土壤理化性质测定的方法
- 格式:doc
- 大小:103.50 KB
- 文档页数:9
土壤质量分析报告实验方法土壤质量是指土壤中各种物理、化学和生物特性的组合,对植物生长和生态系统功能发挥起着非常重要的作用。
因此,土壤质量的分析是评价土壤健康状况、优化土壤管理和保护土壤资源的基础。
本文将介绍一种常用的土壤质量分析实验方法。
实验方法如下:1.土壤样本采集:从研究区域中随机选择多个点位,使用铁铲或采样器采集土壤样本。
为了保证采样的代表性,应在同一时间段采集土壤样本,并且采集的土壤样本应取自同一深度。
2.土壤样本处理:将采集的土壤样本先进行筛选,去除杂质和植物残留物。
如果土壤样本过于湿润,则可以放置在通风处晾干,避免水分含量对实验结果产生影响。
3.土壤物理特性分析:首先,进行土壤质地的测定。
取适量干燥的土壤样本,加入蒸馏水,搅拌均匀后静置,观察土壤颗粒的分层情况,根据层析图判定土壤质地。
其次,进行土壤水分含量的测定。
取一定质量的土壤样本,放入恒温干燥器中干燥至恒定重。
然后,将干燥后的土壤样本加入蒸馏水中,配制成一定比例的土壤悬浮液,使用干燥土壤质量与湿重土壤质量之比即可计算得到土壤含水量。
4.土壤化学特性分析:首先,进行土壤pH值的测定。
将细粒土壤样本与蒸馏水按固液比1:2.5混合,静置一段时间后,使用pH计测定土壤悬浮液的pH值。
其次,进行土壤有机质含量的测定。
采用蒸发法,将一定量土壤样本加入烧杯中,加入酸碱试剂,蒸发至干燥,称重后得到土壤有机质质量。
然后,进行土壤养分含量的测定。
常用的测定方法有水解法和验收法,可以测定土壤中的氮、磷、钾等元素含量。
5.土壤生物学特性分析:进行土壤微生物数量和活性的测定。
取一定质量的土壤样本,通过稀释系列和平板计数法测定细菌、放线菌、真菌和原生动物等微生物数量。
同时,还可以通过碳代谢活性测定、酶活性测定等方法评价土壤微生物的活性。
6.土壤理化性质分析:对土壤理化性质进行测试,如电导率、氧化还原电位、离子交换容量等。
常用的测试方法包括电导仪、氧化还原电极和离子交换容量测定。
第1篇一、实验目的1. 了解土壤调理剂的基本原理和作用;2. 探究不同土壤调理剂对土壤理化性质的影响;3. 评估土壤调理剂在实际农业生产中的应用效果。
二、实验材料1. 土壤样品:采集不同地区、不同类型的土壤样品,共10份;2. 土壤调理剂:A、B、C三种不同类型土壤调理剂;3. 仪器与试剂:pH计、电导率仪、土壤分析仪器、水、标准溶液等。
三、实验方法1. 土壤样品预处理:将采集的土壤样品风干、磨细,过2mm筛,混匀备用;2. 土壤理化性质测定:按照国家标准方法测定土壤pH值、电导率、有机质、全氮、速效磷、速效钾等指标;3. 土壤调理剂施用:将A、B、C三种土壤调理剂分别施入10份土壤样品中,施用量分别为0、50、100、150、200g/亩;4. 土壤理化性质测定:在施用土壤调理剂前后,分别测定土壤pH值、电导率、有机质、全氮、速效磷、速效钾等指标;5. 数据处理与分析:采用Excel和SPSS软件对实验数据进行统计分析。
