地震勘探方法综述
- 格式:doc
- 大小:40.00 KB
- 文档页数:5
1. 有关地震勘探的一些基本概念1.1 地震勘探是勘探石油的有效方法勘探石油的方法和技术,按其勘探手段划分,可分为地质法、物探法和钻探法三种基本类型。
地球物理勘探法(物探法)运用物理学的原理和方法,即利用地壳中岩石的物理性质(如岩石的弹性、密度、磁性和电性)上的差异来研究地球,了解地下岩层的起伏情况和组成情地震勘探是利用人工激发地震波的方法引起地壳的振动,并用仪器把来自地下各个地层分界面的反射波引起地面上各点的振动情况记录下来。
利用记录下来的数据,对其进行过处理分析,从而推断地下地质构造和地层岩性的特点。
地震勘探查明地下地质构造特点的原理并不难理解。
利用声波反射现象可测定障碍物离开声源的距离,是我们都知道的物理原则。
其计算公式为:)1()(21t v S *=其中:S 障碍物离开声源的距离v 波传播速度 t 波旅行时间如声波速度为v =340m /s ,波由发声到回声的旅行时间为t =10s ,则障碍物到声源的距我们可沿地面上任一条测线逐段进行预测,并对观测数据用计算机进行处理就能得到形象地反映地下岩层分界面起伏变化的资料── 一条测线的地震剖面图。
它近似地反映了地下反射界面的构造形态。
在工区内布置一系列测线形成一个测网,并采用相同的方法进行观测和数据处理,就可得到地下地层起伏的完整形态;再综合其它物探方法与地质钻井等各方面的资料,进行去伪存真、去粗取精、由表及里的分析和研究,就能查明地下可能的储油构造,为钻探确定和提供井位。
概括地说,所谓地震勘探,就是通过人工激发(炸药震源或其它震源)在地面产生地震波,并研究地震波在地下地层中的传播规律,借以查明地下储油地质构造,为寻找油气田或其它目的服务的一种地球物理勘探方法。
1.3 地震勘探的内容地震勘探的全部生产工作,基本可分为以下三个组成部分。
1.3.1 野外资料采集其任务是在地质或其它物探方法工作初步确定的含油气有利地区进行进一步的勘探。
它结果就是地震剖面(时间剖面或深度剖面),它是地震资料地质解释的基本依据。
第六章三维地震勘探技术
概述
第1节三维地震勘探优点
第2节三维地震资料采集
第3节三维地震资料处理
主讲教师:刘洋
第1节三维地震勘探优点
第6章
VSP 地面地震勘探
地面激发井中接收地面接收接收点激发点
(3)海上四分量地震勘探(单源—四分量)(4)陆上三分量地震勘探(单源—三分量)
模型示意图二维地震成果剖面三维地震成果剖面
第6章
二维资料作的构造等值线图三维资料作的构造等值线图
第6章
第2节三维地震资料采集
第6章
宽线弯线
十字线环形排列
章
常规正交线束砖墙式奇偶式非正交式
常用三维观测系统--束状观测系统
第6章
8线8炮观测系统
第3节三维地震资料处理
第6章
第六章总结
1.地震勘探的分类
2.三维地震勘探的优点
3.三维观测系统设计的要求
4.三维地震野外采集过程
第六章词汇
时移地震time-lapse seismic
三维地震3D seismic
三分量地震three-component seismic 三维三分量地震3D-3C seismic
面元bin
方位角azimuth。
地震勘探原理pdf摘要:一、地震勘探原理简介1.地震勘探的定义2.地震勘探的基本原理二、地震勘探技术的发展历程1.传统地震勘探技术2.现代地震勘探技术三、地震勘探的应用领域1.石油天然气勘探2.固体矿产资源勘探3.地壳结构研究4.地震灾害评估四、地震勘探技术的未来发展趋势1.高分辨率地震勘探技术2.环保型地震勘探技术3.智能化地震勘探技术正文:地震勘探是一种利用地震波在地下传播的特性,研究地下结构和物质组成的地球物理勘探方法。
它在我国石油天然气勘探、固体矿产资源勘探、地壳结构研究以及地震灾害评估等领域具有广泛的应用。
地震勘探的基本原理是利用人工激发的地震波在地下传播,当遇到不同介质界面时,地震波会发生反射、折射和散射等现象。
