制冷压缩机性能测试实验指导书
- 格式:doc
- 大小:214.50 KB
- 文档页数:6
制冷压缩机性能测试及分析技术研究制冷压缩机是制冷空调系统中的核心部件之一,其性能稳定与否直接影响到整个系统的运行效果。
因此,对制冷压缩机的性能进行测试和分析是非常必要的。
一、制冷压缩机性能测试1. 原理制冷压缩机性能测试的原理是利用制冷压缩机的换热器将电加热器产生的热量传递给压缩机,然后以恒定的压力、流量和温度条件下进行测试。
2. 测试对象制冷压缩机应在各种工况下进行测试。
例如,在不同环境温度和湿度条件下,不同负载和冷凝温度等条件下测试。
3. 测试结果测试结果包括压力、流量、功率、效率等各种参数,可以用来评估制冷压缩机的工作效果和性能稳定性。
同时,测试结果还可以用于比较不同型号或不同厂家制冷压缩机性能的差异。
二、制冷压缩机性能分析技术1. 热力学分析热力学分析是评估制冷压缩机性能的重要方法之一。
可以利用热力学理论分析比较不同机型、不同负载和不同冷凝温度条件下的压缩机性能。
2. 标定分析标定分析是一种在制冷压缩机设计和生产阶段用于验证和调整性能参数的方法。
通过实验测试,对不同压缩机型号进行不同负载条件下的标定,进而评估和分析压缩机的性能参数。
3. 数值模拟分析数值模拟分析是一种利用计算机模拟方法来分析制冷压缩机性能的技术。
通过建立数学模型,采用数值计算方法,模拟出不同条件下压缩机的性能和工作特性。
三、结论总的来说,制冷压缩机性能测试和分析技术是评估制冷空调系统中核心部件性能的关键方法。
只有通过对制冷压缩机性能进行全面的测试和分析,才能确定制冷系统的工作效果和性能稳定性。
未来,随着计算机技术和数学模型的进步,制冷压缩机性能测试和分析技术将会得到进一步改善和提高。
实验实训12 空调压缩机的性能测试实验一、测试原理压缩机制冷量定义为试验直接测得的流经压缩机的制冷剂流量乘以压缩机吸气口的制冷剂气体比焓与排气口压力对应的膨胀阀前制冷剂液体比焓的差值。
本压缩机性能测试系统采用第二制冷剂量热器法对压缩机的制冷量进行测试,其构造为蒸发器盘管悬置在一压力容器上部,下面是第二制冷剂液体,电加热器安装在第二制冷剂液面下,用电加热量平衡压缩机制冷量,用电加热量去计算出流经压缩机的流量。
二、设备概述本测试系统由水冷冷凝器、储液器、膨胀阀、过冷器、量热器(第二制冷为环保制冷剂R123)、控制系统、测量系统。
1. 控制系统需控制五个参数,分别为压缩机吸气温度、压缩机吸气压力、过冷温度、压缩2. 测量系统由五个压力变送器、四支PT100铂电阻及数据记录仪DA100及测试程序组成,各传感器及DA100配置如下表:三、测试软件使用说明压缩机测试平台软件是整个测试平台的终端软件,用来采集、处理、保存测试数据,以及生成测试报告。
1.界面功能介绍整个界面可以分为菜单、状态栏、调节器控制显示、实时数据图形显示、计算数据显示、功能选择按钮、页面显示选择和通讯状态指示栏,共8个部分。
菜单包括所有功能选择按钮的功能,同时包括高级控制功能和不常使用的功能;状态栏用来指示当前系统的工作状态,用于提示;调节器控制显示用于显示调节器当前的工作状态,和设定调节器的输出值;实时数据图形显示用来显示实时数据和整个过程的数据变化状况;计算数据显示用来显示瞬态计算数据;功能选择按钮用来选择不通的功能,控制测试平台的工作以及查看设定相关数据;页面显示用来选择实时数据的显示方式;通讯状态指示栏用来显示上位机(PC)和下位机(数据采集仪DA100、调节器UT350、可编程控制器PLC、压缩机电量采集仪8902F、量热器电量采集仪8905F)的通讯状态;2.菜单菜单包括系统、系统设置、数据处理和帮助四个一级菜单,每个菜单都有相应的子菜单。
