高一期末复习
- 格式:doc
- 大小:33.00 KB
- 文档页数:2
高一英语期末考试复习提纲一、基础知识回顾A. 语法1. 时态的用法和转换2. 语态的运用3. 从句的种类及使用方式B. 词汇1. 常用词汇的掌握及运用2. 同义词和近义词的辨析3. 词组和短语的使用二、阅读理解A. 不同类型的文章阅读技巧1. 新闻报道2. 广告宣传3. 议论性文章B. 掌握阅读技巧1. 找出主旨和关键信息2. 推理和推断能力3. 理解作者态度和观点三、听力训练A. 提高听力技巧1. 听清关键词和细节信息2. 提高听力速度和准确度B. 听力复习题型1. 对话和短文理解2. 多项选择题3. 填词和填表题四、写作技巧A. 句子结构和段落连贯1. 书面表达的语言规范2. 句子结构的多样性和使用B. 作文写作技巧1. 合理组织文章结构2. 准确表达个人观点3. 使用适当的词汇和句型五、口语表达A. 提高口语交际能力1. 学习常用口语表达2. 提高流利度和准确度B. 口语练习题型1. 对话和演讲2. 给出建议和意见3. 讨论和辩论技巧六、考试技巧A. 考试前的准备1. 制定学习计划和时间安排2. 预测可能出现的题型和重点B. 考试时的应对策略1. 阅读题目注意事项2. 解答题目的技巧和步骤七、常见错误及改正A. 容易出错的语法点1. 过去式和过去分词的区别2. 代词和冠词的使用错误B. 词汇拼写和搭配错误的改正方法1. 查漏补缺常见词汇2. 练习搭配和短语的正确使用八、学习资源推荐A. 阅读材料推荐1. 经典英文小说和故事2. 英语报刊杂志和网站B. 学习工具推荐1. 词典和电子翻译工具2. 在线学习平台和网课资源通过按照以上提纲进行系统复习,相信你能对高一英语的基础知识、阅读理解、听力训练、写作技巧、口语表达、考试技巧等方面有更深入的了解。
希望你能在期末考试中取得优异的成绩!。
专题02 一元二次函数、方程和不等式考点一:不等式性质及应用1.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B 答案 B解析 ∵A -B =a 2+3ab -(4ab -b 2)=⎝⎛⎭⎫a -b 22+34b 2≥0, ∴A ≥B . 2.若110a b<<,则下列不等式成立的是( ) A .a b ab -> B .a b ab -<C .b a ab ->D .b a ab -<【解答】解:由110a b<<, 对于A 、B ,因为110a b <<,则0a <,0b <,a b >,从而0ab >,0a b ->,即0a b ab ->,则可取1a bab-=,即a b ab -=,故A 、B 错误,对于C 、D ,因为110a b <<,则0a <,0b <,从而0ab >.又110b a->,即0a bab->,则0a b ->,所以0b a ab -<<,故D 正确,C 错误. 故选:D .3.对于任意实数a ,b ,c ,则下列四个命题:①若a b >,0c ≠,则ac bc >;②若a b >,则22ac bc >; ③若22ac bc >,则a b >;④若a b >,则11a b<. 其中正确命题的个数为( ) A .3 B .2C .1D .0【答案】C【解析】a b >时,若0c <,则ac bc <,①错误;若0c,则22ac bc =,②错误;若22ac bc >,则20c >,∴a b >,③正确;a b >,若0a b >>,仍然有11a b>,④错误. 正确的只有1个.故选:C .4.已知11x y -≤+≤,13x y ≤-≤,则182yx ⎛⎫⋅ ⎪⎝⎭的取值范围是( ) A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦【答案】C【解析】令()()()()3x y s x y t x y s t x s t y -=++-=++-则31s t s t +=⎧⎨-=-⎩,∴12s t =⎧⎨=⎩,又11x y -≤+≤,…∴①13x y ≤-≤,∴()226x y ≤-≤…②∴①+②得137x y ≤-≤.则371822,22yxx y -⎛⎫⎡⎤⋅=∈ ⎪⎣⎦⎝⎭.故选C .5.证明不等式22222a b a b ++⎛⎫≤⎪⎝⎭(,a b ∈R ). 【答案】证明见解析.【解析】证明:因为222a b ab +≥,所以22222()2a b a b ab +≥++, 所以()()2222a ba b +≥+两边同除以4,即得22222a b a b ++⎛⎫≤⎪⎝⎭,当且仅当a b =时,取等号. 考点二:利用基本不等式求最值 6.函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( ) A .8 B .7 C .6 D .5【答案】D因为13x >,所以3x -1>0,所以()443311153131y x x x x =+=-++≥=--, 当且仅当43131x x -=-,即x =1时等号成立,故函数413313y x x x ⎛⎫ ⎪⎝=>-⎭+的最小值为5. 故选:D .7.设0a >,0b >,41a b +=,则11a b+的最小值为( )A .7B .9C D 3【解答】解:0a >,0b >,41a b +=,111144()(4)()552549b a b a b a b a b a b a ∴+=++=++++=, 当且仅当4b a a b =,即126a b ==时取等号,∴11a b +的最小值为9.故选:B .8.已知a ,b R +∈,且23a b ab +=,则2a b +的最小值为( ) A .3B .4C .6D .9【解答】解:a ,b R +∈,且23a b ab +=,∴213a b+=,12152522(2)()()333333a b a b a b a b b a ∴+=++=+++⨯(当且仅当a b =时取“= “),即2a b +的最小值为3.故选:A .9.函数233(1)1x x y x x ++=<-+的最大值为( )A .3B .2C .1D .-1【答案】D2233(1)(1)111x x x x y x x ++++++==++1[(1)]1(1)x x =--+++-+11≤-=-, 当且仅当1111x x +==-+,即2x =-等号成立. 故选:D.10.已知0x >,0y >,若28x y xy +=,则xy 的最小值是( )A B C .18D .14【答案】C因为0x >,0y >,由基本不等式得:2x y +≥所以8xy ≥解得:18xy ≥,当且仅当2x y =,即14x =,12y =时,等号成立故选:C11.已知0x >,0y >且141x y+=,若28x y m m +>+恒成立,则实数m 的取值范围是_________.【答案】(9,1)- 【详解】0,0x y >> ,且141x y+=,()144149y xx y x y x y x y ⎛⎫∴+=++=+++≥ ⎪⎝⎭,当且仅当4y x x y =,即36x y ==,时取等号.()min 9x y ∴+=,由28x y m m +>+ 恒成立,即()2min 89m m x y +<+=,解得:91m -<<, 故答案为:(9,1)-12.已知正数a ,b 满足21a b +=,则( ) A .ab 有最大值18 B .12a b +有最小值8 C .1b b a +有最小值4 D .22a b +有最小值15【解答】解:根据题意,依次分析选项: 对于A ,22112()248a b a b ab+⋅=⇒,当且仅当12a =,14b =时取等号,则A 正确; 对于B ,121222(2)()5459b aa b a b a b a b +=++=+++=,当且仅当13a b ==时取等号,B 错误;对于C ,12224b a bb a b a+=+++=,当且仅当13a b ==时取等号,则C 正确;对于D ,222222211(12)5415()(0)552a b b b b b b b +=-+=-+=-+<<,故最小值为15,则D 正确;故选:ACD .13.已知20a b >>,则4(2)a b a b +-的最小值为______________思路一:所求表达式为和式,故考虑构造乘积为定值以便于利用均值不等式,分母为()2b a b -,所以可将a 构造为()112222a ab b ⋅=⋅-+⎡⎤⎣⎦,从而三项使用均值不等式即可求出最小值:4181(2)3(2)2(2)2a a b b b a b b a b ⎡⎤+=-++≥⋅=⎢⎥--⎣⎦ 思路二:观察到表达式中分式的分母()2b a b -,可想到作和可以消去b ,可得()()2222b a b b a b a +-⎡⎤-≤=⎢⎥⎣⎦,从而244(2)a a b a b a +≥+-,设()24f a a a =+,可从函数角度求得最小值(利用导数),也可继续构造成乘积为定值:()24322a a f a a =++≥= 答案:314.