四、实验结果与分析1. 土壤pH值:施用土壤调理剂后,土壤pH值有所提高,其中A、B、C三种土壤调理剂在施用量为150g/亩时,土壤pH值提高最明显;2. 土壤电导率:施用土壤调理剂后,土壤电导率降低,其中A、B、C三种土壤调理剂在施用量为100g/亩时,土壤电导率降低最明显;3. 土壤有机质:施用土壤调理剂后,土壤有机质含量提高,其中A、B、C三种土壤调理剂在施用量为150g/亩时,土壤有机质含量提高最明显;4. 土壤全氮:施用土壤调理剂后,土壤全氮含量提高,其中A、B、C三种土壤调理剂在施用量为150g/亩时,土壤全氮含量提高最明显;5. 土壤速效磷:施用土壤调理剂后,土壤速效磷含量提高,其中A、B、C三种土壤调理剂在施用量为100g/亩时,土壤速效磷含量提高最明显;6. 土壤速效钾:施用土壤调理剂后,土壤速效钾含量提高,其中A、B、C三种土壤调理剂在施用量为150g/亩时,土壤速效钾含量提高最明显。
测定分析土壤理化性质的影响因素及解决对策摘要:土壤保护是环境保护的重要组成部分,土壤理化性质测定是有效判断土壤状况的方法之一,而测定土壤理化性质的重中之重是土壤含量检测的准确性。
相关人员要准确掌握土壤理化性质的测定内容及方法,寻求、分析和研究当前理化性质测定过程中存在的问题,结合相应现状及经验提高测定水平,为土壤理化性质测定提供参考建议,在环境保护方面为土壤有机质含量检测提供建设性建议。
关键词:土壤理化性质;测定分析;解决对策衡量土壤肥力的重要指标之一是土壤的理化性质。
土壤的理化性质相互联系、彼此影响,参与重要区域的生物地球化学进程和地表物质循环。
例如土壤中的有机碳不但能为植物的生长提供营养物质,还能改良土壤结构、增加土壤养分。
土壤质量、容重和孔隙率是土壤物理性质中的重要指标,对生态水文过程有着不容小觑的影响。
测定土壤理化性质的测量过程及测量方法虽然简单,但仍会存在各种系统偏差与计算误差。
本文根据以往专家的经验与策略,结合现实情况提出问题和解决方案,有助于提高土壤理化性质测定的准确性、稳定性。
土壤的理化性质受多种因素影响,既有气候、母质、地貌等环境因素,也有农业、放牧等人为因素。
专家对影响土壤变化的因素进行了大量研究发现,地表岩性作为重要的环境因子决定了岩石的化学、矿物学和物理性质,显着影响土壤养分、质地、容重和水力特性[1]。
例如具有代表性的喀斯特地貌与其他环境或人为因素的共同作用所形成特有的石漠化现象,标高与坡度在尺度上有很强的相关性小流域,进而影响斜坡生态水文过程。
而开垦、放牧和采伐森林等活动会导致土壤性质发生变化,生态脆弱地区遭受自然灾害的风险更大,这些地区的土壤特性和影响因素值得特别关注[2]。
一、土壤理化分析的主要内容目前经常使用的土壤理化分析方法主要包括土壤分析、植物分析和肥料分析。
1.土壤分析。
主要是分析土壤的基本物理性质和化学特性,包括酸碱度、盐度、肥力特性等,为资源开发利用、土壤改良分类等方面奠定基础。
土壤检测取土方法土壤检测是一种常见的农业实践,通过检测土壤的理化性质和营养元素含量,可以为农民提供科学的施肥建议,帮助提高农作物的产量和质量。
本文将介绍几种常见的取土方法,以帮助农民正确、科学地进行土壤检测。
一、表层土壤取样法表层土壤取样法是一种常用的取土方法,适用于浅层土壤的检测。
具体操作步骤如下:1.准备一把无锈铁锹和一只干净的塑料袋。
2.选择需要检测的农田,从不同的地点均匀采集土壤样品。
3.用铁锹先刨去表层杂质,然后将铲取的土壤放入塑料袋中。
4.将塑料袋紧密封口,标明采样地点和日期,以便后续实验室分析。
二、剖面土壤取样法剖面土壤取样法适用于深层土壤的检测,可以了解土壤的垂直分布情况。
具体操作步骤如下:1.准备一把无锈铁锹、一只干净的塑料袋和一根刻度尺。
2.选择需要检测的农田,找到一个典型剖面。
3.从不同深度处,用铁锹刨取土壤样品,每次取样深度约为10厘米。
4.将每个深度的土壤样品放入塑料袋中,紧密封口,并用刻度尺标明取样深度。
