作为辅料或载体。
大多数分子量<1000的PEG可快速从体内清除,清除率与聚合物分子量成反比。
此外,PEG聚合物末端可连接多种官能团,使聚合物具有更多的功能。
因此,PEG在生物医学研究中具有广泛应用:生物接合、药物传递、表面功能化、组织工程以及许多其他应用。
PEG偶联是药物靶点如肽、蛋白质或寡核苷酸等与PEG的共价生物偶联,进而优化药代动力学特性。
在药物传递中,PEG可作为抗体-药物偶联物(ADCs)的连接物,或作为纳米颗粒的表面涂层,以改善系统药物传递。
PEG水凝胶是一种水膨胀的三维聚合物网络,它能抵抗蛋白质的粘附和生物降解。
PEG水凝胶是由PEG末端基团反应交联而成,通常用于组织工程和药物传递。
选择指南功能*单官能团聚乙二醇,包含一个化学反应端,可用于聚乙二醇化、表面接合和纳米粒子涂层*双官能团聚乙二醇,含有两个活性末端的PEG,包括同双官能团PEG、异双官能团PEG,有利于水凝胶的接合和交联反应*共价偶联:具有活性末端基团额PEG,如n-羟基丁二酰亚胺酯、巯基或羧基等,可以共价偶联到相应的官能团。
结合化学反应性质决定了每个分子的结合位点和PEG数量。
*链接化学需要带有叠氮或炔反应基团的PEG。
聚乙二醇400Juyi’erchun 400Macrogol 400本品为环氧乙烷和水缩聚而成的混合物。
分子式以HO(CH2CH2O)n H表示,其中n代表氧乙烯基的平均数。
【性状】本品为无色或几乎无色的粘稠液体;略有特臭。
本品在水或乙醇中易溶,在乙醚中不溶。
相对密度本品相对密度(附录Ⅵ A)为1.110~1.140.黏度本品的运动黏度(附录Ⅵ G第一法),在40℃时(毛细管内径为0.8mm)应为37~15mm2/s。
羟值本品的羟值(附录Ⅶ H)为264~300.【鉴别】(1)取本品0.05g,加稀盐酸5ml和氯化钡试液1ml,振摇,滤过;在滤液中加入10%磷钼酸溶液1ml,产生黄绿色沉淀。
(2)取本品0.1g,置试管中,加入硫氰酸钾和硝酸钴各0.1g,混合后,加入二氯甲烷5ml,溶液呈蓝色。
【检查】平均分子量取本品约1.2g,精密称定,置干燥的250ml 具塞锥形瓶中,精密加邻苯二甲酸酐的吡啶溶液(取邻苯二甲酸酐14g ,溶于无水吡啶100ml 中,放置过夜,备用)25ml,摇匀,置沸水浴中,加热30~60分钟,取出冷却,精密加入氢氧化钠滴定液(0.5mol/L)50ml,以酚酞的吡啶溶液(1→100)为指示剂,用氢氧化钠滴定液(0.5mol/L)滴定至显红色,并将滴定的结果用空白试验校正。
供试量(g) 与4000的乘积,除以消耗氢氧化钠滴定液(0.5mol/L)的容积(ml),即得供试品的平均分子量,应为380 ~420 。
酸度取本品1.0g,加水20ml溶解后,依法测定(附录Ⅵ H),pH值应为4.0~7.0 。
溶液的澄清度与颜色取本品5.0g,加水50ml溶解后,溶液应澄清无色;如显浑浊,与2号浊度标准液(附录Ⅸ B )比较,不得更浓;如显色,与黄色2号标准比色液(附录Ⅸ A第一法)比较,不得更深。
乙二醇与二甘醇取乙二醇与二甘醇各50ml,置100ml量瓶中,加水稀释至刻度,摇匀,作为对照液;另取本品4.0g,置10ml量瓶中,加水稀释至刻度,摇匀,作为供试品溶液。
聚乙二醇的zeta电位一、简介聚乙二醇(PEG)是一种由重复的环氧乙烷单元连接而成的聚合物。
它在许多领域都有广泛的应用,如药物传递、基因治疗和纳米技术等。
在PEG的水溶液中,其zeta电位是一个重要的物理化学参数,它决定了颗粒在溶液中的分散稳定性。
了解PEG的zeta电位有助于更好地理解和优化其在不同应用中的性能。
二、zeta电位的定义zeta电位是描述颗粒在分散体系中表面电性的一个参数。
具体来说,它是颗粒表面电荷与溶液中反号电荷离子间的电势差。
zeta电位的正负和大小直接影响到颗粒在溶液中的分散稳定性。
通常情况下,较高的zeta电位意味着颗粒间的静电斥力较大,从而在溶液中更加稳定地分散。
三、PEG的zeta电位测定测定PEG的zeta电位有多种方法,其中最常用的是电泳法。
该方法基于库仑定律,通过测量颗粒在电场作用下的迁移率来计算zeta电位。
除了电泳法,还有诸如显微电泳法、流动电位法等其他测定方法。
这些方法各有优缺点,选择合适的测定方法对于获得准确的结果至关重要。
四、影响PEG的zeta电位的因素1. 分子量:随着PEG分子量的增加,其zeta电位通常会减小。
这是因为高分子量的PEG链段更长,可以在颗粒表面形成更厚的吸附层,降低颗粒表面的电荷密度。
2. 离子强度:溶液中的离子强度对PEG的zeta电位有显著影响。
随着离子强度的增加,PEG的zeta电位通常会减小,这是由于离子强度增加导致反号电荷离子更多地占据颗粒表面附近区域,从而降低颗粒表面的电荷密度。
3. 溶液pH值:pH值可以显著影响PEG的zeta电位。
在酸性条件下,PEG的羧基可能解离,使其带负电荷;而在碱性条件下,PEG的氨基可能解离,使其带正电荷。
因此,随着pH值的改变,PEG的zeta电位也可能发生显著变化。
4. 吸附层的结构:PEG在颗粒表面的吸附层结构对其zeta电位也有重要影响。
例如,紧密而有规则的吸附层结构可以提供更多的固定电荷,从而产生更高的zeta电位。