通过观测和分析这些现象,可以推断出地下岩层的形态、结构和性质。
传统地震勘探技术主要采用地震仪和地震图来记录和分析地震波,而现代地震勘探技术则在此基础上,引入了数字技术、信息技术和计算机技术等,大大提高了勘探的效率和精度。
在石油天然气勘探领域,地震勘探技术为寻找油气藏提供了重要依据。
通过地震勘探,可以清晰地揭示地下岩层的形态、构造和分布,从而帮助石油工程师确定钻井的位置、方向和深度。
在固体矿产资源勘探领域,地震勘探技术也有助于查明矿藏的分布和规模。
此外,地震勘探技术还在地壳结构研究、地震灾害评估等方面发挥着重要作用。
未来,地震勘探技术将继续向高分辨率、环保和智能化方向发展。
高分辨率地震勘探技术可以获得地下岩层的更精细结构,为资源勘探和地壳研究提供更为准确的信息。
环保型地震勘探技术将减少对环境的影响,降低勘探成本。
智能化地震勘探技术将通过大数据、人工智能等技术,实现地震勘探的自动化和智能化,提高勘探效率和精度。
1、地球物理勘探简称“物探”,即用物理的原理研究地质构造和解决找矿勘探中问题的方法。
目前主要的物探方法有:重力勘探,磁法勘探,电法勘探,地震勘探,放射性勘探等。
2、地震勘探:1.效果最好(精度高)2.用得最多(90%)3.发展最快4.和油气勘探与开发联系最紧密!3、勘探石油的方法目前有三类:地质法、钻探法、物探法。
4、在勘探油气的各种物探方法中,地震勘探已成为一种最有效的方法。
5、所谓的地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播情况,查明地下地质构造,为寻找油气田或其它勘探目标的一种物探方法。
6、地震勘探的生产工作,基本上可分为三个环节: ①野外工作。
②室内资料处理。
③地震资料的解释。
7、地震勘探方法与其他物探方法(重、磁、电)相比,具有精度高的优点,其他物探方法都不可能象地震方法那样能详细而较准确地了解地下有浅到深一整套地层的构造特点。
地震方法与钻探方法相比又有成本低以及可以了解大面积的地下地质构造情况的特点。
因此,地震勘探已成为石油勘探中一种最重要的勘探方法。
8、同一反射界面的波,其波形特征是相似,不同反射界面的波其波形特征是不同的,这就是在地震资料解释中常用的基本法则之一。
9、惠更斯原理:介质中波所传到的各点,都可以看成新的波源,叫做子波源。
可以认为,每个子波源都向各个方向发出微弱的波,叫做子波。
子波是以所在点处的波速传播的。
10、费马原理:波在各种介质中从一点传播到另一点,所走的路径遵守时间最小。
11、地震波是在地下岩石中传播的弹性波,其类型纵波、横波、面波、反射波、透射波、折射波等。
12、弹性模量:1.杨氏模量(E)T=E e 2.体变模量(K)K=-Kθ 3.切变模量(μ)F=μψ 4.拉梅常数(λ)G=λ e 5.泊松比(σ)13、对于大多数弹性介质,σ约为0.25,非常坚硬的岩石是0.05,固结性很差的松软介质,大约为0.45,对于液体,μ=0,所以σ可达最大值0.5。
技术简介发展三三维地震勘探维地震勘探技术是一项集物理学、数学、计算机学为一体的综合性应用技术,其应用目的是为了使地下目标的图像更加清晰、位置预测更加可靠。
三维地震勘探技术是从二维地震勘探逐步发展起来的,是地球物理勘探中最重要的方法,也是当前全球石油、天然气、煤炭等地下天然矿产的主要勘探技术。
二维相比与二维地震勘探相比,三维地震勘探不仅能获得一张张地震剖面图,还能获得一个三维空间上的数据体。
三维数据体的信息点的密度可达12.5米×12.5米(即在12.5米×12.5米的面积内便采集一个数据),而二维测线信息点的密度一般最高为1千米×1千米。
由于三维地震勘探获得信息量丰富,地震剖面分辨率高,地下的古河流、古湖泊、古高山、古喀斯特地貌、断层等均可直接或间接反映出来。
地质勘探人员利用高品质的三维地震资料找油找气,中国近期发现的渤海湾南堡大油田、四川普光大气田、塔里木盆地塔中Ⅰ号大气田等,全要归功于高精度的三维地震勘探技术。