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F=76 000v v 2+18v +20l . (1)如果不限定车型,l =6.05,则最大车流量为________辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时. 答案 (1)1 900 (2)100解析 (1)当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v +18≤76 0002v ·121v +18=1 900(辆/时).当且仅当v =121v ,即v =11时,等号成立.(2)当l =5时,F =76 000vv 2+18v +100=76 000v +100v +18≤76 0002v ·100v +18=2 000(辆/时).当且仅当v =100v ,即v =10时,等号成立.∴最大车流量为2 000(辆/时). 2 000-1 900=100(辆/时).∴最大车流量比(1)中的最大车流量增加100(辆/时). 考点三:含参数与不含参数的不等式解法15.已知集合{}2230A x x x =-+≥,302x B x x ⎧⎫-=∈≤⎨⎬+⎩⎭Z,则A B =( ) A .{}23x x -<≤ B .{}1,0,1,2,3-C .{}2,1,1,2,3--D .R【答案】B解不等式2230x x -+≥ ,()2223120,x x x x R -+=-+>∈ ,解不等式302x x -≤+ 得23x -<≤,}{1,0,1,2,3B =- ,}{1,0,1,2,3A B ∴⋂=- ; 故选:B.16.不等式()()()21350x x x ++->的解集为___________. 【答案】1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃【详解】不等式()()()()()()2135021350x x x x x x ++->⇔++-<,由数轴标根法画出图线,可得不等式的解集为1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.故答案为:1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.17.已知二次不等式220x bx c -++<的解集为1{|3x x <或1}2x >,则关于x 的不等式220cx bx -->的解集为( )A .{|23}x x <<B .{|23}x x -<<C .{|32}x x -<<D .{|32}x x -<<-【解答】解:二次不等式220x bx c -++<的解集为1{|3x x <或1}2x >, 所以二次方程220x bx c -++=的解是13和12,由根与系数的关系知,1132211322bc ⎧+=⎪⎪⎨⎪⨯=-⎪⎩,解得53b =,13c =-;所以不等式220cx bx -->化为2152033x x --->, 即2560x x ++<,解得32x -<<-;所以所求不等式的解集为{|32}x x -<<-. 故选:D .18.25.已知关于x 的不等式20ax bx c ++>解集为{}23x x -<<,则下列说法错误的是( ) A .0a < B .不等式0ax c +>的解集为{}6x x <C .0a b c ++>D .不等式20cx bx a -+<的解集为1132x x ⎧⎫<<⎨⎬⎩⎭【答案】D 【详解】由已知可得-2,3是方程20ax bx c ++=的两根,则由根与系数的关系可得23,23,b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩且0a <,解得,6b a c a =-=-,所以A 正确;对于B ,0ax c +>化简为60x -<,解得6x <,B 正确;对于C ,660a b c a a a a ++=--=->,C 正确; 对于D ,20cx bx a -+<化简为:2610x x --<,解得1132x -<<,D 错误.故选:D.19.已知关于x 的不等式:()23130ax a x -++<.(1)当2a =-时,解此不等式; (2)当0a >时,解此不等式.【答案】(1)1{|2x x <-或}3x >(2)当13a =时,解集为∅;当103a <<时,解集为1{|3}x x a <<;当13a >时,解集为1{|3}x x a <<(1)当a =-2时,不等式-2x 2+5x +3<0整理得(2x +1)(x -3)>0,解得x <-12或x >3, 当a =-2时,原不等式解集为{x |x <-12或x >3}.(2)当a >0时,不等式ax 2-(3a +1)x +3<0整理得:(x -3)(x -1a )<0, 当a =13时,1a =3,此时不等式无解;当0<a <13时,1a >3,解得3<x <1a ;当a >13时,1a <3,解得1a <x <3;综上:当a =13时,解集为∅;当0<a <13时,解集为{x |3<x <1a };当a >13时,解集为{x |1a <x <3}.20.已知22()(3)3f x ax a x a =+--.(1)若关于x 的不等式()0f x <的解集为{|1x x >或3}x <-,求实数a 的值; (2)若关于x 的不等式()0f x x a ++<的解集中恰有2个整数,求正整数a 的值. 【解答】解:22()(3)3(3)()f x ax a x a ax x a =+--=-+,(1)若不等式()0f x <的解集为(-∞,3)(1-⋃,)+∞,则0a <,且1a -=,33a=-,解得1a =-; (2)不等式()0f x x a ++<,即22(2)20ax a x a +--<有两整数解, 所以(2)()0ax x a -+<;又a 为正整数,所以2a x a-<<, 由解集中必含0,两整数解为1-,0或0,1;当2a >时,整数解为2-,1-,0,不符合; 所以1a =或2a =.考点四:恒成立、有解与根分布问题21.函数()()20.8log 23f x x ax =-+在()1,-+∞有意义,则a 的取值范围( )A .(-B .5,⎡-⎣C .[]5,4--D .(],4-∞-【答案】B 【详解】由题意可知2230x ax -+>对任意的1x >-恒成立,令223u x ax =-+, 二次函数223u x ax =-+的图象开口向上,对称轴为直线4ax =. ①当14a≤-时,即当4a ≤-时,此时函数223u x ax =-+在()1,-+∞上单调递增, 所以,230a ++≥,解得5a ≥-,此时54a -≤≤-;②当14a>-时,即当4a >-时,则有2240a ∆=-<,解得a -<4a -<<综上所述,实数a 的取值范围是5,⎡-⎣. 故选:B.22.已知函数y =x 2+ax +3.(1)当x ∈R 时,y ≥a 恒成立,求a 的取值范围; (2)当a ∈[4,6]时,y ≥0恒成立,求x 的取值范围.解 (1)当x ∈R 时,x 2+ax +3-a ≥0恒成立,则Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,故a 的取值范围为{a |-6≤a ≤2}.(2)将y =xa +x 2+3看作关于a 的一次函数,当a ∈[4,6]时,y ≥0恒成立,只需在a =4和a =6时y ≥0即可,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0, 解得x ≤-3-6或x ≥-3+6,故x 的取值范围是{x |x ≤-3-6或x ≥-3+6}. 23.已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<< B .10a -<≤C .10a -≤<D .10a -≤≤【答案】B当0a =时,221=10ax ax +--<,对x R ∀∈恒成立;当0a ≠时,若2210ax ax +-<,对x R ∀∈恒成立,则必须有20(2)4(1)0a a a <⎧⎨-⨯-<⎩,解之得10a -<<, 综上,a 的取值范围为10a -<≤.