聚乙二醇在药物制剂中的应用聚乙二醇别名聚氧乙烯醇或聚氧乙烯二醇,系环氧乙烷与单乙二醇或双乙二醇在碱性催化剂催化之下聚合而成,分子质量因聚合度不同而异,通常在200~35 000之间,PEG 的性质随分子质量而变化,目前常见的PEG种类有PEG200、PEG300、PEG400、PEG600、PEG2000、PEG4000、PEG6000、PEG8000等;药物溶剂PEG200、PEG300、PEG400、PEG600 系无色、略有微臭的粘性液体,化学性质稳定,安全低毒,故常作为药物的溶剂;另外,为了增加难溶性药物的溶解度,常使用潜溶剂即乙醇、甘油、丙二醇、苯甲醇、聚乙二醇等与水组成的混合溶剂;用于软胶囊剂软胶囊剂的囊材多以一定比例的明胶、增塑剂和水等组成,因此对蛋白质性质无影响的药物和附加剂均可填充;如各种油类、液态药物、药物溶液、药物混悬液和固体药物等;由于低分子质量PEG 能与水混溶,故是水溶性药物和某些有机药物很好的溶剂,如硝苯地平软胶囊;目前,软胶囊剂多为固体药物粉末混悬在油性或非油性PEG400 等分散介质中包制而成;另有报道,水合氯醛应用聚乙二醇作为溶剂可大大降低它对明胶蛋白的分解作用用于注射剂由于PEG200~PEG600 可提高难溶性药物的溶解度且对水不稳定药物有稳定作用,故可作为注射用溶剂;单一以PEG 作为注射用溶剂的注射剂并不多见,如噻替哌注射液以PEG400 或PEG600作为溶剂,可避免噻替哌在水中的聚结沉降作用;盐酸苄去氢骆驼莲碱注射液以 PEG200 作为溶剂,安全稳定,贮放 2 a 保持不变;但一般多用混合溶剂潜溶剂,如以V PEG300: V苯甲醇: V 丙二醇 = 80:5:15 时可作为质量分数为5 % 黄体酮或睾丸酮注射液的混合溶剂,此2 种注射液经肌肉注射后,与体液接触即在局部析出药物沉淀,形成药物仓库,逐渐从组织中释放,具有长效作用,售商品有病毒灵注射液、安乃近注射液、痢菌净注射液、穿心莲注射液、菌毒杀星注射液等;用于滴眼剂研究表明,以PEG400 为溶剂,可制成吲哚美辛滴眼剂;对此滴眼剂进行的稳定性研究结果表明,PEG400 处方优于Span80 处方;另外,PEG 可作为滴眼剂中的增稠剂,增加粘度,使药物在眼内停留时间延长,从而增加药效,减少刺激作用;润滑剂与粘合剂PEG4 000、PEG6 000是片剂中水溶性润滑剂的典型代表,在片剂处方中可直接加入适量聚乙二醇进行整粒,也可将其先配成醇溶液、混悬液或乳液进行制粒,润滑效果不变;利用聚乙二醇制得片剂的崩解和溶出不受影响,可提高主药在胃内的溶解性,最终有助于增加生物利用度;近年来,聚乙二醇在片剂中的使用越来越广泛,它们不仅可用作润滑剂,还可作为粘合剂,以PEG4 000最为常用;如以 PEG4 000为粘合剂熔点较低,在高速搅拌下呈熔融态,α -乳糖为填充剂,交联聚乙烯吡咯烷酮为崩解剂,硬脂酸镁为润滑剂,采用熔融制粒法可制备卡马西平速释片另外对于热不稳定药物,若采用 PEG4 000为粘合剂,可在干燥状态下进行粉末直接压片,效果较为理想;市售商品主要有痢菌净片、多钙片、钙中钙片、痢特灵片等;药物载体PEG 随分子量的增加则由液体逐渐呈半固体至固体,熔点也随之升高;由于PEG 对人体无毒无害,亦无致畸,致癌和基因突变等副作用,且可增加某些药物的溶出速率,提高药物的生物利用度,故是最常用的水溶性载体之一;基质PEG 是一类亲水性基质,其性质稳定,对皮肤无刺激性,而具有润滑性,故广泛应用于软膏剂、栓剂、凝胶剂、滴丸剂、乃至胶囊剂;如水硫软膏基质系由PEG300 与PEG4 000质量比为 2:1 时于70 ℃水浴熔合而成;复方磺胺甲恶唑SMZ栓以mPEG6 000 : mPEG4 000:m水=57:33:10 为基质,其融变时限和体外药物溶出速率均优于可可豆酯、半合成脂肪酸酯等基质;以PEG 为基质,加入主药和一些药物赋形剂可制备水凝胶剂,如氯硝西泮水凝胶,擦在病人身体上可使药物快速透过皮肤进入血液循环从而发挥抗惊厥作用;另外,PEG400、1 500、4 000~20 000 均可作为半固体基质,将硬胶囊改装液体或半固体药液,如硝苯地平1 份、液体 PEG 5 ~25份、PVP ~10 份混合药液罐装的硬胶囊剂具有长效作用,可广泛用于心绞痛的治疗聚乙二醇作为软膏剂水溶性基质,市售的品种有百多邦莫匹罗星、环丙沙星霜等;作为栓剂基质,市售的品种有制霉菌素栓、甲硝唑栓、新霉素栓等;固体分散材料固体分散体系指药物以分子、胶态、无定型、微晶等状态均匀分散在某一固体载体物质中所形成的分散体系;PEG 分子质量为1 000~20 000 是一类常用的水溶性载体材料,可用于增加药物的溶出速率,如以 PEG6 000作为载体,采用熔融法制备格列苯脲固体分散体,其溶出速率和生物利用度与市售达安宁片相比显着提高PEG 也可作为缓释固体分散体的载体材料,如采用熔融法,将药物溶解于熔化的PEG 中,将药液装入硬胶囊中,室温下药液固化,药物按溶蚀机制缓慢释放,故具有缓释作用;另外,药物从PEG 载体中溶出的快慢主要受PEG 分子质量的影响,一般随着 PEG分子质量增大,药物溶出速率会降低;当药物为油类时,宜用分子质量更大的 PEG 类作为载体,如PEG12 000 或PEG6 000与PEG20 000 的混合物,若单用 PEG6 