基本原理要了解三维地震勘探技术,有必要先了解一下二维地震勘探的基本原理。
二维地震勘探方法是在地面上布置一条条的测线,沿各条测线进行地震勘探施工,采集地下地层反射回地面的地震波信息,然后经过电子计算机处理得出一张张地震剖面图。
经过地质解释的地震剖面图就像从地面向下切了一刀,在二维空间(长度和深度方向)上显示地下的地质构造情况。
同时几十条相交的二维测线共同使用,即可编制出地下某地质时期沉积前地表的起伏情况。
如果发现哪些地方可能储有油气,则可确定其为油气钻探井位。
勘探的理论与工作流程三维地震勘探的理论与工作流程和二维地震勘探大体相似,但其工作内容及达到的效果却今非昔比了。
三维地震勘探主要由野外地震数据资料采集、室内地震数据处理、地震资料解释3个步骤组成,这是一项系统工程,甚至每个步骤就是一个系统,因为这3个步骤既相互独立,又相互影响,而且每一步骤均需要最先进的计算机硬件和软件的支撑。
三维地震勘探方法及原理1. 引言嘿,大家好!今天我们要聊聊一个听上去很高大上的话题——三维地震勘探。
听名字就知道,这可不是随便玩玩的事情。
它是一种能让我们了解地下世界的神奇方法,想象一下,像是在看一部《寻龙诀》那样,揭开大地的秘密。
不过别担心,我会用简单易懂的方式告诉你这一切,咱们轻松聊聊,不让你感觉像在上课。
2. 三维地震勘探的基本概念2.1 什么是三维地震勘探?简单来说,三维地震勘探就是通过发送地震波到地下,然后再接收这些波反射回来的信息,帮我们“看”清地下的结构。
这就像是在用声音给地下“拍照”,而且是立体的!你可以想象一下,像是在玩一个高级的探险游戏,寻找宝藏的感觉。
2.2 三维勘探与传统勘探的区别传统的地震勘探就像是在平面上画图,而三维勘探则是把这个图变成立体的。
你知道的,平面图和立体图的感觉完全不一样。
三维勘探能给我们更丰富、更详细的信息,帮助我们更好地了解地下资源的位置,尤其是石油、天然气这些重要的宝贝。
3. 三维地震勘探的方法3.1 数据采集首先,我们得把“耳朵”伸得长长的,来听地下的声音。
为了做到这一点,咱们需要在地面上布置很多的传感器,这些小家伙就像是地下的侦探,负责接收地震波。
当我们用震源(比如炮炸或者震动器)制造地震波的时候,这些传感器会像打了鸡血一样,快速记录下反射回来的波形数据。
3.2 数据处理与解释数据采集完成后,就进入了“数理化”的阶段。
别担心,不用心慌,这可不是高深的数学题。
其实就是把我们采集到的数据进行分析,转化成地下结构的图像。
这个过程就像是在拼图,有时候拼图的碎片可能会缺失,但聪明的工程师们总能用他们的智慧,把这些碎片拼凑起来,呈现出一个清晰的地下世界。
4. 三维地震勘探的应用4.1 石油与天然气勘探大家知道,石油和天然气是现代生活的命脉。
通过三维地震勘探,我们能够找到这些资源的埋藏地点,提前做好准备,确保能安全高效地开采。
可以说,这项技术就像是给石油公司带来了“金钥匙”,打开了通往财富的大门。
地震勘探原理地震勘探是一种利用地表的地震波在地下的传播规律,推断地下岩层的性质和形态的地球物理勘探方法。
地震勘探的主要特点是:利用专门仪器并按特定方式观测岩层间的波阻抗差异,进而研究地下地质问题;通过人工方法激发地震波,研究地震波在地层中传播的规律与特点,以查明地下的地质构造,为寻找油气田或其他勘探目标提供依据。
具体来说,地震勘探通过人工方式在地面产生震动,形成一个人工震源向地下发射地震波,这些地震波在地下不同的岩石界面上形成反射最终回到地面来。
然后,利用地震波接收仪器将人工震源产生的地震波记录下来,这些地震波携带了地下构造的信息。
通过对地震波的波形和传播时间进行研究,可以了解地下构造形态,进而推断出地下的地质特征。
地震勘探对环境有一定的影响。
首先,地震勘探过程中可能会产生噪音和振动,对周围环境产生一定的影响。