故“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是10a -<≤,故选:B24.若命题“R x ∃∈,使得不等式22(3)0mx m x m +-+<”成立,则实数m 的取值集合是( ) A .(3,1)-- B .(,1)(3,)-∞+∞C .(,0]-∞D .(3,1)(1,3)--【答案】B命题“R x ∃∈,使得不等式22(3)0mx m x m +-+<”成立, 当0m =时,不等式为30x -<,显然有解,成立;当0m <时,开口向下,必然R x ∃∈,使得不等式22(3)0mx m x m +-+<成立,; 当0m >,0∆>即222(3)40m m -->,解得29m >或21m <,所以01m <<或3m >. 综上可得1m <或3m >. 故选:B .25.已知关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,则有( ) A .4m ≤- B .3m ≥- C .30m -≤< D .40m -≤<【答案】A因为关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,所以2min (4)m x x ≤-, 令224(2)4y x x x =-=--,(]0,3x ∈,所以当2x =时,24y x x =-取得最小值4-, 所以4m ≤- 故选:A26.若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________. 【答案】(52,+∞)【详解】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.27.2022年11月23日,贵州宣布最后9个深度贫困县退出贫困县序列,这不仅标志着贵州省66个贫困县实现整体脱贫,这也标志着国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,全国脱贫攻坚目标任务已经完成.在脱贫攻坚过程中,某地县乡村三级干部在帮扶走访中得知某贫困户的实际情况后,为他家量身定制了脱贫计划,政府无息贷款10万元给该农户种养羊,每万元可创造利润0.15万元.若进行技术指导,养羊的投资减少了x ()0x >万元,且每万元创造的利润变为原来的()10.25x +倍.现将养羊少投资的x 万元全部投资网店,进行农产品销售,则每万元创造的利润为()0.150.875a x -万元,其中0a >. (1)若进行技术指导后养羊的利润不低于原来养羊的利润,求x 的取值范围; (2)若网店销售的利润始终不高于技术指导后养羊的利润,求a 的最大值. 【答案】(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5. 【详解】解:(1)由题意,得()()0.1510.25100.1510x x +-≥⨯,整理得260x x -≤,解得06x ≤≤,又0x >,故06x <≤. (2)由题意知网店销售的利润为()0.150.875a x x -万元,技术指导后,养羊的利润为()()0.1510.2510x x +-万元,则()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,又010x <<,∴5101.58x a x≤++恒成立, 又51058x x +≥,当且仅当4x =时等号成立,∴0 6.5a <≤,即a 的最大值为6.5. 答:(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5.对点练习一、单选题1.不等式21560x x +->的解集为( )A .{1x x 或1}6x <- B .116x x ⎧⎫-<<⎨⎬⎩⎭ C .{1x x 或3}x <- D .{}32x x -<<【答案】B【分析】解一元二次不等式,首先确保二次项系数为正,两边同时乘1-,再利用十字相乘法,可得答案, 【详解】法一:原不等式即为26510x x --<,即()()6110x x +-<,解得116x -<<,故原不等式的解集为116x x ⎧⎫-<<⎨⎬⎩⎭.法二:当2x =时,不等式不成立,排除A ,C ;当1x =时,不等式不成立,排除D .故选:B .2.已知正数x y ,满足 4x y +=,则xy 的最大值( )A . 2B .4C . 6D .8【答案】B【分析】直接使用基本不等式进行求解即可. 【详解】因为正数x y ,满足 4x y +=,所以有424x y xy =+≥⇒≤,当且仅当2x y ==时取等号, 故选:B3.已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥ 【答案】A【分析】由二次函数与一元二次不等式关系,结合函数图象确定不等式解集. 【详解】由二次函数图象知:20ax bx c ++>有2<<1x -. 故选:A4.已知02x <<,则y =的最大值为( ) A .2B .4C .5D .6【答案】A【分析】由基本不等式求解即可【详解】因为02x <<,所以可得240x ->,则()22422x x y +-==,当且仅当224xx =-,即x =y =的最大值为2.故选:A .5.关于x 的不等式()210x a x a -++< 的解集中恰有1个整数,则实数a 的取值范围是( )A .(][)1,02,3-B .[)(]2,13,4--C .[)(]2130,-⋃,D .()()2134--⋃,, 【答案】C【分析】分类讨论一元二次不等式的解,根据解集中只有一个整数,即可求解.【详解】由()210x a x a -++<得()()10x x a --< ,若1a =,则不等式无解.若1a >,则不等式的解为1x a <<,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为2x =,则23a <≤.若1a <,则不等式的解为1<<a x ,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为0x =,则10a -≤<.综上,满足条件的a 的取值范围是[)(]2130,-⋃, 故选:C .6.已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是( )A .0a >B .不等式20ax cx b ++>的解集为{|22x x <<C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >【答案】B【分析】根据解集形式确定选项A 错误;化不等式为2430,x x --<即可判断选项B 正确;设2()f x ax bx c =++,则(1)0f >,判断选项C 错误;解不等式可判断选项D 错误.【详解】解:因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以a<0,所以选项A 错误; 由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,22x x x --<∴<所以选项B 正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误;不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误.故选:B二、多选题7.(多选)给出下列命题,其中正确的命题是( )A .a >b ⇒ac 2>bc 2B .a >|b |⇒a 2>b 2C .a >b ⇒a 3>b 3D .|a |>b ⇒a 2>b 2答案 BC解析 A 当c 2=0时不成立;B 一定成立;C 当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; D 当b <0时,不一定成立.如|2|>-3,但22<(-3)2.a b >,则222a b b >=,D 正确.故选:BD .8.对任意两个实数,a b ,定义{},,min ,,a ab a b b a b ≤⎧=⎨>⎩,若()22f x x =-,()2g x x =,下列关于函数()()(){}min ,F x f x g x =的说法正确的是( )A .函数()F x 是偶函数B .方程()0F x =有三个解C .函数()F x 在区间[1,1]-上单调递增D .函数()F x 有4个单调区间【答案】ABD【分析】结合题意作出函数()()(){}min ,F x f x g x =的图象,进而数形结合求解即可.