000作载体,固体分散体会变软,特别是在温度高时载体会发粘稳定剂目前,蛋白质类药物制剂的主要问题是药物稳定性差;对于液体剂型蛋白质类药物,可通过加入辅料稳定剂如聚乙二醇、糖类、盐类、表面活性剂等改变其性质增加稳定性;高浓度的PEG常作为蛋白质的低温保护剂和沉淀/ 结晶剂,它可与蛋白质的疏水链作用;研究表明,不同分子量的PEG 作用不同,如 PEG300 质量分数为 %或2 % 可抑制rhKGF 重组人角化细胞生长因子的聚集;PEG200、400、600 和1 000可稳定 BSA 和溶菌酶;PEG4 000不同质量分数可高达质量分数15 %可抑制低分子量尿激酶的热聚集此外,复合型乳剂稳定性差也是妨碍其广泛应用的主要原因;W/O/W型复乳常见的问题是分层,不过发生了分层的复乳经振摇后可复原;油膜破裂使内水相外溢是W/O/W型复乳不稳定的主要原因;若在内外水相中加入高分子物质作为稳定剂可增加其稳定性,如在外水相中加入PEG 、泊洛沙姆等可使复乳的粘度增大,降低复乳乳化膜的流动性,这对减小W/O/W型复乳的分层是有利的,且不影响其倾倒性和通针性;增塑剂与致孔剂PEG 是亲水性高分子物质,可作为增塑剂以改变聚合物的物理机械性质,使其更具柔顺性、塑性;如为了使明胶微囊具有良好的可塑性,不粘连且分散性好,常需加入增塑剂如聚乙二醇,山梨醇,丙二醇,甘油等;研究表明,在单凝聚法制备明胶微囊时,加入增塑剂可减少微囊聚集,降低囊壁厚度,且加入增塑剂的量同释药半衰期之间呈负相关;PEG 作为增塑剂也广泛应用于薄膜包衣材料中,PEG 带有羟基,可作为某些纤维素衣材的增塑剂,如以醋酸纤维素为膜材,PEG400 为增塑剂,阿拉伯胶为渗透压活性物质和助悬剂所制备的难溶性药物萘普生的单室单层渗透泵上下面均有释药小孔以零级速率释药,药物在12 h 的累积释放率可达 81 %;此外,PEG 作为增塑剂在膜剂和涂膜剂中也有应用;PEG 是能与水互溶的聚合物分子,所以 PEG 可作为膜控型缓控释药物的致孔剂;PEG 这类致孔剂能很快溶于介质中,形成较大的孔道,随着孔道的增加,外部溶剂很容易扩散穿过控释膜,加速了药物的释放;因而通过选择合适的聚合物衣膜和致孔材料可使药物达到恒速释放;如头孢氨苄缓释小丸以乙基纤维素为包衣材料,PEG6 000为致孔剂,此缓释胶囊包衣增质量 30 %,在 7 h内表现为药物零级释放,释药重现性良好;又如伪麻黄碱渗透泵无释药小孔以醋酸纤维素为膜材,酞酸二乙酯和PEG400 为致孔剂,碳酸氢钠为渗透压活性物质,其在12 h 内遵循零级释药规律修饰材料聚乙二醇类PEG 修饰剂是 pH中性、无毒、水溶性的聚合物,具有高度的亲水性和良好的生物相容性及血液相容性,并且没有免疫原性;故采用PEG 进行结构修饰可改善药物的以下性质:1 增加稳定性,降低酶降解作用;2 改善药物动力学性质,如延长血浆半衰期、降低最大血药浓度、血药浓度波动减小等;3 降低免疫原性和抗原性;4降低毒性,提高体内活性;5改善体内药物分布,靶向性增强;6 减少用药频率,提高病人依从性用于修饰脂质体传统脂质体和免疫脂质体易被网状内皮系统RES 的细胞识别并摄取,导致血循环半衰期很短通常低于30 min,到达靶器官之前即被清除,故应用很受限制;若在脂质体膜表面引入亲水性聚合物分子PEG ,可在脂质体表面形成一层水化膜,掩盖脂质体表面的疏水性结合位点,阻碍血浆成分接近脂质体,从而降低RES 对脂质体的识别和摄取,延长脂质体的血循环时间;PEG 修饰脂质体可以在病变部位如肿瘤、感染、心肌梗死等区域通过所谓的“被动靶向” 或代偿滤过机制缓慢积累,并促进药物在这些区域的转运;如PEG 修饰的多柔比星脂质体在动物实验及人体临床试验中均取得显着效果,且已有产品长效脂质体多柔比星Doxil 上市;此外,PEG 修饰的阿霉素脂质体与传统的阿霉素脂质体相比,药代动力学特征显着变化,抗肿瘤活性明显增强,毒性有所降低;这表明了PEG 修饰脂质体是一种很有前景的药物传递系统;用于修饰乳剂长循环乳剂是指对静脉注射用脂肪乳剂表面进行适当的修饰,以避免单核吞噬细胞系统MPS 的吞噬,延长体循环时间的乳剂;乳滴表面被柔顺而亲水的 PEG 链覆盖,亲水性增强,减少血浆蛋白与其相互作用的几率,降低被 MPS 吞噬的可能性;以二棕榈酰磷脂酰胆碱为乳化剂,助乳化剂,三油酸甘油酯为油相,加入适量PEG 修饰的二硬脂酰磷脂酰乙醇胺DSPE-PEG,可制得粒径为44 nm 的微乳,静注后在血中的清除率比未经修饰的微乳明显降低布洛芬溶解度极小,市售只有其衍生物氟布洛芬酯的乳剂,Park 等以油酸乙酯为油相、卵磷脂为乳化剂、DSPE-PEG 为助乳化剂制备了氟布洛芬微乳,与前者相比,t1/2、AUC、MRT都显着增加,同时可降低MPS的吞噬;另外,据文献23 报道,以 PEG 和叶酸修饰的阿柔比星微乳对于癌细胞具有显着的靶向性;用于修饰纳米粒和微球可生物降解的聚合物纳米粒作为药物输送载体有很多优势,如可控释、靶向、低毒等;但是,由于聚合物纳米粒经静脉给药后,数秒或数分钟内会被RES 清除而无法普遍应用;为克服这一缺点,可引入亲水性聚合物PEG 对聚合物进行修饰;研究表明,亲水性PEG 修饰的纳米粒,用于静脉给药时,血液清除和RES 摄取显着减小,并且PEG 引入会影响纳米粒的生物降解行为,调节释药方式;如Ruxandra 等以乳化溶剂蒸发法制备的环孢酶素CyA PLA-PEG共聚物纳米粒粒径分布很窄,呈单峰分布,且此分散体系性质稳定,包封率很高83 ℅ ~96 ℅ ,其体外释药符合扩散机制;另外,PEG 修饰的吲哚美辛脂质微球与传统的脂质微球相比,体内总清除率明显降低,药物靶向性显着提高,药物动力学参数如t1/2、AUC、MRT都显着增加用于修饰多肽和蛋白类药物 PEG 末端的醇羟基化学性质不活泼,为保证其与药物活性基团间有适宜的反应速率,需对醇羟基进行活化,以利于与蛋白质的α-和ε-氨基的反应;按PEG 与蛋白质氨基形成的连接键类型,活化PEG 可分为以下两类:1 烷基化 PEG ,如醛基化 PEG 、PEG-三氟乙基磺酸酯PEG-T 等;2 酰化 PEG ,如 PEG 琥珀酰亚胺基琥珀酸酯PEG-SS、PEG 琥珀酰亚胺基碳酸酯PEG-SC等;蛋白质和多肽类药物主要包括酶、细胞因子等一些具有特殊功能的蛋白质,其PEG 的修饰即PEG 化,是将活化的 PEG 通过化学方法偶联到蛋白质和多肽上;PEG 修饰蛋白药物可以延长药物的半衰期、降低免疫原性和毒副作用,同时最大限度地保留其生物活性;自从1991 年第一种用 PEG 修饰的腺苷脱氨基酶PEG-ADA被 FDA 批准上市后, PEG 修饰药物蛋白的技术飞速发展,近几年上市的还有PEG-干扰素、PEG-GSF、PEG-生长抑素;如普通干扰素α-2b 的半衰期只有 4 h,而经过聚乙二醇化的干扰素α-2b 的半衰期达 40 h ,可在体内持续作用168 h,刚好满足1 周1 次给药;故聚乙二醇干扰素又叫长效干扰素商品名:佩乐能;另外,PEG 修饰的重组人粒细胞集落刺激因子也已经上市,其体内半衰期显着延长,临床上用于治疗化疗引起的嗜中性白血球减少症;目前处于临床前研究的 PEG 修饰的蛋白药物有几十种,处于临床实验的有:超氧化物歧化酶即将上市,美国Enzon 公司、白介素-2 Ⅱ期临床,挪威Chiron 公司、水蛭素Ⅱ期临床,德国 BASF AG公司、抗-TNFα抗体片段Ⅲ期临床,瑞典Pharmacia公司、牛血红蛋白Ⅰ期临床,美国Enzon 公司、抗-PDGF 抗体片段Ⅱ期临床,英国Celltech公司等;渗透促进剂渗透促进剂是指能可逆的改变皮肤角质层的屏障功能,又不损伤任何活性细胞的化学物质;理想的渗透促进剂应无药理活性、无毒、无刺激性、无致敏性,与药物、基质和皮肤有良好的相容性,无臭无味;常见的渗透促进剂有亚砜类、表面活性剂类、多醇类、吡咯酮类等;多醇类化合物有乙醇、丙二醇、聚乙二醇、异丙醇和丙三醇等;多元醇类的作用机制是使角蛋白溶剂化,占据蛋白质的氢键结合部位,减少药物与组织间结合,增加并用的其他渗透促进剂在角质层的分配;Chaudhuri等比较了心得安在 5 种介质中的人体透皮速率,结果 PEG > 二乙醇 > pH 磷酸盐缓冲液 > 辛醇 > 肉豆蔻酸异丙酯;据 Touitou等报道,包含油酸、PEG 等基质能使茶碱对大鼠的透皮吸收增强260 倍;另有研究表明,在1 % 普萘洛尔水溶液中各加 5 % 的促渗剂,对 5 种渗透促进剂促渗效果进行了比较,结果二甲基亚砜 > PEG400 ,油酸 > 丙三醇 > Span80 ;综上,PEG 在透皮吸收制剂中的作用并不亚于油酸;但据研究报道,PEG 由于含有大量的醚氧原子,与药物产生氢键结合可能性很大,这势必降低药物的热力学活性;同时,由于 PEG 本身粘度较大,故会增加载体微环境的的粘度,这样不仅抑制了角质层的水合,而且角质层会因其高渗作用发生脱水,促渗效果并不理想;因此,PEG 应与油酸、氮酮、丙二醇等促渗剂联合应用应用局限性聚乙二醇有以下缺点:作为软膏基质时,长期应用可引起皮肤干燥;可与一些药物如苯甲酸、水杨酸、鞣酸、苯酚等络合,导致基质过度软化,也会降低酚类防腐剂的活性;聚乙二醇作为软胶囊填充剂时,由于选择性吸收胶囊壳内水分,导致囊壳硬化,从而影响药物释放速率;制备栓剂易出现孔洞影响外观;随高分子量的聚乙二醇加入量增加,水溶性药物的释放率减小;对粘膜的刺激性比脂肪性基质大;聚乙二醇的不良反应已有报道:局部用药可能引起过敏反应,包括荨麻疹和延迟性过敏反应;最严重的不良发应在烧伤病人局部应用聚乙二醇产生的高渗性,代谢物的酸中毒和肾功能减退;低分子量的聚乙二醇毒性最大,但二醇类毒性是相当低的;。
聚乙二醇和丁二酸酐的反应条件1. 聚乙二醇和丁二酸酐的反应条件在工业化学生产中,聚乙二醇和丁二酸酐是两种重要的化学原料,在一定的条件下它们可以发生酯化反应。
聚乙二醇是一种多元醇,通式为HO(CH2CH2O)nH,是由环氧乙烷氧化制得的,其合成结构如下。
在生产上,聚乙二醇主要用于合成乳液聚合物、聚醚、等等。
丁二酸酐是一种双羧酸,通式为C4H6O3,其结构式如下,常与醇类发生酯化反应。
2. 反应条件聚乙二醇和丁二酸酐的酯化反应条件如下:- 温度:由于酯化反应是一个热力学上不利的反应,一般需要在较高的温度下进行。
一般反应温度控制在120-150℃较为适宜。
- 催化剂:在工业生产中,常用酸性催化剂或碱性催化剂来提高反应速率。
常用的酸性催化剂有硫酸、氯化锌等,而碱性催化剂则常用碳酸氢钠、碳酸钠等。
- 反应时间:在适宜的温度和催化剂作用下,酯化反应通常需要较长的时间进行,以保证充分的反应。
3. 个人观点和理解从我的个人观点和理解来看,聚乙二醇和丁二酸酐的酯化反应是一种重要的化学反应,在工业化学生产中具有广泛的应用。
通过控制合适的反应条件,可以高效地进行酯化反应,得到理想的产物。
这种反应条件在合成聚酯材料、制备医药品等方面也具有重要的意义。