5.在塑料袋上标明采样地点和日期,以便后续实验室分析。
三、网格土壤取样法网格土壤取样法适用于大面积土壤的检测,可以了解土壤的空间变异性。
具体操作步骤如下:1.准备一把无锈铁锹、一只干净的塑料袋和一张网格纸。
2.根据实际情况确定网格纸的大小和间距,将其铺在需要检测的农田上。
3.从每个格子的中心位置用铁锹刨取土壤样品,深度一致。
4.将每个格子的土壤样品放入塑料袋中,紧密封口,并在塑料袋上标明取样位置。
5.在塑料袋上标明采样地点和日期,以便后续实验室分析。
四、分层土壤取样法分层土壤取样法适用于需要了解土壤不同层次的性质和营养元素含量的情况。
具体操作步骤如下:1.准备一把无锈铁锹、一只干净的塑料袋和一根刻度尺。
2.选择需要检测的农田,找到一个典型剖面。
3.根据需要检测的层数,从不同深度处用铁锹刨取土壤样品,每次取样深度约为10厘米。
4.将每个深度的土壤样品放入塑料袋中,紧密封口,并用刻度尺标明取样深度。
土壤水分的测定一、测定目的测定土壤水分是为了了解土壤水分状况,以作为土壤水分管理,如确定灌溉定额的依据。
在分析工作中,由于分析结果一般是以烘干土为基础表示的,也需要测定湿土或风干土的水分含量,以便进行分析结果的换算。
二、测定方法土壤水分的测定方法很多,实验室一般采用酒精烘烤法、酒精烧失法和烘干法;野外则可采用简易的排水称重法(定容称量法)。
样地的长期监测可采用中子仪测定。
烘干法1. 适用范围用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。
2. 方法原理将土样置于105℃±2℃的烘箱中烘至恒重,即可使其所含水分(包括吸湿水)全部蒸发殆尽以此求算土壤水分含量。
在此温度下,有机质一般不致大量分解损失影响测定结果。
3. 仪器设备土壤筛:孔径1 mm;铝盒:小型直径约40 mm,高约20 mm;分析天平:感量为0.001 g和0.01 g;小型电热恒温烘箱;干燥器:内盛无水氯化钙。
4. 试样的选取和制备风干土样选取有代表性的风干土壤样品,压碎,通过1 mm筛,混合均匀后备用。
5. 测定步骤 风干土样水分的测定取小型铝盒(记号笔做好标记)在105℃恒温箱中烘烤约2h ,移入干燥器内冷却至室温,称重,准确至0.001g (m 0)。
加风干土样约5g 于铝盒中称重(m 1)。
将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h 。
取出,盖好,移入干燥器内冷却至室温(约需20 min ),立即称重(m 2)。
风干土样水分的测定一组4个平行。
*注:烘烤规定时间后1次称重,即达“恒重”。
必要时,再烘1小时,取出冷却后称重,两次称重之差不得超过0.05克,取最低一次计算。
质地较轻的土壤,烘烤时间可以缩短,即5~6小时。
6. 结果计算1000121⨯--=m m m m ,%水分(分析基)100221⨯--=m m m m ,%水分(干基) 式中:m 0——烘干空铝盒质量(g );m 1——烘干前铝盒及土样质量(g ); m 2——烘干后铝盒及土样质量(g )。
土壤理化性质及重金属含量分析一、土壤的理化性质土壤是地球的表层,由矿质、有机质、水、空气和土壤生物等组成。
土壤的理化性质是指土壤的物理性质和化学性质。
1.物理性质(1)土壤颗粒组成:土壤颗粒组成主要包括砂、粉砂、粉土和粘土。