压缩机性能实验报告实验小组:小组成员:0实验时间:一、实验目的1.了解制冷循环系统的组成及压缩机在制冷系统中的重要作用2. 测定制冷压缩机的性能3.分析影响制冷压缩机性能的因素二、实验装置实验台由封闭式压缩机、冷凝器、蒸发器、储液罐、节流阀、电加热器、冷水泵、热水泵、冷水流量计、热水流量计、排气压力表、吸气压力表、测温显示仪表、测温热电偶等组成小型制冷系统(如下图所示)。
三、实验步骤1. 将水箱中注满水,接通电源后,开启冷水泵和热水泵,并调整其流量;2. 打开吸、排气阀、储液罐阀门,启动压缩机,开节流阀,右旋调温旋钮,调整电压使蒸发器进口水温稳定在某一温度值,作为一个实验工况点;3.当各点温度趋于稳定时,依次按下测温表测温按键,观测各点温度值;4.将数据进行记录,该工况点实验结束。
5.改变热水箱加热电压,使热水温度上升,稳定后再对温度、电流、电压等数据进行记录,一般可作3个工况点结束;6.实验完成后,停止电热水箱加热,关闭吸气阀门,等压力继电器动作,压缩机自停,关闭压缩机开关,关闭节流阀,关排气阀,继续让水泵循环5分钟后断电,系统停止工作。
四、实验数据1. 压缩机制冷量:'171112""161()i i v Q GC t t i i v -=-- (1)式中:G — 载冷剂(水)的流量(kg/s);C — 载冷剂(水)的比热(kJ/kg);t1、t2 — 载冷剂(水)的进出蒸发器的温差(℃);i1 — 在压缩机规定吸气温度,吸气压力下制冷剂蒸汽的比焓(kJ/kg);i7 — 在压缩机规定过热温度下,节流阀后液体制剂的比焓(kJ/kg); i1″— 在实验条件下,离开蒸发器制冷剂蒸汽的比焓(kJ/kg); i6″— 在实验条件下,节流阀前液体制冷剂的比焓(kJ/kg);v1 — 压缩机规定吸气温度,吸气压力下制冷剂蒸汽的比容(m ³/kg); v1′— 压缩机实际吸气温度、压力下制冷剂蒸汽的比容(m ³/kg)。
制冷压缩机性能测试实验一、实验目的通过制冷压缩机实际运行测试实验,使学生了解并掌握以下内容: 1、制冷压缩机制冷量的测试方法;2、蒸发温度、冷凝温度与制冷量的关系;3、制冷系统主要运行参数及其相互之间的影响;4、有关测试仪器、仪表的使用方法;5、测试数据处理及误差分析方法。
二、实验原理1、制冷压缩机的性能随蒸发温度和冷凝温度的变化而变化,因此需要在国家标准规定的工况下进行制冷压缩机的性能测试。
2、压缩机的性能可由其工作工况的性能系数COP 来衡量:Q COP W=式中,0Q 为压缩机的制冷量;W 为压缩机输入功率。
3、在一个确定的工况下,蒸发温度、冷凝温度、吸气温度以及过冷度都是已知的。
这样,对于单级蒸气压缩式制冷机来说,其循环p-h 图如图3 所示。
图3图中,1点为压缩机吸气状态;4-5为过冷段。
在特定工况下,压缩机的单位质量制冷量是确定的,即:015q h h =- 。
这样只要测得流经压缩机的制冷剂质量流量m G ,就可计算出压缩机的制冷量,即0015()m m Q G q G h h =⨯=⨯-4、压缩机的输入功率:开启式压缩机为输入压缩机的轴功率,封闭式(包括半封闭式和全封闭式)压缩机为电动机输入功率。
三、实验设备整个实验装置由制冷系统及换热系统、参数测量采集和控制系统共三部分组成:1、制冷系统采用全封闭涡旋式制冷压缩机,蒸发器为板式换热器,冷凝器为壳管式换热器,节流装置为电子膨胀阀。