深入了解聚乙二醇和丁二酸酐的反应条件,对工业化学生产具有重要的指导作用。
4. 总结聚乙二醇和丁二酸酐的酯化反应是一种重要的化学反应,在工业生产中具有重要的应用价值。
控制合适的反应条件,包括温度、催化剂和反应时间等,能够高效地进行酯化反应,得到理想的产物。
通过深入了解和研究聚乙二醇和丁二酸酐的反应条件,可以更好地指导工业化学生产,为相关领域的发展提供支持。
聚乙二醇和丁二酸酐的酯化反应条件是工业化学生产中的重要环节,这种反应在合成聚酯材料、制备医药品等领域具有广泛的应用。
在这一过程中,温度、催化剂和反应时间是关键的因素,对于反应的进行和产物的质量起着至关重要的作用。
温度是影响酯化反应的重要因素之一。
聚乙二醇400Juyi’erchun 400Macrogol 400本品为环氧乙烷和水缩聚而成的混合物。
分子式以HO(CH2CH2O)n H表示,其中n代表氧乙烯基的平均数。
【性状】本品为无色或几乎无色的粘稠液体;略有特臭。
本品在水或乙醇中易溶,在乙醚中不溶。
相对密度本品相对密度(附录Ⅵ A)为1.110~1.140.黏度本品的运动黏度(附录Ⅵ G第一法),在40℃时(毛细管内径为0.8mm)应为37~15mm2/s。
羟值本品的羟值(附录ⅦH)为264~300.【鉴别】(1)取本品0.05g,加稀盐酸5ml和氯化钡试液1ml,振摇,滤过;在滤液中加入10%磷钼酸溶液1ml,产生黄绿色沉淀。
(2)取本品0.1g,置试管中,加入硫氰酸钾和硝酸钴各0.1g,混合后,加入二氯甲烷5ml,溶液呈蓝色。
【检查】平均分子量取本品约1.2g,精密称定,置干燥的250ml 具塞锥形瓶中,精密加邻苯二甲酸酐的吡啶溶液(取邻苯二甲酸酐14g ,溶于无水吡啶100ml 中,放置过夜,备用)25ml,摇匀,置沸水浴中,加热30~60分钟,取出冷却,精密加入氢氧化钠滴定液(0.5mol/L)50ml,以酚酞的吡啶溶液(1→100)为指示剂,用氢氧化钠滴定液(0.5mol/L)滴定至显红色,并将滴定的结果用空白试验校正。
供试量(g) 与4000的乘积,除以消耗氢氧化钠滴定液(0.5mol/L)的容积(ml),即得供试品的平均分子量,应为380 ~420 。
酸度取本品1.0g,加水20ml溶解后,依法测定(附录Ⅵ H),pH值应为4.0~7.0 。
溶液的澄清度与颜色取本品5.0g,加水50ml溶解后,溶液应澄清无色;如显浑浊,与2号浊度标准液(附录Ⅸ B )比较,不得更浓;如显色,与黄色2号标准比色液(附录ⅨA第一法)比较,不得更深。
乙二醇与二甘醇取乙二醇与二甘醇各50ml,置100ml量瓶中,加水稀释至刻度,摇匀,作为对照液;另取本品 4.0g,置10ml量瓶中,加水稀释至刻度,摇匀,作为供试品溶液。
聚乙二醇在药物制剂中的应用聚乙二醇别名聚氧乙烯醇或聚氧乙烯二醇,系环氧乙烷与单乙二醇(或双乙二醇)在碱性催化剂催化之下聚合而成,分子质量因聚合度不同而异,通常在200~35 000 之间,PEG 的性质随分子质量而变化,目前常见的PEG 种类有PEG200、PEG300、PEG400、PEG600、PEG2000、PEG4000、PEG6000、PEG8000 等。
药物溶剂PEG200、PEG300、PEG400、PEG600 系无色、略有微臭的粘性液体,化学性质稳定,安全低毒,故常作为药物的溶剂。
另外,为了增加难溶性药物的溶解度,常使用潜溶剂即乙醇、甘油、丙二醇、苯甲醇、聚乙二醇等与水组成的混合溶剂。
用于软胶囊剂软胶囊剂的囊材多以一定比例的明胶、增塑剂和水等组成,因此对蛋白质性质无影响的药物和附加剂均可填充。
如各种油类、液态药物、药物溶液、药物混悬液和固体药物等。
由于低分子质量PEG 能与水混溶,故是水溶性药物和某些有机药物很好的溶剂,如硝苯地平软胶囊。
目前,软胶囊剂多为固体药物粉末混悬在油性或非油性(PEG400 等)分散介质中包制而成。
另有报道,水合氯醛应用聚乙二醇作为溶剂可大大降低它对明胶蛋白的分解作用用于注射剂由于PEG200~PEG600 可提高难溶性药物的溶解度且对水不稳定药物有稳定作用,故可作为注射用溶剂。
单一以PEG 作为注射用溶剂的注射剂并不多见,如噻替哌注射液以PEG400 或PEG600 作为溶剂,可避免噻替哌在水中的聚结沉降作用;盐酸苄去氢骆驼莲碱注射液以PEG200 作为溶剂,安全稳定,贮放 2 a 保持不变。
但一般多用混合溶剂(潜溶剂),如以V (PEG300): V( 苯甲醇): V ( 丙二醇) = 80:5:15 时可作为质量分数为 5 % 黄体酮或睾丸酮注射液的混合溶剂,此 2 种注射液经肌肉注射后,与体液接触即在局部析出药物沉淀,形成药物仓库,逐渐从组织中释放,具有长效作用,售商品有病毒灵注射液、安乃近注射液、痢菌净注射液、穿心莲注射液、菌毒杀星注射液等。
附件:聚乙二醇2000Juyi’erchun 2000Polyethylene Glycol 2000本品为环氧乙烷和水缩聚而成的混合物,分子式以H(OCH2CH2)n OH 表示,其中n 代表氧乙烯基的平均数。
【性状】本品为白色蜡状固体或颗粒状粉末;略有特臭。
本品在水、乙醇中易溶。
凝点本品的凝点(通则0613)为45~50℃。