砂颗粒在0.05-2.0mm之间,具有较大的颗粒和较好的通气性;粉砂颗粒在0.002-0.05mm之间,具有适度通气性及适度保水性;粉土颗粒在0.002-0.02mm之间,具有较好的保水性;粘土颗粒在小于0.002mm,具有良好的粘合特性。
(2)土壤结构:土壤结构是指土壤颗粒之间的排列和连接方式。
土壤结构影响土壤通气性、渗透性、保水性和透水性等。
常见的土壤结构有块状结构、柱状结构、自由颗粒结构和块状颗粒结构等。
(3)土壤密度:土壤密度是指土壤单位体积的质量。
土壤密度的大小与土壤孔隙度、通气性和根系生长有关。
(4)土壤水分:土壤水分包括田间持水量、枯萎点和毛管水等。
土壤水分对植物生长及土壤性质有一定的影响。
2.化学性质(1)pH值:土壤的pH值是指土壤溶液中的氢离子(H+)浓度的负对数。
pH值对土壤中营养元素的有效性和土壤微生物的生长有重要影响。
(2)电导率:土壤的电导率是指土壤溶液的电导能力。
电导率是土壤盐碱程度的指标,高电导率表示土壤中盐分含量较高。
(3)有机质含量:土壤的有机质含量是指土壤中有机质的质量百分比。
有机质对土壤结构、肥力和水分保持等有重要影响。
重金属在土壤中是常见的存在形式之一,但过量的重金属含量会对土壤质量和生态环境造成一定的影响。
对土壤中重金属含量的分析可以帮助了解土壤的环境质量。
1.采样与准备首先需要选择代表性样品进行采样,采样点应尽量避免受到人为干扰。
采样时使用干燥的工具,将土壤样品按照一定的深度和面积采集,并混合均匀。
将土壤样品分装到干燥的容器中,密封保存。
2.化学分析重金属含量分析可以使用多种化学方法,常用的分析方法包括原子吸收光谱法、电感耦合等离子体发射光谱法和X射线荧光光谱法等。
实验3土壤理化性质测定与分析摘要:土壤是地球表面的重要自然资源之一,对人类的农业生产和环境质量有着重要影响。
本实验旨在通过对土壤样本进行理化性质的测定和分析,了解土壤的基本特性及其对植物生长的影响。
实验主要包括土壤质地分析、土壤颜色测定、土壤水分特性分析以及土壤pH值测定等。
1.引言土壤是地球表面的重要组成部分之一,是地球生态系统中非常重要的自然资源。
了解土壤的理化性质对于农业生产、土地利用和环境保护具有重要意义。
土壤质地、颜色、水分特性以及pH值等是土壤的基本理化性质,不同的土壤性质对植物生长和土地利用具有重要影响。
2.实验目的-了解土壤质地分析方法及其结果的解释;-学习土壤颜色的测定方法与标准;-掌握土壤水分特性分析的方法;-熟悉土壤pH值的测定方法及其意义。
3.实验仪器与试剂-土壤取样工具(锹、小铲等);-土壤筛网;-平板比色计;-pH计;-瓶装蒸馏水;-试管、试管架、玻璃仪器等。
4.实验步骤4.1土壤质地分析4.1.1采集土壤样本,并进行细碎处理;4.1.2按照质地分析流程观察和判定土壤质地类型,并记录结果;4.1.3解释不同质地土壤对水分保持和透气性的影响。
4.2土壤颜色测定4.2.1准备土壤样本,将其分成干/湿两份;4.2.2参照颜色标准卡,使用适量的干土壤样本对比观察其颜色,并记录结果;4.2.3使用适量的湿土壤样本对比观察其颜色,并记录结果;4.2.4解释土壤颜色与土壤中有机质和氧化状态的关系。
4.3土壤水分特性分析4.3.1收集土壤样本,并进行细碎处理;4.3.2按照水分特性测定流程测定不同含水量下土壤的体积和重量,并计算土壤容重、孔隙度和持水量;4.3.3解释土壤含水量对植物生长的影响。
4.4土壤pH值测定4.4.1准备土壤样本,将土壤与蒸馏水按1:5的体积比混合,并充分搅拌均匀;4.4.2使用pH计测定土壤与蒸馏水混合液的pH值,并记录结果;4.4.3解释土壤pH值对土壤养分有效性和植物生长的影响。