1.1冷却水换热系统由冷却水泵、冷却水塔、调节冷凝器进水温度的恒温器和水流量调节阀门及管路组成;1.2冷媒水换热系统由冷媒水泵、调节蒸发器进水温度的恒温器、调节水流量的阀门组成;2、六个绝对压力变送器、十个PT100温度传感器、两个涡轮流量变送器分别对应原理图位置及安捷伦34970型数据采集仪和压缩机性能测试软件;3、控制系统:通过三块山武SCD36数字调节器分别根据设定值与实测值的差值来调节冷却水、冷媒水的加热量和电子膨胀阀的开度,将机组运行控制在设定工况允许的范围内。
制冷机性能实验台一、实验装置概述本实验台是我厂首创高效低耗的热泵型空调及制冷换热实验装置。
功能齐全、结构紧凑、使用方便、无噪声、结构新颖。
它由制冷循环,水循环和空气换热系统所组成,可进行直流式空调过程演示实验,制冷压缩机性能实验和表冷器、换热器性能实验。
二、实验操作一、直流空调过程演示实验:(一)实验目的:1、演示直流式空调系统的空气处理过程2、熟悉空气参数的调节方法3、掌握表冷器冷却能力的测定方法4、进行热工测量及计算的训练。
(二)实验原理:直流空调实验可分夏季空气处理状态及冬季空气处理状态实验。
1.夏季处理过程:新风由调节门、低噪音风机进入风道,经过表冷器冷却去湿达到机器露点后,再经过再加热器加热至所需送风状态达到空调段,在空调段吸热吸湿后排出。
2.冬季处理过程:新风由调节门、低噪音风机进入风道,在预加热段对空气进行等湿加热,通过加湿器对空气绝热加湿,再经过再加热器或换热器加热至所需送风状态达到空调段,在空调段放热后排出。
对空气参数的测定是在具有代表性的通道断面上设置干、湿球热电偶温度计,分别测定断面上的干球温度和湿球温度。
本实验可对空气进行:1.等湿加热:电热器或表面式热水器处理空气。
2.冷却处理:①等湿处理:用表冷器降低空气温度但高于空气露点温度。
②去湿冷却处理:用表冷器降低空气温度使低于空气露点温度。
③等温加湿:含湿量增加,温度近似不变。
在实验中,制冷压缩机组通过板式换热器对冷冻水制冷后,由水泵将冷冻水注入表冷器与空气进行冷量交换来模拟夏季空气处理状态。
模拟冬季空气处理状态时,可参见制冷压缩机的实验步骤。
由于冷冻水在表冷器中与空气进行冷量交换,由此可以计算表冷器的冷却能力。
(三)、操作步骤1、启动风机,利用风门调节风量。
2、启动加湿器(注意:不得在无水的情况下给加湿器加电)。
3、启动水泵Ⅰ、水泵Ⅱ,调节水流量使板换Ⅱ水流量400L/h;使板换Ⅰ水流量100L/h,(如实验时出现冻结则应加大水流量)。
压缩式制冷系统试运转作业指导书制冷系统的设备、管道、电气、仪表均安装完后并分别进行试验合格后,应按下列顺序进行系统试验和试运转:—、系统的吹扫与排污二、气密性试验三、抽真空试验四、氨系统保温前的充氨检漏五、系统保温后充灌制冷剂六、系统试运转1 系统的吹扫排污1.1 系统吹扫要按系统分段吹扫,并使吹扫的管路与设备隔离开,不使管路系统的污物进入设备内;吹扫前要将系统内的仪表加以保护,将滤网、节流阀及止回阀等阀芯拆除,待吹扫后复位。
1.2 用压力为0.5—0.6MPa的干燥压缩空气或氮气按系统分段反复多次吹扫,并在排污口处设靶检查,直至无污物为止。
1.3 系统吹扫洁净后,应拆卸可能积存污物的阀门,并应清洗洁净,重新组装。
1.4 经自检和专检合格后填写《管道系统吹洗记录》2 气密性试验2.1气密性试验应用干燥压缩空气或氮气进行,试验压力当设计和设备技术文件无规定时,应符合企业现行标准《制冷附属设备安装作业指导书》表3的规定。
2.2 试验升压应缓慢进行。