其次,地震勘探过程中可能会产生一些固体废弃物,如测量使用的木桩、小旗等标志,建筑材料、设备维修废弃的零部件以及炉渣,废记录纸和包装材料,剩余的食品等。
这些废弃物如果处理不当,可能会对环境造成污染。
此外,地震勘探过程中还可能会产生水污染和大气污染。
例如,工区施工人员生活污水、洗车污水的排放,爆炸对地表水、地下水的污染,汽车、发电机尾气污染,爆炸气体污染等。
因此,在进行地震勘探时,需要采取相应的环境保护措施,减少对环境的影响。
为了减少地震勘探对环境的影响,可以采取以下环境保护措施:1.保护自然环境:地震勘探需要在自然环境中进行,因此需要尽力保护这些环境,以免人为活动对其造成污染、破坏。
例如,在田野上进行地震勘探时,侵入土地的车辆和步行者可能会对土地、植被和野生动物的移动造成破坏。
因此,必须尽可能减少这些干扰,采取适当的管控和安排。
2.采取设备安装规划和土地利用管理:地震观测设备需要极为精准和稳定的基础设施。
为了确保稳定和安全的设施,可以实行针对性的设备安装规划和土地利用管理。
3.减少噪音和振动:地震勘探过程中可能会产生噪音和振动,对周围环境产生一定的影响。
常用的勘探方法勘探是指通过一系列科学技术手段和方法,对地下资源进行探查和评估的过程。
勘探方法的选择和应用直接影响到勘探的效果和成本。
下面将介绍几种常用的勘探方法。
1. 地震勘探地震勘探是利用地震波在不同地层之间的传播速度差异,通过布设地震仪器和记录地震波的反射、折射和透射等信息,来获取地下地质结构和资源分布的方法。
地震勘探可以提供地下地层的结构、厚度、岩性、裂缝、孔隙度等信息,对于油气、矿产资源的勘探和地质灾害的预测具有重要意义。
2. 电磁勘探电磁勘探是利用电磁场在地下介质中传播的特性,通过测量和分析地下电磁场的变化,来获取地下介质的电性和导电性信息的方法。
电磁勘探可以用于寻找含水层、矿产矿体、地下构造和地下水等,尤其在地下水资源的勘探中得到广泛应用。
3. 钻探勘探钻探勘探是通过地面或水下钻孔,获取地下岩层样品和地质信息的方法。
钻探勘探可以提供地层的岩性、厚度、构造、裂缝、孔隙度等信息,对于矿产资源、地下水资源和地质工程的勘探和评估有重要作用。
4. 重力勘探重力勘探是利用地球的重力场进行勘探的方法。
通过测量地球重力场的变化,可以推断地下的密度分布,进而获得地下构造和矿产资源的信息。
重力勘探在石油、矿产资源和地质灾害的勘探中得到广泛应用。
5. 磁力勘探磁力勘探是利用地球的磁场进行勘探的方法。
通过测量地球磁场的变化,可以推断地下的磁性物质分布,进而获得地下构造和矿产资源的信息。
磁力勘探在矿产资源、地下构造和地质灾害的勘探中有着重要的应用价值。
6. 地电勘探地电勘探是利用地下电阻率的差异进行勘探的方法。
通过测量地下电阻率的变化,可以推断地下的岩性、含水层、矿体等信息。
地电勘探在地下水、矿产资源和地质工程的勘探中得到广泛应用。
7. 遥感勘探遥感勘探是利用卫星、飞机等遥感平台获取地表信息的方法。
通过遥感图像的解译和分析,可以推断地下的地质构造、岩性、植被覆盖等信息。
遥感勘探在环境监测、资源调查和地质灾害的勘探中发挥着重要作用。
石油勘探地震规范地震勘探是石油勘探领域中一项重要的工作,它通过对地下的地震波传播特征进行监测和分析,以获取地下构造与油气资源分布等信息。
在进行地震勘探工作时,需要遵循一系列的规范与标准,以确保勘探结果的准确性和可靠性。
本文将就石油勘探地震规范进行论述,主要包括地震勘探的原理与方法、数据采集与处理、质量控制、仪器设备标准等方面的内容。
1. 地震勘探的原理与方法地震勘探是利用地震波在地下介质中传播的特点,通过监测地震波的传播速度、反射、折射等现象,来获得地下构造与油气资源分布的信息。
在进行地震勘探工作时,需要遵循以下原则与方法:1.1 叠加全面的地震剖面:合理选择测线的布置,使得测线覆盖面积广,且各测点之间的距离均匀分布,以保证勘探结果全面而准确。
1.2 合理选择地震波源:根据勘探区域的地质特征和勘探目标,合理选择地震波源的类型和能量大小,以提高勘探效果。