1、土壤有机质的测定(重铬酸钾容量法)土壤有机质既是植物矿质营养和有机营养的源泉,又是土壤中异养型微生物的能源物质,同时也是形成土壤结构的重要因素。
测定土壤有机质含量的多少,在一定程度上可说明土壤的肥沃程度。
因为土壤有机质直接影响着土壤的理化性状。
测定原理在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O-27等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量。
其反应式为:重铬酸钾—硫酸溶液与有机质作用:2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2O硫酸亚铁滴定剩余重铬酸钾的反应:K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O测定步骤:1.在分析天平上准确称取通过60目筛子(<0.25mm)的土壤样品0.1—0.5g(精确到0.0001g)(0.3000),用长条腊光纸把称取的样品全部倒入干的硬质试管中,用移液管缓缓准确加入0.136mol/L重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液10ml,(在加入约3ml时,摇动试管,以使土壤分散),然后在试管口加一小漏斗。
2.预先将液体石蜡油或植物油浴锅加热至185—190℃,将试管放入铁丝笼中,然后将铁丝笼放入油浴锅中加热,放入后温度应控制在170—180℃,待试管中液体沸腾发生气泡时开始计时,煮沸5分钟,取出试管,稍冷,擦净试管外部油液。
3.冷却后,将试管内容物小心仔细地全部洗入250ml的三角瓶中,使瓶内总体积在60—70ml,保持其中硫酸浓度为1—1.5mol/l,此时溶液的颜色应为橙黄色或淡黄色。
然后加邻啡罗啉指示剂3—4滴,用0.2mol/l的标准硫酸亚铁(FeSO4)溶液滴定,溶液由黄色经过绿色、淡绿色突变为棕红色即为终点。
4.在测定样品的同时必须做两个空白试验,取其平均值。
可用石英砂代替样品,其他过程同上。
结果计算在本反应中,有机质氧化率平均为90%,所以氧化校正常数为100/90,即为1.1。
有机质中碳的含量为58%,故58g碳约等于100g有机质,1g碳约等于1.724g有机质。
由前面的两个反应式可知:1mol的K2Cr2O7可氧化3/2mol的C,滴定1molK2Cr2O7,可消耗6mol FeSO4,则消耗1molFeSO4即氧化了3/2×1/6C=1/4C=3计算公式为:有机质g/kg=[ ((V0-V)N×0.003×1.724×1.1)/样品重×1000式中:V0—滴定空白液时所用去的硫酸亚铁毫升数。
V—滴定样品液时所用去的硫酸亚铁毫升数。
N—标准硫酸亚铁的浓度。
mol/L附我国第二次土壤普查有机质含量分级表如下,以供参考。
级别一级二级三级四级五级六级有机质(%)>4030—4020—3010—206—10<6注意事项1.根据样品有机质含量决定称样量。
有机质含量在大于50g/kg的土样称0.1g,20—40g/kg的称0.3g,少于20g/kg的可称0.5g以上。
2.消化煮沸时,必须严格控制时间和温度。
3.最好用液体石蜡或磷酸浴代替植物油,以保证结果准确。
磷酸浴需用玻璃容器。
4.对含有氯化物的样品,可加少量硫酸银除去其影响。