一般先升至试验压力的50%,进行检查,如无泄漏及异常现象,继续按试验压力的10%逐级升压,直至试验压力。
2.3 系统内的压力达到试验压力,首先进行检漏工作。
可在焊道法兰、阀门盘根等处用肥皂水试验。
检漏工作要认真、仔细、多头进行,务于—次成功。
对发现的问题应做好记号,降压后补焊或修理。
2.4 检漏工作结束后,可做保压试验。
系统保压时,应充气至规定的试验压力,6h后开始记录压力表读数,经24h以后再检查压力表读数,其压力降应符合国家现行规范《制冷设备、空气分离设备安装工程施工及验收规范》中的有关规定。
试验经自检、专检和甲方代表检查合格,填写T12《设备管道试验记录》、试验采用不少于两只0-3MPa,压力表(0.5)。
3 抽真空试验3.1 制冷系统的抽真空试验应在气密性试验合格后进行。
抽真空试验应符合设备技术文件的规定,3.2 如用制冷压缩机进行抽真空试验,应严格按设备使用说明书的程序进行操作。
活塞式压缩机性能实验台实验指导书重庆科技学院机械设计制造教研室2010.3活塞式压缩机性能实验实验指导书一、实验目的1. 了解活塞式压气机的工作原理及构造,理解压气机的几个性能参数的意义。
2. 熟悉用微机测定压气机工作过程的方法,采集并显示压气机的示功图。
3. 根据测定结果,确定压气机的耗功W C、耗功率P、多变压缩指数m、容积效率ηv 等性能参数,或用面积仪测出示功图的有关面积并用直尺量出有关线段的长度,也可得出压气机的上述性能参数。
二、实验原理本活塞式压缩机性能实验台,采用传感器技术,在微机控制下采集处理数据,绘制压缩机的示功图,并据此进行压缩机性能指标的计算和热力过程的分析,以加深对压缩机热力学原理的理解,提高运用微机对实验压缩机进行性能分析的能力。
通过该实验能加深学生对压缩机工作过程的理解。
压气机的工作过程可以用示功图表示,示功图反映的就是气缸中的气体压力随体积变化的情况。
本实验的核心就是用现代测试技术测定实际压气机的示功图。
实验中采用压力传感器测试气缸中的压力,用接近开关确定压气机活塞的位置。
当实验系统正常运行后,接近开关产生一个脉冲信号,数据采集板在该脉冲信号的激励下,以预定的频率采集压力信号,下一个脉冲信号产生时,计算机中断压力信号的采集并将采集数据存盘。
显然,接近开关两次脉冲信号之间的时间间隔刚好对应活塞在气缸中往返运行一次(一个周期),这期间压气机完成了膨胀、吸气、压缩及排气四个过程。
实验测量得到压气机示功图后,根据工程热力学原理,可进一步确定压气机的多变指数和容积效率等参数。
另外,通过调节储气罐上的节气阀的开度,以改变压气机排气压力实现变工况测量。
三、实验装置实验装置简图如图1所示,主要由YQJ-V型活塞式空气压缩机(包括压气机本体、电动机、储气罐及节气阀等)和测试系统(包括压力传感器、磁电脉冲传感器、A/D采集板和计算机等)组成。
系统总面貌如图2所示。
为了获得压气机工作过程的封闭示功图,对压气机气缸缸体、缸盖、飞轮等进行了改造,通过特殊设计的接头将气缸中的瞬时压力直接引出到压力传感器。
1 制冷压缩机性能测试实验 试验台简介 本试验台采用图1所示系统,通过阀门的转换,可进行制冷压缩机性能测试实验、冷水机组性能实验、水-水换热器性能实验和水泵性能实验。 制冷压缩机性能实验系统由压缩机、冷凝器、蒸发器、电子膨胀阀、恒温器电参数仪等设备组成。压缩机吸气压力、吸气温度、排气压力分别控制在国家标准规定的状态下。吸气温度由恒温器2调节蒸发器冷媒水进口温度T9控制,吸气压力由电子膨胀阀控制,排气压力由恒温器1调节冷凝器冷却水进口温度T7控制。