【详解】解:根据函数()22f x x =-与()2g x x =,,画出函数()()(){}min ,F x f x g x =的图象,如图.由图象可知,函数()()(){}min ,F x f x g x =关于y 轴对称,所以A 项正确;函数()F x 的图象与x 轴有三个交点,所以方程()0F x =有三个解,所以B 项正确;函数()F x 在(,1]-∞-上单调递增,在[1,0]-上单调递减,在[0,1]上单调递增,在[1,)+∞上单调递减,所以C 项错误,D 项正确.故选:ABD三、填空题9.函数()1311y x x x =+>-的最小值是_____【答案】3+【分析】利用基本不等式可求得原函数的最小值.【详解】因为1x >,则10x ->,所以()1313331y x x =-++≥=-,当且仅当()1311x x -=-,因为1x >,即当x =.所以函数()1311y x x x =+>-的最小值是3.故答案为:3+10.已知[]0,2a ∀∈时,不等式()231102ax a x a +++-<恒成立,则x 的取值范围为__________. 【答案】()2,1--【分析】由题意构造函数关于a 的函数()f a 2312x x a x ⎛⎫=+-++ ⎪⎝⎭,则可得(0)0(2)0f f <⎧⎨<⎩,从而可求出x 的取值范围.【详解】由题意,因为当[]0,2a ∈,不等式()231102ax a x a +++-<恒成立, 可转化为关于a 的函数()f a 2312x x a x ⎛⎫=+-++ ⎪⎝⎭,则()0f a <对任意[]0,2a ∈恒成立, 则满足2(0)10(2)22310f x f x x x =+<⎧⎨=+-++<⎩,解得2<<1x --, 即x 的取值范围为()2,1--.故答案为:()2,1--四、解答题11.(1)已知一元二次不等式20x px q ++<的解集为11|23x x ⎧⎫-<<⎨⎬⎩⎭,求不等式210qx px ++>的解集; (2)若不等式2(7)0x mx m -++>在实数集R 上恒成立,求m 的范围.【答案】(1){|23}x x -<<;(2)22m -<+【分析】(1)先将不等式问题转化为方程问题求出,p q 的值,然后就可以解不等式了;(2)一元二次不等式恒成立,即考虑其判别式.【详解】(1)因为20x px q ++<的解集为11|23x x ⎧⎫-<<⎨⎬⎩⎭, 所以112x =-与213x =是方程20x px q ++=的两个实数根, 由根与系数的关系得11,3211,32p q ⎧-=-⎪⎪⎨⎛⎫⎪⨯-= ⎪⎪⎝⎭⎩解得1,61.6p q ⎧=⎪⎪⎨⎪=-⎪⎩不等式210qx px ++>, 即2111066x x -++>,整理得260x x --<,解得23x -<<.即不等式210qx px ++>的解集为{|23}x x -<<. (2)由题意可得,∆<0,即241(7)0-⨯⨯+<m m ,整理得24280m m --<,解得22m -<+12.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.【答案】(1)最大值为16米;(2)最小值为(824+平方米.【分析】(1)设草坪的宽为x 米,长为y 米,依题意列出不等关系,求解即可;(2)表示400(26)(4)(26)(4)S x y x x=++=++,利用均值不等式,即得最小值. 【详解】(1)设草坪的宽为x 米,长为y 米,由面积均为400平方米,得400y x =. 因为矩形草坪的长比宽至少大9米,所以4009x x +,所以294000x x +-,解得2516x -. 又0x >,所以016x <.所以宽的最大值为16米.(2)记整个的绿化面积为S 平方米,由题意可得400300(26)(4)(26)(4)8248()(824S x y x x x x=++=++=+++(平方米)当且仅当x =.所以整个绿化面积的最小值为(824+平方米.。
2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)一、单选题1.设集合{}12A x x =<<,{}B x x a =>,若A B ⊆,则a 的范围是( ) A .2a ≥ B .1a ≤C .1a ≥D .2a ≤【答案】B【分析】结合数轴分析即可.【详解】由数轴可得,若A B ⊆,则1a ≤. 故选:B.2.命题p :x ∃∈R ,210x bx ++≤是假命题,则实数b 的值可能是( )A .74-B .32-C .2D .52【答案】B【分析】根据特称命题与全称命题的真假可知:x ∀∈R ,210x bx ++>,利用判别式小于即可求解. 【详解】因为命题p :x ∃∈R ,210x bx ++≤是假命题,所以命题:x ∀∈R ,210x bx ++>是真命题,也即对x ∀∈R ,210x bx ++>恒成立, 则有240b ∆=-<,解得:22b -<<,根据选项的值,可判断选项B 符合, 故选:B . 3.函数 21x y x =-的图象大致为( )A .B .C .D .【答案】B【分析】本题首先根据判断函数的奇偶性排除A,D ,再根据01x <<,对应0y <,排除C ,进而选出正确答案B .【详解】由函数 21x y x =-, 可得1x ≠±,故函数的定义域为()()()1111∞∞--⋃-⋃+,,,, 又 ()()()2211xxf x f x x x --===---, 所以21x y x =-是偶函数, 其图象关于y 轴对称, 因此 A,D 错误; 当 01x <<时,221001x x y x -<=<-,, 所以C 错误.故选: B4.已知322323233,,log 322a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .a b c << B .b a c << C .c b a << D .c a b <<【答案】D【分析】构造指数函数,结合单调性分析即可.【详解】23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,3222333012a ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝<=⎭<∴,, ∴01a <<;32xy ⎛⎫= ⎪⎝⎭在R 上单调递增,23033222013b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝>=⎭<∴,, ∴1b >; 223332log log 123c ==-=- ∴c a b << 故选:D5.中国共产党第二十次全国代表大会于2022年10月16日在北京召开,这次会议是我们党带领全国人民全面建设社会主义现代化国家,向第二个百年奋斗目标进军新征程的重要时刻召开的一次十分重要的代表大会,相信中国共产党一定会继续带领中国人民实现经济发展和社会进步.假设在2022年以后,我国每年的GDP (国内生产总值)比上一年平均增加8%,那么最有可能实现GDP 翻两番的目标的年份为(参考数据:lg 20.3010=,lg30.4771=)( ) A .2032 B .2035 C .2038 D .2040【答案】D【分析】由题意,建立方程,根据对数运算性质,可得答案.【详解】设2022年我国GDP (国内生产总值)为a ,在2022年以后,每年的GDP (国内生产总值)比上一年平均增加8%,则经过n 年以后的GDP (国内生产总值)为()18%na +, 由题意,经过n 年以后的GDP (国内生产总值)实现翻两番的目标,则()18%4na a +=, 所以lg 420.301020.301027lg1.083lg32lg5lg 25n ⨯⨯===-20.301020.301020.30100.6020183lg 32(1lg 2)3lg 32lg 2230.477120.301020.0333⨯⨯⨯===≈--+-⨯+⨯-=,所以到2040年GDP 基本实现翻两番的目标. 故选:D.6.将函数sin y x =的图像C 向左平移6π个单位长度得到曲线1C ,然后再使曲线1C 上各点的横坐标变为原来的13得到曲线2C ,最后再把曲线2C 上各点的纵坐标变为原来的2倍得到曲线3C ,则曲线3C 对应的函数是( )A .2sin 36y x π⎛⎫=- ⎪⎝⎭B .2sin36y x π⎛⎫=- ⎪⎝⎭C .2sin 36y x π⎛⎫=+ ⎪⎝⎭D .2sin36y x π⎛⎫=+ ⎪⎝⎭【答案】C【分析】利用图像变换方式计算即可.