对于石灰性土样,须慢慢加入浓硫酸,以防由于碳酸钙的分解而引起剧烈发泡。
对水稻土和长期渍水的土壤,必须预先磨细,在通风干燥处摊成薄层,风干10天左右。
5.一般滴定时消耗硫酸亚铁量不小于空白用量的1/3,否则,氧化不完全,应弃去重做。
消煮后溶液以绿色为主,说明重铬酸钾用量不足,应减少样品量重做。
仪器、试剂1.主要仪器分析天平(0.0001g)、硬质试管、长条腊光纸、油浴锅、铁丝笼(消煮时插试管用)、温度计(0—360℃)、滴定管(25ml)、吸管(10ml)、三角瓶(250ml)、小漏斗、量筒(100ml)、角匙、滴定台、吸水纸、滴瓶(50ml)、试管夹、吸耳球、试剂瓶(500ml)。
2.试剂(1)0.136mol/LK2Cr2O7-H2SO4的标准溶液。
准确称取分析纯重铬酸钾(K2Cr2O7)40g溶于500ml蒸馏水中,冷却后稀释至1L,然后缓慢加入比重为1.84的浓硫酸(H2SO4)1000ml,并不断搅拌,每加入200ml时,应放置10—20分钟使溶液冷却后,再加入第二份浓硫酸(H2SO4)。
加酸完毕,待冷后存于试剂瓶中备用。
(2)0.2mol/LFeSO4标准溶液。
准确称取分析纯硫酸亚铁(FeSO4·7H2O)56g或硫酸亚铁铵[Fe(NH4)2(SO4)2·6H2O]80g,溶解于蒸馏水中,加3mol/L的硫酸(H2SO4)60ml,然后加水稀释至1L,此溶液的标准浓度,可以用0.0167mol/L重铬酸钾(K2Cr2O7)标准溶液标定。
(3)邻啡罗啉指示剂。
称取分析纯邻啡罗啉1.485g,化学纯硫酸亚铁(FeSO4·7H2O)0.695g,溶于100ml蒸馏水中,贮于棕色滴瓶中(此指示剂以临用时配制为好)。
2、土壤水分的测定1、实验步骤:1、取烧杯在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重烧杯质量m0,准确至0.001g。
2、用药匙将风干土样拌匀,舀取约5g,均匀地平铺在烧杯底部,称重m1,准确至0.001g。
3、将称好土样的烧杯置于已预热至105±2℃的烘箱中烘烤6h。
取出,移入干燥器内冷却至室温(约需20min),立即称重m2。
4、再次放入烘箱中烘烤半小时以后,称重m3。
(m3 与m2相差不过0.001g即可)2、实验计算含水量(%)=(m1-m2)/(m1-m0)×100%注:风干土样水分的测定应该做三个平行测定。
平行测定结果的相差,水分小于5%的风干土样不得超过0.2%。
3、土壤pH值的测定1、基本原理用电位测定法测定土壤pH值,水与土壤之比为2.5:1。
加水后经充分搅匀,平衡30min,然后以玻璃电极为指示电极和以甘汞电极为参比电极,当两种电极插入待测土壤滤液中时,构成一电池反应,两者之间产生一个点位差。
由于参比电极的点位是固定的,因此该两点位差的大小取决于溶液中的氢离子活度,氢离子活度的负对数即为pH值。
2、试剂与仪器PHS-3C酸度计、标准缓冲液(pH值=4.001、6.868、9.182)3、方法与步骤1)待测液的制备:称取风干土样10g于50mL高型烧杯中,加入25mL无二氧化碳的水。
用玻璃棒剧烈搅动1-2min,静止30min,此时应避免空气中氨或挥发性酸的影响。
2)仪器校正3)测定4、计算结果仪器上显示的值即为所求pH值,风干土样pH测定做三个平行,取平均值。
4、土壤中氮的测定(全氮、速效氮)4.1土壤全氮量的测定(重铬酸钾—硫酸消化法)。