黏度取本品25.0g,置100ml 量瓶中,加水溶解并稀释至刻度,摇匀,用毛细管内径为0.6mm 的平氏黏度计,依法测定(通则0633 第一法),在40℃时的运动黏度为3.5~4.5 mm2/s。
【鉴别】(1)取本品0.05g,加稀盐酸5ml 和氯化钡试液1ml,振摇,滤过;在滤液中加入10%磷钼酸溶液1ml,产生黄绿色沉淀。
(2)取本品0.1g,置试管中,加入硫氰酸钾和硝酸钴各0.1g,混合后,加入二氯甲烷5ml,溶液呈蓝色。
【检查】平均分子量取本品约6.0g,精密称定,置干燥的250ml 具塞锥形瓶中,精密加邻苯二甲酸酐的吡啶溶液(取邻苯二甲酸酐14g,溶于无水吡啶100ml 中,放置过夜,备用)25ml,摇匀,加少量无水吡啶于锥形瓶口边缘封口,置沸水浴中,加热30 分钟,取出冷却,精密加入氢氧化钠滴定液(0.5mol/L)50ml,以酚酞的吡啶溶液(1→100)为指示剂,用氢氧化钠滴定液(0.5mol/L)滴定至显红色,并将滴定的结果用空白实验校正。
供试量(g)与4000 的乘积,除以消耗氢氧化钠滴定液(0.5mol/L)的容积(ml),即得供试品的平均分子量,应为1800~2200。
酸度取本品1.0g,加水20ml 溶解后,依法测定(通则0631),pH 值应为4.0~7.0。
溶液的澄清度与颜色取本品5.0g,加水50ml 溶解后,依法检查(通则0901 与通则0902),溶液应澄清无色;如显浑浊,与2 号浊度标准液(通则0902 第一法)比较,不得更浓;如显色,与黄色2 号标准比色液(通则0901 第一法)比较,不得更浓。
化学结构HO(CH2CH2O)nH,由环氧乙烷聚合而成。
聚乙二醇又名α-氢-ω-羟基(氧-1,2-乙二基)的聚合物、聚氧化乙烯(PEO-LS)。
是平均分子量在约200到至少6000的乙二醇高聚物的总称。
品种很多,例如聚乙二醇300(PEG300)、聚乙二醇600(PEG600)、聚乙二醇20 000(PEG20M),PEG后面数字表示平均分子量。
常用的除上述外,还有1000,1500,2000,4000,6000等。
随着平均分子量的不同,性质也有差异。
无色无臭粘稠液体至蜡状固体。
溶于水、乙醇和许多其他有机溶剂。
蒸汽压低。
对热稳定。
与许多化学品不起作用,不水解,不变质。
无毒,对眼睛和皮肤无明显刺激。
聚乙二醇的生产工艺:由液体乙二醇在高温及高压或低压下聚合而得。
聚乙二醇的用途:可用作增塑剂、软化剂、增湿剂,并用于制药膏和药物等。
产品分类产品可以分为医药级,化妆品级,食品级和工业级等几种系列。
【一】医药级,化妆品级,食品级的性能如PEG下:陶氏化学公司在1940首次将聚乙二醇生产商业化,至今是业内世界公认的领先者。
1992年,陶氏化学公司对质量的承诺得到认可,成为获得生产质量系统ISO9002认证的第一家聚乙二醇美国生产商,其生产的CARBOWAX SENTRY牌聚乙二醇通过了美国FDA认证,符合美国药典(USP),国家处方集(NF),食品化学法典(FCC)标准,被广泛应用于食品、制药、饲料、个人护理品、化学等行业的生产,是业内闻名和值得信赖的品牌。
主要用途1. PEG-400最适合来做软胶囊。
由于PEG400为液体、它具有与各种溶剂的广泛相容性,是很好的溶剂和增溶剂,被广泛用于液体制剂,如口服液、滴眼液等。
当植物油不适合作活性物配料载体时,PEG则是首选材料。
这主要是由于PEG稳定、不易变质,含有PEG的针剂被加热到150摄氏度时是很安全、很稳定的。
此外还可以同高分子量的(PEG)相混合而且其混合物具有很好的溶解性和良好的与药物相容性。
附件:聚乙二醇1000Juyi’erchun 1000Polyethylene Glycol 1000本品为环氧乙烷与水缩聚而成的混合物,分子式以H(OCH2CH2)n OH 表示,其中n 代表氧乙烯基的平均数。
【性状】本品为无色或几乎无色的黏稠液体,或呈半透明蜡状软物;略有特臭。
~5ml。
乙二醇、二甘醇、三甘醇取本品4g,精密称定,置100ml 量瓶中,精密加入内标溶液(取1,3-丁二醇适量,用95%乙醇稀释成每1ml 中约含4mg 的溶液)1.0ml,加95%乙醇稀释至刻度,摇匀,作为供试品溶液;另取乙二醇、二甘醇和三甘醇适量, 精密称定,加95%乙醇稀释配制成每1ml 含乙二醇、二甘醇、三甘醇各4mg 的溶液,再精密量取该溶液1.0ml,置100ml 量瓶中,精密加入内标溶液1.0ml,加95%乙醇稀释至刻度,摇匀,作为对照品溶液。
照气相色谱法(通则0521)试验。
以50%苯基-50%甲基聚硅氧烷为固定液(30m×0.53mm,1µm),起始温度60℃,维持5 分钟,以每分钟5℃的速率升温至110℃,维持5 分钟,再以每分钟15℃的速率升温至170℃,维持5 分钟,再以每分钟35℃的速率升温至280℃,维持40 分钟(根据分离情况调整时间)。
进样口温度为270℃,氢火焰离子化检测器温度为290℃。
量取供试品溶液与对照品溶液各1μl,分别进样,记录色谱图。
按内标法计算,含乙二醇、二甘醇与三甘醇均不得过0.1%。
环氧乙烷和二氧六环取本品lg,精密称定,置顶空瓶中,精密加入水 1.0ml,密封,摇匀,作为供试品溶液。
精密量取环氧乙烷水溶液对照品适量,用水稀释制成每1ml 中约含2μg的溶液,作为环氧乙烷对照品溶液。
另取二氧六环对照品适量,精密称定,用水制成每1ml 中约含20μg的溶液,作为二氧六环对照品溶液。