【详解】由题得1C :sin 6y x π⎛⎫=+ ⎪⎝⎭,所以2C :sin 36y x π⎛⎫=+ ⎪⎝⎭,得到3C :2sin 36y x π⎛⎫=+ ⎪⎝⎭故选:C7.已知0x >,0y >,且满足20x y xy +-=,则92x y+的最大值为( ) A .9 B .6 C .4 D .1【答案】D【分析】由题可得211x y+=,利用基本不等式可得29x y +≥ ,进而即得.【详解】因为20x y xy +-=,0x >,0y >,所以211x y+=,所以()212222559y x x y x x y y x y ⎛⎫+=+ ⎪⎝+++≥⎭==, 当且仅当22y xx y=,即3x y ==时等号成立, 所以912x y≤+,即92x y +的最大值为1.故选:D.8.已知22log log 1a b +=且21922m m a b+≥-恒成立,则实数m 的取值范围为( ) A .(][),13,-∞-⋃∞ B .(][),31,-∞-⋃∞ C .[]1,3- D .[]3,1-【答案】C【分析】利用对数运算可得出2ab =且a 、b 均为正数,利用基本不等式求出192a b+的最小值,可得出关于实数m 的不等式,解之即可.【详解】因为()222log log log 1a b ab +==,则2ab =且a 、b 均为正数,由基本不等式可得1932a b +≥,当且仅当2192ab a b =⎧⎪⎨=⎪⎩时,即当136a b ⎧=⎪⎨⎪=⎩时,等号成立, 所以,192a b+的最小值为3,所以,223m m -≤,即2230m m -≤-,解得13m -≤≤. 故选:C.二、多选题9.函数()y f x =图像关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学据此推出以下结论,其中正确的是( )A .函数()y f x =的图像关于点(,)P a b 成中心对称的图形的充要条件是()y f x a b =+-为奇函数B .函数32()3f x x x =-的图像的对称中心为1,2C .函数()y f x =的图像关于x a =成轴对称的充要条件是函数()y f x a =-是偶函数D .函数32()|32|g x x x =-+的图像关于直线1x =对称 【答案】ABD【分析】根据函数奇偶性的定义,以及函数对称性的概念对选项进行逐一判断,即可得到结果. 【详解】对于A ,函数()y f x =的图像关于点(,)P a b 成中心对称的图形,则有()()2f a x f a x b ++-=函数()y f x a b =+-为奇函数,则有()()0f x a b f x a b -+-++-=, 即有()()2f a x f a x b ++-=所以函数(=)y f x 的图像关于点(,)P a b 成中心对称的图形的充要条件是 为()y f x a b =+-为奇函数,A 正确;对于B,32()3f x x x =-,则323(1)2(1)3(1)23f x x x x x ++=+-++=-因为33y x x =-为奇函数,结合A 选项可知函数32()=-3f x x x 关于点(1,2)-对称,B 正确; 对于C ,函数()y f x =的图像关于x a =成轴对称的充要条件是()()f a x f a x =-+, 即函数()y f x a =+是偶函数,因此C 不正确; 对于D ,32()|-3+2|g x x x =,则323(1)|(1)3(1)2||3|g x x x x x +=+-++=-, 则33(1)|3||3|(1)g x x x x x g x -+=-+=-=+, 所以32()|-3+2|g x x x =关于=1x 对称,D 正确 故选:ABD.10.下列结论中正确的是( )A .若一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则a b +的值是14-B .若集合*1N lg 2A x x ⎧⎫=∈≤⎨⎬⎩⎭∣,{}142x B x-=>∣,则集合A B ⋂的子集个数为4 C .函数()21f x x x =++的最小值为1 D .函数()21xf x =-与函数()f x 【答案】AB【分析】对于A :12-和13为方程220ax bx ++=的两根且0a <,即可得到方程组,解得即可判断A ;根据对数函数、指数函数的性质求出集合A 、B ,从而求出集合A B ⋂,即可判断B ;当1x <-时()0f x <,即可判断C ;求出两函数的定义域,化简函数解析式,即可判断D.【详解】解:对于A :因为一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,所以12-和13为方程220ax bx ++=的两根且0a <,所以112311223b a a⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得122a b =-⎧⎨=-⎩,所以14a b +=-,故A 正确;对于B:{{}**1N lg N 1,2,32A x x x x ⎧⎫=∈≤=∈<≤=⎨⎬⎩⎭∣∣0,{}{}12234222|2x x B x x x x --⎧⎫=>=>=>⎨⎬⎩⎭∣∣, 所以{}2,3A B ⋂=,即A B ⋂中含有2个元素,则A B ⋂的子集有224=个,故B 正确; 对于C :()21f x x x =++,当1x <-时10x +<,()0f x <,故C 错误; 对于D :()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 令()2210x -≥,解得x ∈R,所以函数()f x =R ,函数()21xf x =-的定义域为R ,虽然两函数的定义域相同,但是解析式不相同,故不是同一函数,即D 错误; 故选:AB11.已知函数()()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭.当()()122f x f x =时,12min 2x x π-=,012f π⎛⎫-= ⎪⎝⎭,则下列结论正确的是( ) A .6x π=是函数()f x 的一个零点B .函数()f x 的最小正周期为2π C .函数()1y f x =+的图象的一个对称中心为,03π⎛-⎫⎪⎝⎭D .()f x 的图象向右平移2π个单位长度可以得到函数2y x =的图象 【答案】AB【分析】根据三角函数的图象与性质,求得函数的解析式())6f x x π=-,再结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,函数()()f x x ωϕ+,可得()()min max f x f x == 因为()()122f x f x =,可得()()122f x f x =, 又由12min 2x x π-=,所以函数()f x 的最小正周期为2T π=,所以24Tπω==,所以()()4f x x ϕ+,又因为012f π⎛⎫-= ⎪⎝⎭()]012πϕ⨯-+=,即cos()13πϕ-+=,由2πϕ<,所以6πϕ=-,即())6f x x π=-,对于A 中,当6x π=时,可得()cos()062f ππ==,所以6x π=是函数()f x 的一个零点,所以A 正确;又由函数的最小正周期为2T π=,所以B 正确;由()1)16y f x x π=+=-+,所以对称中心的纵坐标为1,所以C 不正确;将函数())6f x x π=-的图象向右平移2π个单位长度,可得())]2))2666f x x x x πππππ=--=---,所以D 不正确. 故选:AB.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.54-=-,[]2.12=,已知函数()2e 11e 2x x f x =-+,()()g x f x =⎡⎤⎣⎦,则下列叙述正确的是( ) A .()g x 是偶函数B .()f x 在R 上是增函数C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{}1,0,1-【答案】BD【分析】依题意可得()2321e xf x =-+,再根据指数函数的性质判断函数的单调性与值域,距离判断B 、D ,再根据高斯函数的定义求出()g x 的解析式,即可判断A 、D.