1.3 适当选择接收器参数:根据地震波传播的深度和目标层位的特征,合理选择接收器参数,并进行维护和校准,以确保接收到准确的地震波信号。
2. 数据采集与处理地震勘探中的数据采集与处理是保证勘探结果准确性的重要环节。
在数据采集与处理过程中,需要遵循以下规范:2.1 合理的采样周期和采样率:根据地震波传播速度和目标层位的特征,合理选择采样周期和采样率,并确保采集到足够的数据量。
2.2 数据质量控制:对采集到的数据进行质量控制,包括数据的完整性、准确性等方面的监测与评估。
2.3 数据处理:通过采用适当的滤波、去噪等数据处理方法,提取出地震波的信号,剔除掉干扰和噪音,以获得清晰的勘探结果。
3. 规范的质量控制为了确保地震勘探结果的准确性和可靠性,需要进行规范的质量控制。
具体的质量控制措施包括:3.1 仪器设备标定与校准:对地震仪器设备进行定期的标定和校准,确保其测量结果的准确性与可靠性。
3.2 现场实时监测:在地震勘探工作进行过程中,进行现场实时监测,及时发现和解决可能影响勘探结果的问题,并进行相应的调整与改进。
工程地质勘察中的地质勘探技术工程地质勘察是在建筑、交通、能源等工程项目前进行的一项关键性工作,旨在了解地下地质情况以指导工程的设计和施工。
而地质勘探技术则是工程地质勘察中的重要组成部分,主要用于获取地下地质信息并评估地质风险。
本文将详细介绍几种常见的地质勘探技术,并探讨其在工程地质勘察中的应用。
首先要介绍的是地震勘探技术。
地震勘探技术通过利用地震波在地下介质中的传播特性,分析地震波的回波情况,以揭示地下地质结构和构造。
常见的地震勘探技术有反射法和折射法。
反射法通过放置地震震源和接收器,记录地震波在地下界面上的反射情况来识别地下构造;折射法则是利用地震波在不同地质层中传播时的折射现象,来推测地下地层的分布和性质。
地震勘探技术在工程地质勘察中具有非常重要的意义,能够准确判断地下岩层的稳定性和存在的问题,为工程设计提供有效的参考依据。
其次要介绍的是电法勘探技术。
电法勘探技术是一种利用地下电阻率的差异来推测地下地层结构和构造的方法。
通过在地表上布设电极,并通过输入电流和测量电位差来计算地下的电阻率。
常用的电法勘探技术包括直流电法、交流电法和自然电场法。
直流电法适用于浅层地质勘探,交流电法则广泛应用于不同深度范围的地质勘探。
自然电场法则是通过测量地表的微弱电场来推测地下的电性差异,常用于探测地下水或地下金属矿床等。
电法勘探技术在工程地质勘察中的应用领域广泛,可以提供有关地下地层的详细信息,对工程设计和施工具有指导意义。
此外,还有磁法勘探技术。
磁法勘探技术是一种利用地下物质的磁性差异来推测地下构造和地质岩性的方法。
通过测量地表上的地磁场分布和变化来判断地下的异常情况。
磁法勘探技术主要包括总磁法、地磁测深法和磁梯度法。
总磁法主要用于测量地下磁性物质的分布情况,地磁测深法则用于测量地下磁性物质的深度,磁梯度法则通过测量地磁场的梯度变化来判断地下岩层的性质。
磁法勘探技术在工程地质勘察中具有重要作用,能够快速探测地下构造和岩性差异,为工程设计提供有力的支持。
海洋地震勘探领域专利技术进展综述随着陆地上的油气被越来越多地开采,储量也随之不断地减少,油气勘探工作者的目光也逐渐从陆地转移到了海洋上。
海上不仅储备有石油等资源,还有大量的矿物、水合物等资源及能源,探测与开采海洋资源已经成为一种不可阻挡的趋势。
本文主要对海洋地震勘探领域专利技术进行分析,从国内、国外两个层次进行探索,并对海洋地震勘探领域的核心技术特点进行了分析,对未来的发展方向进行探讨与展望。
标签:海洋地震,专利分析,专利申请1、引言近十年来,随着海洋油气勘探逐步转向深部油气层、高速屏蔽层下油气储层和复杂构造油气田等领域,为适应新勘探形式下地震资料精确成像的要求,海洋地震采集技术得到了创新和发展。
海洋地震勘探基本原理与陆地上一样,但有其特殊性。