土壤含氮量的多少及其存在状态,常与作物的产量在某一条件下有一定的正相关,从目前我国土壤肥力状况看,80%左右的土壤都缺乏氮素。
因此,了解土壤全氮量,可作为施肥的参考,以便指导施肥达到增产效果。
方法原理土壤与浓硫酸及还原性催化剂共同加热,使有机氮转化成氨,并与硫酸结合成硫酸铵;无机的铵态氮转化成硫酸铵;极微量的硝态氮在加热过程中逸出损失;有机质氧化成CO2。
样品消化后,再用浓碱蒸馏,使硫酸铵转化成氨逸出,并被硼酸所吸收,最后用标准酸滴定。
主要反应可用下列方程式表示:NH2·CH2CO·NH-CH2COOH+H2SO4=2NH2-CH2COOH+SO2+[O]NH2-CH2COOH+3H2SO4=NH3+2CO2↑+3SO2↑+4H2O2NH2-CH2COOH+2K2Cr2O7+9H2SO4=(NH4)2SO4+2K2SO4+2Cr2(SO4)3+4CO2↑+10H2O (NH4)2SO4+2NaOH=Na2SO4+2H2O+2NH3↑NH3+H3BO3=H3BO3·NH3H3BO3·NH3+HCl=H3BO3+NH4Cl操作步骤1.在分析天平上称取通过60号筛(孔径为0.25mm)的风干土壤样品0.5—1g(精确到0.001g)(本实验取0.5),然后放入150ml开氏瓶(消化管)中。
2.加浓硫酸(H2SO4)5ml,并在瓶口加一只弯颈小漏斗,然后放在调温电炉(消化炉)上高温消煮15分钟左右(不只这么点时间,看具体的现象而定时间的长短),使硫酸大量冒烟,当看不到黑色碳粒存在时即可(如果有机质含量超过5%时,应加1—2g焦硫酸钾,以提高温度加强硫酸的氧化能力)。
3.待冷却后,加5ml饱和重铬酸钾溶液,在电炉上微沸5分钟,这时切勿使硫酸发烟。
4.消化结束后,在开氏瓶中加蒸馏水或不含氮的自来水70ml,摇匀后接在蒸馏装置上,再用筒形漏斗通过Y形管缓缓加入40%氢氧化钠(NaOH)25ml。
5.将一三角瓶接在冷凝管的下端,并使冷凝管浸在三角瓶的液面下,三角瓶内盛有25ml 2%硼酸吸收液和定氮混合指示剂1滴。
接下来的操作步骤和下面不一样,本次实验就按凯氏定氮仪器的具体操作步骤做(6.将螺丝夹打开(蒸汽发生器内的水要预先加热至沸),通入蒸汽,并打开电炉和通自来水冷凝。
7.蒸馏20分钟后,检查蒸馏是否完全。
检查方法:取出三角瓶,在冷凝管下端取1滴蒸出液于白色瓷板上,加纳氏试剂1滴,如无黄色出现,即表示蒸馏完全,否则应继续蒸馏,直到蒸馏完全为止(或用红色石蕊试纸检验)。
8.蒸馏完全后,降低三角瓶的位置,使冷凝管的下端离开液面,用少量蒸馏水冲洗冷凝的管的下端(洗入三角瓶中),)然后用0.02mol/L盐酸(HCl)标准液滴定,溶液由蓝色变为酒红色时即为终点。
记下消耗标准盐酸的毫升数。
测定时同时要做空白试验,除不加试样外,其它操作相同。
结果计算N%=[ (V-V0)×N×0.014]/样品重×100式中:V—滴定时消耗标准盐酸的毫升数;V0—滴定空白时消耗标准盐酸的毫升数;N—标准盐酸的摩尔浓度;0.014—氮原子的毫摩尔质量g/mmol;100—换算成百分数。
注意事项1.在使用蒸馏装置前,要先空蒸5分钟左右,把蒸汽发生器及蒸馏系统中可能存在的含氮杂质去除干净,并用纳氏试剂检查。
2.样品经浓硫酸消煮后须充分冷却,然后再加饱和重铬酸钾溶液,否则作用非常激烈,易使样品溅出。
加入重铬酸钾后,如果溶液出现绿色,或消化1—2分钟后即变绿色,这说明重铬酸钾量不足,在这种情况下,可补加1g固体重铬酸钾(K2Cr2O7),然后继续消化。
3.若蒸馏产生倒吸现象,可再补加硼酸吸收液,仍可继续蒸馏。