【详解】解:因为()()22e 2e 111321e 21e 21e 21122e2x x x x x x f x =-=-=--=-+-++++,定义域为R , 因为1e x y =+在定义域上单调递增,且e 11x y =+>,又2y x=-在()1,+∞上单调递增,所以()2321e xf x =-+在定义域R 上单调递增,故B 正确; 因为1e 1x +>,所以1011e x<<+,所以1101e x -<-<+,则2201e x -<-<+, 则1323221e 2x -<-<+,即()13,22f x ⎛⎫∈- ⎪⎝⎭,故C 错误;令()0f x =,即32021e x -=+,解得ln3x =-,所以当ln3x <-时()1,02f x ⎛⎫∈- ⎪⎝⎭,令()1f x =,即32121ex-=+,解得ln3x =, 所以当ln3ln3x -<<时()()0,1f x ∈,当ln 3x >时()31,2f x ⎛⎫∈ ⎪⎝⎭,所以()()1,ln 30,ln 3ln 31,ln 3x g x f x x x ≥⎧⎪⎡⎤==-≤<⎨⎣⎦⎪-<-⎩, 所以()g x 的值域是{}1,0,1-,故D 正确;显然()()55g g ≠-,即()g x 不是偶函数,故A 错误; 故选:BD三、填空题13.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,方程()f x k =有3个实数解,则k 的取值范围为___________.【答案】(4,3]--【分析】根据给定条件将方程()f x k =的实数解问题转化为函数()y f x =的图象与直线y k =的交点问题,再利用数形结合思想即可作答.【详解】方程()f x k =有3个实数解,等价于函数()y f x =的图象与直线y k =有3个公共点, 因当0x ≤时,()f x 在(,1]-∞-上单调递减,在[1,0]-上单调递增,(1)4,(0)3f f -=-=-, 当0x >时,()f x 单调递增,()f x 取一切实数,在同一坐标系内作出函数()y f x =的图象及直线y k =,如图:由图象可知,当43k -<≤-时,函数()y f x =的图象及直线y k =有3个公共点,方程()f x k =有3个解,所以k 的取值范围为(4,3]--. 故答案为:(4,3]--14.已知()1sin 503α︒-=,且27090α-︒<<-︒,则()sin 40α︒+=______【答案】##【分析】由4090(50)αα︒+=︒-︒-,应用诱导公式,结合已知角的范围及正弦值求cos(50)α︒-,即可得解.【详解】由题设,()sin 40sin[90(50)]cos(50)ααα︒+=︒-︒-=︒-,又27090α-︒<<-︒,即14050320α︒<︒-<︒,且()1sin 503α︒-=,所以14050180α︒<︒-<︒,故cos(50)3α︒-=-. 故答案为:3-15.关于x 不等式0ax b +<的解集为{}3x x >,则关于x 的不等式2045ax bx x +≥--的解集为______.【答案】()[)13,5-∞-,【分析】根据不等式的解集,可得方程的根与参数a 与零的大小关系,利用分式不等式的解法,结合穿根法,可得答案.【详解】由题意,可得方程0ax b +=的解为3x =,且a<0,由不等式2045ax bx x +≥--,等价于()()22450450ax b x x x x ⎧+--≥⎪⎨--≠⎪⎩,整理可得()()()()()510510ax b x x x x ⎧---+≤⎪⎨-+≠⎪⎩,解得()[),13,5-∞-,故答案为:()[)13,5-∞-,.16.已知函数f (x )=221122x a x x x -≥⎧⎪⎨-<⎪⎩(),(), 满足对任意实数12x x ≠,都有1212f x f x x x -<-()()0 成立,则实数a 的取值范围是( ) 【答案】138a ≤【分析】根据分段函数的单调性可得()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩ ,解不等式组即可. 【详解】根据题意可知,函数为减函数,所以()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,解得138a ≤.故答案为:138a ≤【点睛】本题考查了由分段函数的单调性求参数值,考查了基本知识掌握的情况,属于基础题.四、解答题17.在①A B B ⋃=;②“x A ∈“是“x B ∈”的充分不必要条件;③A B ⋂=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合{}{}121,13A x a x a B x x =-≤≤+=-≤≤. (1)当2a =时,求A B ⋃;()RAB(2)若_______,求实数a 的取值范围.【答案】(1){}15A B x x ⋃=-≤≤,{}35R A B x x ⋂=<≤ (2)答案见解析【分析】(1)代入2a =,然后根据交、并、补集进行计算.(2)选①,可知A B ⊆,分A =∅,A ≠∅计算;选②可知A B ,分A =∅,A ≠∅计算即可;选③,分A =∅,A ≠∅计算.【详解】(1)当2a =时,集合{}{}15,13A x x B x x =≤≤=-≤≤, 所以{}15A B x x ⋃=-≤≤;{}35R A B x x ⋂=<≤ (2)若选择①A B B ⋃=,则A B ⊆, 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ⊆,{|13}B x x =-≤≤,所以12111213a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得01a ≤≤,所以实数a 的取值范围是)([],10,1-∞-⋃.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ,{|13}B x x =-≤≤,12111213a a a a -≤+⎧⎪-≥-⎨⎪+<⎩或12111213a a a a -≤+⎧⎪->-⎨⎪+≤⎩解得01a ≤≤, 所以实数a 的取值范围是)([],10,1-∞-⋃. 若选择③,A B ⋂=∅,当A =∅时,121a a ->+解得2a <- 当A ≠∅又A B ⋂=∅则12113211a a a a -≤+⎧⎨->+<-⎩或解得2a <-所以实数a 的取值范围是()(),24,-∞-+∞.18.计算下列各式的值: (1)1222301322( 2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)7log 2log lg25lg47++ 【答案】(1)12; (2)112.【分析】(1)根据指数幂的运算求解;(2)根据对数的定义及运算求解. 【详解】(1)12232231222301322( 2.5)34833331222-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+⎢⎥⎢⎥ ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦ 2339199112242442--+-+⎛⎫=== ⎪⎝⎭. (2)7log 2log lg25lg47++()31111log 27lg 2542322222=+⨯+=⨯++=.19.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭同时满足下列两个条件中的两个:①函数()f x 的最大值为2;②函数()f x 图像的相邻两条对称轴之间的距离为2π. (1)求出()f x 的解析式;(2)求方程()10f x +=在区间[],ππ-上所有解的和.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)23π.【分析】(1)由条件可得2A =,最小正周期T π=,由公式可得2ω=,得出答案.(2)由()10f x +=,即得到1sin 262x π⎛⎫+=- ⎪⎝⎭,解出满足条件的所有x 值,从而得到答案.【详解】(1)由函数()f x 的最大值为2,则2A = 由函数()f x 图像的相邻两条对称轴之间的距离为2π,则最小正周期T π=,由2T ππω==,可得2ω= 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为()10f x +=,所以1sin 262x π⎛⎫+=- ⎪⎝⎭,所以()2266x k k πππ+=-+∈Z 或()72266x k k πππ+=+∈Z , 解得()6x k k ππ=-+∈Z 或()2x k k ππ=+∈Z .