海洋地震勘船探作业时,震源和检波器是连续运动的,不需要停下来,也不需要放炮和钻炮眼,如果海上没有障碍物、特殊地形和其他限制和影响,那么海洋地震工作可以连续施工,且测线可以均匀覆盖,所以海洋地震勘探工作比陆地由更高的效率和更低廉的成本。
目前,进行海洋地震勘探的主要手段为拖缆施工,包括导航系统、激发系统和接收系统。
2、海洋地震勘探领域专利申请分布特点2.1国内海洋地震勘探技术的专利情况分析近20年来,总体上讲,我国的海洋地震勘探技术的专利申请量除个别年份外,基本呈逐年递增的趋势,专利申请量特别是在2006-2009、2011-2014年期间的专利申请量激增,一方面是由于这段时间期间国际上,石油行业行情整体较好,另一方面是由于社会各界开始重视知识产权的保护,以及国家对于知识产权保护的重视及有力推动更促进专利申请量的增加。
值得注意的是,在2010年、以及2014年以后,申请量出现减少的趋势,2008年的金融危机所带来的负面影响,以及2014年以后石油行业的整体低迷,科技研发的势头遭到抑制均影响这相应的专利申请量。
图1给出了我国海洋地震勘探技术相关专利的前10位申请人及其申请量。
地震勘探原理及方法一、地震勘探基本原理1.地震地质模型基本分类2.光滑、理想弹性介质中的三维波动方程3.无限大均匀各向同性介质中的弹性波场及特征4.地震波的散射、反射和偏折5.多层黏弹性介质中的弹性波场及特征6.几何地震学原理7.地震波速度及地震地质条件1.1地震地质模型基本分类1.地震地质模型2.液态沦为弹性介质的条件3.人工激发震源与岩层的弹性4.常用的弹性介质模型1.3无限大均匀各向同性介质中的弹性波场及特征1.3.1无限大光滑各向同性介质中的平面波1.3.2无限大均匀各向同性介质中的球面波1.3.3地震波的动力学特征1.3.4地震波的运动学特征1、动力学特征(动力学参数)2、运动学特征(运动学参数)3、动力学特征的彰显:远近震源处的加速度波形变化球面扩散、振动图和波剖面谱分析4、运动学的原理和定理:huygens、fermat、snell5、时间场和射线的关系6、基本概念:射线、视速度、频波关系、波数、波长动力学信息(反映动力学特征的信息)振幅、频率、波形、稀释膨胀、极化特点、连续性等特征。
运动学信息(反映运动学特征的信息)传播时间(旅行时间)、传播时间-空间距离的关系、波的传播路径、地震速度等特征 1.4地震波的反射、透射和折射1.平面波的散射和反射2.弹性分界面上的波型转换和能量分配3.球面波的散射、反射和偏折4.地震面波1、斯奈尔定理(包含散射定理、反射定理)2、波的转换(同类波、转换波)3、能量分配zoeppritz方程(法线入射、入射自由表面、反射产生条件)4、弯曲入射光及折射波的产生(产生条件、原因)5、折射波的特点(波前为圆锥台、射线为直线、能量蔓延比反射波慢、折射盲区、屏蔽现象)6、ava曲线(临界入射前、临界入射、过临界入射)7、面波的特点(传播速度、质点位移、频散现象)1.5多层黏弹性介质中的弹性波场及特征1.黏弹性介质中弹性波的传播和大地滤波作用2.多层介质中弹性波的传播特性3.地震波的簿层效应4.地震衍射波5.地震波的波导效应6.反射波地震记录道构成的物理机制黏弹性介质中弹性波的传播基本概念黏滞性介质地震薄层地层对弹性波的吸收作用薄层的干涉作用voigt黏弹性理论薄层的谐波促进作用吸收系数及特性地震纵向分辨率大地滤波促进作用地震衍射波地震子波地震横向分辨率品质因素菲涅尔拎半径波导效应地震道褶积模型1.6几何地震学原理1.6.1地震反射波运动学1.6.2地震折射波的时距曲线1.6.3地震绕射波的时距曲线1.6.4多次反射波的时距曲线1.6.5垂直时距曲线方程1.6.6τ-p域各种波的运动学特点1.6.7地震横波运动学特征1、几何地震学的有关概念:几种深度、倾角的概念,几种深度的关系,视倾角与真倾角的2、反射波时距曲面方程:时距曲面的形状3、单个水平界面、单个弯曲界面、多层界面的时距曲线单个水平界面时距曲线的特点(极小点,渐进线方程,正常时差的概念)单个弯曲界面时距曲线的特点(极小点与界面、女性主义的关系,倾角时差)界面曲率对时距曲线的影响;多层介质反射波时距曲线的速度问题连续介质中波的时间场和反射波时距曲线4、地震折射波时距曲线一个水平、弯曲界面折射波时距曲线(时距曲线的特点、盲区、二者遇时距观测系统)多个水平层折射波时距曲线弯曲界面的折射波、穿透现象5、拖射波的时距曲线(时距曲线的特点、与反射波时距曲线的区别与联系)6、多次波时距曲线的特点。