压缩机的实际制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。由此得到压缩机的主辅测质量流量,进而计算出标准工况下的主辅侧制冷量。压缩机的输入功率由电参数仪测得。在制冷系统内部安装多个压力和温度测点,可以方便地确定系统内部的状态。 冷水机组性能实验系统,由压缩机、冷凝器、蒸发器、热力膨胀阀、恒温器等设备组成。实验时,可以设置不同的冷媒水和冷却水温度。冷水机组冷媒水进口温度通过调节恒温器2中的电加热器控制,冷却水进口温度通过调节恒温器1中的电加热器控制,而出口温度则通过阀门调节。冷水机组的输入功率通过电参数仪表测得。冷水机组的制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。同时在系统中加入了相应的温度和压力测点,可以使学生能更加深入地了解冷水机组的工作特性。 水-水换热器性能实验系统,由冷水机组、恒温器、流量计、水泵等设备组成。冷热侧流体分别通过冷水机组和恒温器1获得。换热器冷侧和热侧流体进口温度分别通过恒温器2和恒温器1控制。通过测量换热器两侧流体进出口温度和两侧的流量,可以求出换热量,在已知换热面积的前提下,可以求出换热器的换热系数K。 水泵性能实验系统,由水泵、流量计、电参数仪等设备组成。水泵的流量通过流量计测得,水泵的扬程通过水泵进出口压力变送器测得。在水泵的出口处设立调节阀,通过改变阀门的开度来改变水泵进口处的参数,获得水泵变工况运行特性曲线。 2
补水蒸发器P6T6T9冷媒泵
阀门17
涡轮流量计2T9*T11*
阀门19压缩机P1*T1*排污
干燥过滤器涡轮流量计1
P5T5阀门F阀门E阀门C阀门G阀门D
T10
T3P3
阀门B冷凝器T8
阀门13
T7
冷 却 塔阀门6阀门1T7*,T13*阀门7阀门2恒温器2阀门A阀门11P4T4储液器阀门15风机盘管恒温器1阀门3阀门4阀门5阀门16T11阀门18T12试验水泵阀门12换热器T14阀门14T13阀门9阀门8阀门20
P8P7
阀门10
图1 试验台系统图 3 一、实验目的 1、通过本试验,熟悉和了解制冷压缩机的测试工况和测试方法,增强对制冷压缩机的认识。 2、学习本实验中所涉及的各种参数的测量方法,掌握制冷压缩机性能的热力计算。 3、熟悉对制冷压缩机性能实验系统软件的操作。 二、实验原理 制冷压缩机的性能随蒸发温度和冷凝温度的变化而变化,因此需要在国家标准规定的工况下进行制冷压缩机的性能测试。 压缩机的性能可由其工作工况的性能系数COP来衡量:
0QCOPW
式中,0Q为压缩机的制冷量; W为压缩机输入功率。 在一个确定的工况下,蒸发温度、冷凝温度、吸气温度以及过冷度都是已知的。这样,对于单级蒸气压缩式制冷机来说,其循环p-h图如图2 所示。
图2 图中,1点为压缩机吸气状态;4-5为过冷段。 在特定工况下,压缩机的单位质量制冷量是确定的,即:015qhh 。这样只要测得流经压缩机的制冷剂质量流量mG,就可计算出压缩机的制冷量,即
0015()mmQGqGhh 压缩机的输入功率:开启式压缩机为输入压缩机的轴功率,封闭式(包括半封闭式和全封闭式)压缩机为电动机输入功率。 三、实验方法 为了确保实验系统运行在一个特定的工况下,实验中通过控制吸气压力、排气压力和吸气温度这三个量稳定在设定值附近。这三个参数允许的偏差范围按如下规定: 实验参数 每一个测量值与规定值 4