又因为[],x ππ∈-,所以x 的取值为6π-,56π,2π-,2π, 故方程()10f x +=在区间[],ππ-上所有解得和为23π. 20.某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【答案】(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果; (2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型. 【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得:当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x .当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+.此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭12502001050=-=.此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.21.已知函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数. (1)求a 的值,判断1()()()F x f x f x =+的奇偶性,并加以证明; (2)解不等式 log (1)log (2)a a x x +<-.【答案】(1)3a =,是偶函数,证明见解析;(2)1|12x x ⎧⎫-<<⎨⎬⎩⎭.【解析】(1)根据2221,0,1a a a a --=>≠,求出a 即可; (2)根据对数函数的单调性解不等式,注意考虑真数恒为正数. 【详解】(1)函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数, 所以2221,0,1a a a a --=>≠,解得:3a =, 所以()3x f x =, 1()()33()x x F x f x f x -=+=+,定义域为R ,是偶函数,证明如下: ()33()x x F x F x --=+=所以,1()()()F x f x f x =+是定义在R 上的偶函数; (2)解不等式 log (1)log (2)a a x x +<-,即解不等式 33log (1)log (2)x x +<- 所以012x x <+<-,解得112x -<< 即不等式的解集为1|12x x ⎧⎫-<<⎨⎬⎩⎭【点睛】此题考查根据指数函数定义辨析求解参数的值和函数奇偶性的判断,利用对数函数的单调性解对数型不等式,注意考虑真数为正数.22.已知函数2()2x x b cf x b ⋅-=+,1()log a x g x x b -=+(0a >且1a ≠),()g x 的定义域关于原点对称,(0)0f =.(1)求b 的值,判断函数()g x 的奇偶性并说明理由; (2)求函数()f x 的值域;(3)若关于x 的方程2[()](1)()20m f x m f x ---=有解,求实数m 的取值范围. 【答案】(1)1b =,()g x 为奇函数 (2)()1,1-(3)(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭【分析】(1)根据()g x 的定义域关于原点对称可得1b =,再求解可得()()0g x g x -+=判断即可; (2)根据指数函数的范围逐步分析即可;(3)参变分离,令()()21,3t f x =-∈,将题意转换为求()()222tm t t =---在()1,3t ∈上的值域,再根据基本不等式,结合分式函数的范围求解即可. 【详解】(1)由题意,1()log ax g x x b-=+的定义域10x x b ->+,即()()10x x b -+>的解集关于原点对称,根据二次函数的性质可得1x =与x b =-关于原点对称,故1b =. 此时1()log 1ax g x x -=+,定义域关于原点对称,11()log log 11a a x x g x x x --+-==-+-,因为1111()()log log log log 101111aa a a x x x x g x g x x x x x -+-+⎛⎫-+=+=⨯== ⎪+-+-⎝⎭. 故()()g x g x -=-,()g x 为奇函数.(2)由(1)2()21x x c f x -=+,又(0)0f =,故002121c -=+,解得1c =,故212()12121x x x f x -==-++,因为211x +>,故20221x<<+,故211121x -<-<+,即()f x 的值域为()1,1- (3)由(2)()f x 的值域为()1,1-,故关于x 的方程2[()](1)()20m f x m f x ---=有解,即()()()22f x m f x f x -=-在()()()1,00,1f x ∈-⋃上有解.令()()()21,22,3t f x =-∈⋃,即求()()212223tm t t t t==---+-在()()1,22,3t ∈⋃上的值域即可.因为2333t t +-≥=,当且仅当t =时取等号,且21301+-=,223333+-=,故)2233,00,3t t ⎛⎫⎡+-∈⋃ ⎪⎣⎝⎭,故13,223m t t∞∞⎛⎛⎫=∈-⋃+ ⎪ ⎝⎭⎝+-,即m的值域为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭,即实数m 的取值范围为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭.。
高一语文必修一期末备考知识点复习(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一语文必修一期末备考知识点复习一. 通假字1.《烛之武退秦师》夫晋,何厌之有厌,通“餍”,满足。
2024年高一语文期末知识点总结语文是一门重要的学科,它不仅仅是一门学科,更是一种文化的体现和传承。
通过学习语文,我们可以研究文化,提高表达能力,培养人文素养。
为了帮助大家更好地复习语文期末考试,接下来我将对____年高一语文期末考试的知识点进行总结。
1.文言文知识点文言文是语言文化的重要组成部分,掌握文言文知识点对于学习语文是非常重要的。
(1) 文言文基本语法:了解文言文的词序、成句、修辞等基本规律。
(2) 文言文阅读:掌握文言文的阅读技巧,理解古代文化。
(3) 文言文作文:学习文言文的写作技巧,培养文言文的写作能力。
2.现代文知识点现代文是我们日常生活中使用的语言,掌握现代文的知识点对于提高我们的表达能力非常重要。
(1) 修辞手法:了解修辞手法的种类和运用,提高写作的表达能力。
(2) 文章阅读:通过阅读现代文文章,了解不同类型的文章结构和写作技巧。
(3) 写作技巧:掌握论述的方法和写作的逻辑思维,提高写作的能力。
3.古代诗词知识点古代诗词是中华文化的瑰宝,学习古代诗词的知识点对于提高我们的文学素养非常重要。
(1) 古代诗词基本知识:了解古代诗词的基本形式、格律和韵律。
(2) 古代诗词阅读:通过阅读古代诗词,理解作者的意境和修养。
(3) 古代诗词鉴赏:学习古代诗词的鉴赏方法,提高欣赏古代诗词的能力。
4.修辞手法知识点修辞手法是语言运用的技巧,掌握修辞手法对于提高我们的表达能力和写作技巧非常重要。
(1) 比喻:了解比喻的种类和运用,提高写作的形象感染力。
(2) 拟人:学习拟人的方法和技巧,提高描述事物的生动性。
(3) 夸张:了解夸张的表达方式,提高表达的效果和感染力。
5.文学常识知识点文学常识是学习语文的基础,了解文学常识对于理解文学作品和提高文学素养非常重要。
(1) 文学流派:了解不同文学流派的特点和代表作品,提高对文学作品的理解和鉴赏。
(2) 文学史:了解中国文学的发展历程和不同时期的代表作品,提高对文学史的了解和理解。
人教版高中语文高一上册期末复习——修辞方法强化训练一.选择题(共20小题)1.(2023春•浙江月考)下列对句子运用的修辞手法判断不正确的一项是()A.人生如梦,一尊还酹江月。
(比喻)B.安能摧眉折腰事权贵,使我不得开心颜?(反问)C.千岩万转路不定,迷花倚石忽已暝。
(夸张)D.无边落木萧萧下,不尽长江滚滚来。
(借代)【考点】修辞方法.【答案】D【分析】本题考查学生对修辞手法使用的辨析能力。
答题时要读懂题干涉及的句子,判断修辞手法的运用。
【解答】D.“借代”错误。
应为对偶,“不尽”对“无边”,“长江”对“落木”,“滚滚来”对“萧萧下”。