取本品约1g,精密称定,置顶空瓶中,精密加环氧乙烷对照品溶液与二氧六环对照品溶液各0.5ml,密封,摇匀,作为对照溶液。
聚乙二醇聚乙二醇(PEG),也称聚乙二醇醚,英文名:Polyethylene Glycol CAS No. 25322-68-3,化学结构式为HO(CH2CH2O)nH,是以环氧乙烷与水或乙二醇为原料通过逐步加成反应而制备的,其原材料主要来源于石油制品。
随着聚合度的增大,聚乙二醇的物理外观和性质均逐渐发生变化:相对分子量在200-600者在常温下是液体,相对分子量在600以上者逐渐变为半固体。
随着分子量的增大,从无色无臭粘稠液体转变至蜡状固体,其吸湿能力相应降低。
具有醇的化学性质,与脂肪酸能发生酯化反应生成酯。
可溶于水、乙醇和多种有机溶剂。
对热、酸、碱稳定,与许多化学品不起作用。
具有良好的吸湿性、黏结性、润滑性。
无毒,无刺激。
对人畜无害。
聚乙二醇(PEG )具有很强的吸水性,在常温条件下可从空气中吸收水分,液体可与水任意比例混溶,当温度升高后,任何级分的固体聚乙二醇均能与水任意比例互溶,当温度高至水的沸点是,聚合物会沉淀出来,析出温度取决于聚合物的分子量和浓度。
聚乙二醇(PEG)属非离子型聚合物,在正常条件下是稳定的,在120℃或更高温度下能与空气中的氧发生氧化作用,用二氧化碳或氮等惰性气体保护,在200~240℃也不发生变化,当升至300℃左右,分子链节发生断裂而降解。
按照聚乙二醇的聚合度划分,其应用基本可以概括为:(1)、聚乙二醇系列产品可用于药剂。
相对分子量较低的聚乙二醇可用作溶剂、助溶剂,分散剂、o/w 型乳化剂和稳定剂,用于制作水泥悬剂、乳剂、注射剂等,也用作水溶性软膏基质和栓剂基质,相对分子量高的固体蜡状聚乙二醇常用于增加低分子量液体PEG 的粘度和成固性,以及外偿其他药物;对于水中不易溶解的药物,本品可作固体分散剂的载体,以达到固体分散目的,PEG4000 、PEG6000 是良好的包衣材料,亲水抛光材料、膜材和囊材、增塑剂、润滑剂和滴丸基质,用于制备片剂、丸剂、胶囊剂、微囊剂等。
环氧乙烷合成聚乙二醇.txt没有不疼的伤口,只有流着血却微笑的人有时候 给别人最简单
的建议 却是自己最难做到的。 环氧乙烷催化水合法合成乙
二醇
--------------------------------------------------------------------------------
2007-03-14 08:33:46 佚名 已点击700次
针对环氧乙烷直接水合法生产乙二醇工艺中存在的不足,为了提高选择性,降低用水量,
降低反应温度和能耗,世界上许多公司进行了环氧乙烷催化水合生产乙二醇技术的研究和开
发工作。其技术的关键是催化剂的生产,生产方法可分为均相催化水合法和非均相催化水合
法两种,其中最有代表性的生产方法是Shell公司的非均相催化水合法和UCC公司的均相催
化水合法。
Shell公司早期曾采用氟磺酸离子交换树脂为催化剂,在反应温度为75-115℃、水与环
氧乙烷的重量比为3:1-15:1时,乙二醇的选择性为94%,缺点是水比仍然很高,而且环氧
乙烷的转化率仅有70%左右。Shell公司自1994年报道了季铵型酸式碳酸盐阴离子交换树脂
作为催化剂进行环氧乙烷催化水合工艺的开发,获得环氧乙烷转化率为96%-98%,乙二醇选
择性为97%-98%的试验结果后,增加了环氧乙烷催化水合制乙二醇工艺的研究和开发力度。
1997年又开发了类似二氧化硅骨架的聚有机硅烷铵盐负载型催化剂及其催化 下的环氧化物
水合工艺。在水/环氧化物摩尔比为1-15:1,反应温度80-200℃,反应压力 0.2-2MPa条件
下,环氧乙烷的转化率为72%,乙二醇选择性为95%。2001年Shell公司又开发出负载于离
子交换树脂上的多羧酸衍生物催化剂。在水/环氧化物摩尔比为1-6,反应温度90-150℃,反
应压力 0.2-2MPa条件下,环氧乙烷的转化率大于97%,乙二醇选择性高于94%。采用该工艺
既可进行间歇操作,也可进行连续生产。与现行环氧乙烷高温高压水解工艺相比,该技术约
可节省环氧乙烷/乙二醇装置总投资费用的15%。最近该公司又成功地开发出第一代水合催
化剂S100,并完成了催化剂筛选和40.0万吨/年环氧乙烷水合装置的工艺设计。近期催化剂
水合已经完成了单管和中试,经过工程放大试验就有可能在日本装置上实现工业化生产,然
后意向将此技术引入我国广东惠州环氧乙烷/乙二醇项目上。
UCC公司开展了用含Mo、W或V等多价态过渡金属含氧酸盐(如含(HV2O7)3-、(VO3)
-、(V2O7)4-、(VO4)3-、钼酸根、偏钼酸根或钨酸根等的盐类)催化剂进行催化水合的技
术研究。阳离子为碱金属、铵盐、季铵盐或季磷盐等。该类催化剂可以单独使用,也可以负
载在氧化铝、氧化硅或分子筛等惰性载体材料上。这些催化剂对于提高转化率、降低水比及
提高选择性均有利,但部分催化剂会流失到产物乙二醇中,从而增加了不必要的分离提纯步
骤,同时也对产品的质量造成不利影响。针对水溶性V、Mo、W催化剂流失的问题,UCC公司
又开发出具有水滑石结构、水热稳定的混合金属框架催化剂。在水/环氧乙烷的摩尔比为5-7:
1,反应温度为150℃,压力2.0MPa条件下,环氧乙烷的转化率达到96%,乙二醇的选择性为
97%。