间的最大允许偏差 吸气压力 1.0% 排气压力 1.0% 吸气温度 3.0℃ 排气压力用冷却水进口温度T7通过恒温器1控制,吸气压力用电子膨胀阀控制,吸气温度用载冷剂进口温度T9通过恒温器2控制。 压缩机性能实验要包括主要试验和校核试验,二者应同时进行测量。校核试验和主要试验的试验结果之间的偏差应在4%以内,并以主要试验的测量结果为计算依据。 本次实验中的主要试验是通过测量冷凝器的换热量,从而根据冷凝器热平衡关系计算出流经压缩机的制冷剂流量,并由此流量计算出压缩机制冷量,为主测制冷量。而校核试验是对蒸发器进行的,通过测量蒸发器的换热量,由蒸发器的热平衡关系,得出流经压缩机的制冷剂流量,同样可根据该流量计算出压缩机制冷量,为辅测制冷量。判断主测制冷量和辅测制冷量的偏差,如偏差在4%以内,则以主测制冷量进行计算压缩机性能系数。
通过恒温器1、恒温器2 、电子膨胀阀控制调节系统稳定运行在指定的标准工况下,则此时压缩机在标准工况下的单位质量制冷量是确定的,为 **015qhh
式中,*1h、*5h为标准工况的焓值。 a) 主测制冷量的计算 本实验中,主测制冷量的计算是从冷凝器端考虑的。首先,冷凝器的换热量可由冷却水侧的热量变化来计算,为
111187()QCpGTT 式中,1Q——冷凝器的冷凝换热量(kW);
1Cp——冷却水比热容 (()kJkgK);
1G ——由涡轮流量计1测得的载冷剂流量(3ms);
1——冷却水密度(3kgm);
7T——冷却水进口温度(K);
8T——冷却水出口温度(K)。
其中计算某一温度t时冷却水比热容1Cp和密度1公式如下: 214.2060.001305910.00001378982Cptt
2311000.830.083883760.0037279550.000003664106ttt
同样,根据冷凝器制冷剂侧的热量变化也可计算出冷凝器的换热量,在不考虑冷凝器漏热损失的情况下,可以认为由制冷剂侧的换热量应等于冷却水侧的热量变化1Q。这样,即有 :
1341()GmhhQ 式中,1Gm——冷凝器制冷剂侧制冷剂质量流量,即主测制冷剂流量;
34,hh——取测试工况下对应点的焓值。 5
由此,可以计算出主测制冷剂流量,从而对比标准工况下吸气口制冷剂比容差异,可得到标准工况下主测制冷量1Q为:
1110*
1
vQGmqv
式中,1v——测试工况下的压缩机吸气口制冷剂比容; *1v——标准工况下的压缩机吸气口制冷剂比容。
b) 辅测制冷量的计算 相对于主测制冷量,本实验的辅测制冷量的计算,是从制冷系统另一主要热交换器—— 蒸发器着手考虑的。同样,根据蒸发器两侧流体的热平衡来计算辅测的制冷剂制冷流量。 蒸发器制冷量先可由载冷剂的热量变化来计算,即
2222910()QCpGTT 式中,2Q——蒸发器制冷量(kW);
2Cp——载冷剂比热容 (()kJkgK);
2G ——由涡轮流量计2测得的载冷剂流量(3ms);
2——载冷剂密度(3kgm);
9T——载冷剂进口温度(K);
10T——载冷剂出口温度(K)。
其中计算某一温度t时载冷剂(质量浓度为35%的乙二醇溶液)比热容2Cp
和密度2公式如下:
24.091760.00106375Cpt 221001.440.194910.00243tt
在不考虑蒸发器“跑冷”损失的情况下,则有蒸发器热平衡关系计算出辅测制冷剂流量2Gm,为
22
65
QGmhh
式中,56,hh——取测试工况下对应点的焓值。 再对比标准工况下吸气口制冷剂比容差异,可得到标准工况下辅测制冷量
2Q为:
1220*
1
vQGmqv
式中,1v——测试工况下的压缩机吸气口制冷剂比容; *1v——标准工况下的压缩机吸气口制冷剂比容。
四、操作步骤 (一)实验前的准备工作