地震勘探的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!地震勘探是一项重要的地质勘探技术,通过观测和分析地震波在地下的传播情况,可以揭示地下结构和岩石特性,为石油勘探、地质灾害预测等领域提供关键信息。
地震勘探方法综述
读书报告
班级地质07-2班
学号 **********
姓名薛立超
地震勘探方法综述
发展简史
地震勘探始于19世纪中叶。
1845年,R.马利特曾用人工激发的地震波来测量弹性波在地壳中的传播速度。
这可以说是地震勘探方法的萌芽。
在第一次世界大战期间,交战双方都曾利用重炮后坐力产生的地震波来确定对方的炮位。
反射法地震勘探最早起源于1913年前后R.费森登的工作,但当时的技术尚未达到能够实际应用的水平。
1921年,J.C.卡彻将反射法地震勘探投入实际应用,在美国俄克拉荷马州首次记录到人工地震产生的清晰的反射波。
1930年,通过反射法地震勘探工作,在该地区发现了3个油田。
从此,反射法进入了工业应用的阶段。
折射法地震勘探始于20世纪早期德国L.明特罗普的工作。
20年代,在墨西哥湾沿岸地区,利用折射法地震勘探发现很多盐丘(见底辟构造)。
30年代末,苏联Г.А.甘布尔采夫等吸收了反射法的记录技术,对折射法作了相应的改进。
早期的折射法只能记录最先到达的折射波,改进后的折射法还可以记录后到的各个折射波,并可更细致地研究波形特征。
50~60年代,反射法的光点照相记录方式被模拟磁带记录方式所代替,从而可选用不同因素进行多次回放,提高了记录质量。
70年代,模拟磁带记录又为数字磁带记录所取代,形成了以高速数字计算机为基础的数字记录、多次覆盖技术、地震数据处理技术相互结合的完整技术系统,大大提高了记录精度和解决地质问题的能力。
从70年代初期开始,采用地震勘探方法研究岩性和岩石孔隙所含流体成分。
根据地震时间剖面振幅异常来判定气藏的“亮点”分析,以及根据地震反射波振幅与炮检距关系来预测油气藏(见圈闭)的AVO分析,已有许多成功的例子。
从地震反射波推算地层波阻抗和层速度的地震拟测井技术,在条件有利时,可以取得有地质解释意义的实际效果。
现代的地震勘探正由以构造勘探为主的阶段向着岩性勘探的方向发展。
中国于1951年开始进行地震勘探,并将其应用于石油和天然气资源勘查、煤田勘查、工程地质勘查及某些金属矿的勘查。
方法
包括反射法、折射法和地震测井(见钻孔地球物理勘探)。
前两种方法在陆地和海洋均可应用。
研究很浅或很深的界面、寻找特殊的高速地层时,折射法比反射法有效。
但应用折射
法必须满足下层波速大于上层波速的特定要求,故折射法的应用范围受到限制。
应用反射法只要求岩层波阻抗有所变化,易于得到满足,因而地震勘探中广泛采用的是反射法。
反射法
利用反射波的波形记录的地震勘探方法。
地震波在其传播过程中遇到介质性质不同的岩层界面时,一部分能量被反射,一部分能量透过界面而继续传播。
在垂直入射情形下有反射波的强度受反射系数影响,在噪声背景相当强的条件下,通常只有具有较大反射系数的反射界面才能被检测识别。
地下每个波阻抗变化的界面,如地层面、不整合面(见不整合)、断层面(见断层)等都可产生反射波。
在地表面接收来自不同界面的反射波,可详细查明地下岩层的分层结构及其几何形态。
反射波的到达时间与反射面的深度有关,据此可查明地层埋藏深度及其起伏。