俄罗斯国力“索维吉赫”科技生产企业也对环氧乙烷催化水合合成乙二醇技术进行了研
究。其催化体系为离子交换树脂,这些树脂是由苯乙烯和二乙烯基苯交联的带有季胺基的碳
酸氢盐型离子交换树脂。在反应温度为80-130℃,压力0.8-1.6MPa条件下,采用特殊的串
联-并联活塞流反应器,环氧乙烷的转化率大于99%,乙二醇的选择性为93%-96%。俄罗斯门
捷列夫化工大学采用一种改进过的离子交换树脂催化剂,在反应温度80-130℃、压力
0.8-1.6MPa、水/环氧乙烷(摩尔比)为3-7:1、LHSV1.0-3.0h-1条件下,环氧乙烷转化率
大于99%,乙二醇选择性达到93%-96%,目前已经完成了中试装置上催化剂的稳定性试验。
陶氏化学开发出一种环氧乙烷催化水合制乙二醇的高选择性催化剂Dowex MSA-1。新催
化剂是由阴离子交换树脂与二氧化碳、氢氧化钠相结合的体系。在水和环氧乙烷的摩尔比为
9:1,反应温度99℃,压力1.2MPa条件下水合,乙二醇的选择性可以达到96.6%。
我国在环氧乙烷催化水合制乙二醇方面也进行了大量的研究,并取得了较大进展。
大连理工大学进行了环氧乙烷催化水合制备乙二醇的均相酸碱协同催化反应体系和非均
相催化反应体系的试验,并对催化剂的催化活性、乙二醇选择性及反应条件进行了考查。环
氧乙烷均相直接催化水合制乙二醇所用催化剂为无机盐和杂多酸的复合物。杂多酸为
K3PMo12O40·7H2O,无机盐为KI。水合反应可以在间歇的釜式反应器或连续的管式反应器中
进行。当水比(摩尔)为4-8:1,催化剂用量为2%-15%,反应温度100-150℃,反应压力
0.8-2.1MPa,反应时间8-30分钟,pH值8-11时,环氧乙烷的转化率为95.0%-99.9%,乙二
醇的选择性达96%。实验发现,压力对环氧乙烷转化率和乙二醇的选择性影响不大。随着温
度的升高,环氧乙烷转化率增大,反应时间缩短,但乙二醇的选择性下降;随着催化剂用量
的增加,环氧乙烷转化率和乙二醇的选择性均有所提高;非均相水合所用的催化剂为负载型
杂多酸(盐)催化剂,载体为γ-Al2O3和SiO2,杂多酸及其盐为磷钼酸、磷钼酸钾、磷钨酸
以及硅钨酸等。采用磷钼酸钾/γ-Al2O3为催化剂,在反应温度140℃、压力1.0MPa,水与
环氧乙烷的摩尔比为5的条件下,当环氧乙烷转化率保持在20%左右时,乙二醇选择性在90%
以上,而当环氧乙烷转化率升高到80%左右时,乙二醇的选择性却下降到70%左右。
南京工业大学化工学院研究了均相催化水合法合成乙二醇的工艺路线,探讨了催化剂用量、
水/环氧乙烷质量比、反应温度、压力等因素对反应的影响。在水/环氧乙烷质量比为4:1,
催化剂质量分数不小于6%,反应温度大于45℃,反应压力超过0.5MPa的工艺条件下,环氧
乙烷的转化率达99.8%,乙二醇的选择性达99.0%。
上海石油化工研究院对环氧乙烷催化水合制乙二醇进行了较为系统的研究开发,发明了
一系列专利。其中之一发明了一种环氧乙烷催化水合制备乙二醇的固体酸催化剂,该催化剂
采用α-氧化铝或HZSM-5分子筛作载体,2-10%的铌氧化物作催化剂,0.01-5%的锌或镉氧化
物作助催化剂,还含有1-10%的粘接剂。在水比为8:1,压力为1.5MPa、温度为150℃、液
体空速为3h-1的条件下,催化剂组成为15%Nb2O5、0.2%CdO时,环氧乙烷转化率为100%,
乙二醇选择性达到90%。
江苏工业学院发明了一种季鏻型阴离子交换树脂,用作环氧乙烷催化水合的催化剂。制
备过程是将卤烷基取代的苯乙烯和二乙烯基苯按常规方法进行悬浮聚合,得到凝胶或大孔结
构的共聚物,再将得到的共聚物与三烷基膦在有机溶剂中进行季鏻化反应,得到的季鏻型阴
离子交换树脂。特点是催化剂活性高,树脂内部应力小,不易破碎。在温度为100℃、压力
为1MPa、空速为3h-1的条件下,环氧乙烷和水的比为1:4.4时,环氧乙烷的转化率达到99%
以上,乙二醇选择性达到90%以上。
国内一些EO/EG生产装置也进行了EO直接催化水合的试验工作,抚顺石化公司最早进行
了工业侧线试验,2003年天津石化完成了工业侧线,采用天津石化公司研究院研制的催化剂,
水与EO的摩尔比由28:1下降到20:1,而乙二醇的选择性维持在90%以上。水合配比的降
低解决了该装置在高负荷生产时蒸发塔的瓶颈问题,使乙二醇生产能力提高了1/4左右;2994
年,扬子石化公司完成了加压催化水合法合成乙二醇的中试试验,该工艺与非催化水合法工
艺相比,环氧乙烷的转化率和选择性均提高10%以上。
华东理工大学与北京石化工程公司、北京燕山石油化工公司联合进行了反应精馏试验,
在燕山石化环氧乙烷/乙二醇装置旁安装了一套塔径为300mm、规模为200吨/年的环氧乙烷
水合反应精馏中试装置,试验结果表明,在与常规管式水合反应相同的条件下,反应精馏乙
二醇的选择性可由常规水合反应的90%提高到95%,选择性比常规管式水合反应器提高了
3.7%。
尽管许多公司在环氧乙烷催化水合生产乙二醇技术方面做了大量的工作,大大降低了水
比,提高了环氧乙烷的转化率和乙二醇的选择性,但在催化剂制备,再生和寿命方面还存在
一定的问题,如催化剂稳定性不够,制备相当复杂,难以回收利用,有的还会在产品中残留
一定量的金属阴离子,需要增加相应的设备来分离,因而采用该方法进行大规模工业化生产
还指日可待。
摘自《精细化工原料及中间体》