随着检波点至震源距离(炮检距)的增大,同一界面的反射波走时按双曲线关系变化,据此可确定反射面以上介质的平均速度。
反射波振幅与反射系数有关,据此可推算地下波阻抗的变化,进而对地层岩性作出预测。
反射法勘探采用的最大炮检距一般不超过最深目的层的深度。
除记录到反射波信号之外,常可记录到沿地表传播的面波、浅层折射波以及各种杂乱振动波。
这些与目的层无关的波对反射波信号形成干扰,称为噪声。
使噪声衰减的主要方法是采用组合检波,即用多个检波器的组合代替单个检波器,有时还需用组合震源代替单个震源,此外还需在地震数据处理中采取进一步的措施。
反射波在返回地面的过程中遇到界面再度反射,因而在地面可记录到经过多次反射的地震波。
如地层中具有较大反射系数的界面,可能产生较强振幅的多次反射波,形成干扰。
反射法观测广泛采用多次覆盖技术。
连续地相应改变震源与检波点在排列中所在位置,在水平界面情形下,可使地震波总在同一反射点被反射返回地面,反射点在炮检距中心点的正下方。
具有共同中心反射点的相应各记录道组成共中心点道集,它是地震数据处理时所采用的基本道集形式,称为CDP道集。
多次覆盖技术具有很大的灵活性,除CDP道集之外,视数据处理或解释之需要,还可采用具有共同检波点的共检波点道集、具有共同炮点的共炮点道集、具有相同炮检距的共炮检距道集等不同的道集形式。
采用多次覆盖技术的好处之一就是可以削弱这类多次波干扰,同时尚需采用特殊的地震数据处理方法使多次反射进一步削弱。
反射法可利用纵波反射和横波反射。
岩石孔隙含有不同流体成分,岩层的纵波速度便不相同,从而使纵波反射系数发生变化。
当所含流体为气体时,岩层的纵波速度显著减小,含气层顶面与底面的反射系数绝对值往往很大,形成局部的振幅异常,这是出现“亮点”的物理基础。
横波速度与岩层孔隙所含流体无关,流体性质变化时,横波振幅并不发生相应变化。
但当岩石本身性质出现横向变化时,则纵波与横波反射振幅均出现相应变化。
因而,联合应用纵波与横波,可对振幅变化的原因作出可靠判断,进而作出可靠的地质解释。
地层的特征是否可被观察到,取决于与地震波波长相比它们的大小。
地震波波速一般
随深度增加而增大,高频成分随深度增加而迅速衰减,从而频率变低,因此波长一般随深度增加而增大。
波长限制了地震分辨能力,深层特征必须比浅层特征大许多,才能产生类似的地震显示。
如各反射界面彼此十分靠近,则相邻界面的反射往往合成一个波组,反射信号不易分辨,需采用特殊数据处理方法来提高分辨率。
折射法
利用折射波(又称明特罗普波或首波)的地震勘探方法。
地层的地震波速度如大于上面覆盖层的波速,则二者的界面可形成折射面。
以临界角入射的波沿界面滑行,沿该折射面滑行的波离开界面又回到原介质或地面,这种波称为折射波。
折射波的到达时间与折射面的深度有关,折射波的时距曲线(折射波到达时间与炮检距的关系曲线)接近于直线,其斜率决定于折射层的波速。
震源附近某个范围内接收不到折射波,称为盲区。
折射波的炮检距往往是折射面深度的几倍,折射面深度很大时,炮检距可长达几十公里。
地震测井
直接测定地震波速度的方法。
震源位于井口附近,检波器沉放于钻孔内,据此测量井深及时间差,计算出地层平均速度及某一深度区间的层速度。
由地震测井获得的速度数据可用于反射法或折射法的数据处理与解释。
在地震测井的条件下亦可记录反射波,这类工作方法称为垂直地震剖面(VSP)测量,这种工作方法不仅可准确测定速度数据,且可详查钻孔附近地质构造情况。
浅震的特点及应用
1.特点:工作面积小,勘探深度浅,探测对象规模小,浅部各种干扰因素复杂
优点:精度高、分辨率高、抗干扰能力强、仪器轻便
2.应用: 地震勘探在众多物探中发展最快,应用最多,
西方:物探投资90%以上是地震,地震成了物探代名词
我国:地震是物探主要手段,论文最多,刊物最多,数字处理发展最快,
油田95%是地震发现的。
浅震应用广,水、工、环地质调查,岩土力学参数原位测试,人文调查,
工业找矿。
有关应用范围可用下图简要说明。
,。