故选D。
【点评】修辞手法包括:比喻、拟人、夸张、双关、用典、设问、反问、借代、对偶、通感、顶真、呼告、对比等。
2.(2023•玉环市校级开学)下面选项中,修辞赏析正确的一项是()A.现在的故乡仿佛商场里的橱窗里的模特身上的时装,看起来也美,但不在活物身上。
(该句运用了比喻的手法,将“现在的故乡模样”比作“橱窗里模特身上的时装”,生动地写出了现在故乡的繁华。
)B.那年冬天,我去贝加尔湖旅游,零下四十度,呼出的气瞬间凝成一团白雾,湖畔只有冷风,只我一人。
(该句运用了夸张的手法,一个“瞬间”将寒冷的程度加以突出强调,表达了对贝加尔湖天气的抱怨。
)C.麦子的香味和栀子花香不同,婉约而不张狂,提示着人们该收割了。
(该句运用了拟人的手法,说麦香“婉约而不张狂”,是将麦粒香味拟人化,生动形象,富有情趣,突出了麦香的淡雅。
)D.秋风阵阵地吹,折扇形的黄叶落得满地都是。
风把地上的黄叶吹起来,我们拍手叫道:“一群黄蝴蝶飞起来了!”(该句运用了暗喻的手法,把黄叶比作“黄蝴蝶”,生动形象地写出了黄叶在空中飞舞的特点。
)【考点】修辞方法.【答案】C【分析】本题考查正确理解和使用修辞方法。
能力等级:B。
正确理解修辞手法主要是对各种修辞手法的辨识,使用修辞手法主要是在表达中运用常见的几种修辞手法。
高一选修一历史期末复习题历史是一门研究人类社会过去发展的学科,它不仅能够让我们了解过去,更能启发我们思考未来。
在高一选修一的历史学习中,我们接触了丰富的历史知识,以下是一些期末复习题,帮助同学们巩固所学内容。
一、选择题1. 秦始皇统一六国后,实行了哪一项重要的政治制度?A. 分封制B. 郡县制C. 世袭制D. 禅让制2. 下列哪一位不是中国历史上的女皇帝?A. 武则天B. 慈禧太后C. 吕后D. 萧太后3. 以下哪个事件标志着中国近代史的开始?A. 鸦片战争B. 辛亥革命C. 五四运动D. 抗日战争二、填空题1. 唐朝是中国历史上一个强盛的朝代,其开国皇帝是_________。
2. 明朝时期,中国对外贸易的一个重要港口是_________。
3. 中国封建社会中,科举制度开始于_________朝代。
三、简答题1. 简述辛亥革命的历史意义。
2. 描述一下明朝时期海禁政策的主要内容及其影响。
四、论述题1. 论述中国封建社会中“重农抑商”政策的产生背景及其对后世的影响。
2. 分析清朝晚期闭关锁国政策对中国近代化进程的影响。
五、材料分析题阅读以下材料,回答问题:材料一:《史记·秦始皇本纪》记载:“始皇二十六年,天下一统,分天下以为三十六郡。
”材料二:《资治通鉴》记载:“隋文帝开皇三年,废郡,置州。
”问题:根据材料一和材料二,分析中国古代地方行政制度的演变。
参考答案一、选择题1. B. 郡县制2. B. 慈禧太后3. A. 鸦片战争二、填空题1. 李渊2. 泉州3. 隋朝三、简答题1. 辛亥革命是中国历史上第一次成功的资产阶级民主革命,它结束了中国两千多年的封建君主专制制度,建立了亚洲第一个民主共和国,为中国的现代化进程开辟了道路。
2. 明朝海禁政策限制了民间的海上贸易,加强了对海上贸易的控制,这在一定程度上保护了国内的经济安全,但也限制了中国与外界的交流,影响了中国的经济和文化发展。
四、论述题1. “重农抑商”政策源于中国古代农业社会的经济基础,它强调农业的重要性,限制商业的发展。
高一化学上册期末复习知识点1.高一化学上册期末复习知识点篇一特殊试剂的存放和取用10例1.Na、K:隔绝空气;防氧化,保存在煤油中(或液态烷烃中),(Li用石蜡密封保存)。
用镊子取,玻片上切,滤纸吸煤油,剩余部分随即放人煤油中。
2.白磷:保存在水中,防氧化,放冷暗处。
镊子取,立即放入水中用长柄小刀切取,滤纸吸干水分。
3.液Br2:有毒易挥发,盛于磨口的细口瓶中,并用水封。
瓶盖严密。
4.I2:易升华,且具有强烈刺激性气味,应保存在用蜡封好的瓶中,放置低温处。
5.浓HNO3,AgNO3:见光易分解,应保存在棕色瓶中,放在低温避光处。
6.固体烧碱:易潮解,应用易于密封的干燥大口瓶保存。
瓶口用橡胶塞塞严或用塑料盖盖紧。
7.NH3·H2O:易挥发,应密封放低温处。
8.C6H6、、C6H5—CH3、CH3CH2OH、CH3CH2OCH2CH3:易挥发、易燃,密封存放低温处,并远离火源。
9.Fe2+盐溶液、H2SO3及其盐溶液、氢硫酸及其盐溶液:因易被空气氧化,不宜长期放置,应现用现配。
10.卤水、石灰水、银氨溶液、Cu(OH)2悬浊液等,都要随配随用,不能长时间放置。
2.高一化学上册期末复习知识点篇二1、硫酸根离子的检验:bacl2+na2so4=baso4↓+2nacl2、碳酸根离子的检验:cacl2+na2co3=caco3↓+2nacl3、碳酸钠与盐酸反应:na2co3+2hcl=2nacl+h2o+co2↑4、木炭还原氧化铜:2cuo+c高温2cu+co2↑5、铁片与硫酸铜溶液反应:fe+cuso4=feso4+cu6、氯化钙与碳酸钠溶液反应:cacl2+na2co3=caco3↓+2n acl7、钠在空气中燃烧:2na+o2△na2o2钠与氧气反应:4na+o2=2na2o8、过氧化钠与水反应:2na2o2+2h2o=4naoh+o2↑9、过氧化钠与二氧化碳反应:2na2o2+2co2=2na2co3+o210、钠与水反应:2na+2h2o=2naoh+h2↑11、铁与水蒸气反应:3fe+4h2o(g)=f3o4+4h2↑12、铝与氢氧化钠溶液反应:2al+2naoh+2h2o=2naalo2+3h2↑13、氧化钙与水反应:cao+h2o=ca(oh)214、氧化铁与盐酸反应:fe2o3+6hcl=2fecl3+3h2o15、氧化铝与盐酸反应:al2o3+6hcl=2alcl3+3h2o3.高一化学上册期末复习知识点篇三物质的量的单位摩尔1、物质的量(n)是表示含有一定数目粒子的集体的物理量。
高一地理必修1期末复习
第一章:行星地球
第一节:宇宙中的地球
1、天体类型包括哪些?
2、天体系统(相互吸引、相互绕转)按级别可分为哪些类?
3、八大行星从里到外的排列顺序?地球位于哪两个行星之间?小行星带位
于哪两个行星之间?
4、八大行星的运动特征?☆
5、按质量和体积,八大行星可以分为哪三类?
6、地球存在生命的条件是哪四点?☆
第二节:太阳对地球的影响
1、太阳大气的成分(氢和氦),太阳辐射的概念?
2、太阳辐射对地球的影响?
3、太阳大气的分层(光球、色球、日冕),及每个层的特点?
4、黑子和耀斑的比较?
5、太阳活动对地球的影响?(四点)☆
第三节
1、地球自转的方向、周期、速度?
2、地球公转的方向、周期、速度?(记得“左倾左冬,右倾右冬”)
3、太阳直射点的移动(春分、夏至、秋分、冬至)及周期(一个回归年)?
看上课画的那幅移动图☆
4、晨昏线的判读(看画的那八幅图)
5、地方时、区时的计算☆
地方时:经度相差1度,地方时相差四分钟,经度每隔15度,时间相差1小时。
区时:相邻区时相差1小时。
6、日界线:国际日期变更线180度和0时界限☆
0时界限向东(西)至180度为新(旧)的日期范围
7、地转偏向力的方向(北半球,南半球和赤道)及应用
8、昼夜长短的变化情况(夏至、冬至和春秋分)☆
9、全球正午太阳高度的变化情况(夏至、冬至和春秋分)及太阳高度角的计
算公式H=☆
10、四季和五带的划分(如果热带或者黄赤交角的范围变大或变小,那么温带
或寒带的变化情况怎样?)
第四节
1、横波和纵波的比较?☆
2、地球内部两个界面(古登堡和莫霍界面)波速发生什么样的变化?
3、地球内部圈层结构(P22 图1.26)☆
4、地球外部圈层(即生物圈、大气圈、水圈和岩石圈的位置)
第二章:地球上的大气
1、大气的受热过程?(太阳暖地面、地面暖大气、大气还地面)☆
2、热力环流过程(P30 图2.3)☆
3、风的形成和三个力之间的关系(水平气压梯度力、地转偏向力、摩擦力),注:近地面的风三个力都有,风向与等压线有一定夹角,高空的风没有摩擦力,与等压面平行
第二节:气压带和风带
1、地球上的气压带和风带的形成(P34 图2.10)及气压带的移动☆
2、北半球冬夏气压中心的分布(P37 图2.13和2.14结合我给大家抄的那张
表格)
3、全球11种气候的分布、成因和特点(发的那张纸)☆
第三节:常见的天气系统
1、冷锋、暖锋和准静止锋的比较☆
2、气旋与反气旋的比较
第四节:全球气候变化
1、气候变化的影响(看我抄给大家的为准)
2、应对气候变化的措施(看我抄给大家的为准)
第三章:地球上的水
1、河流的补给来源
2、水循环的类型(三类)和环节☆
3、水循环的意义
4、寒流和暖流的比较☆
5、P57 图3.5世界表层洋流的分布☆
6、洋流对地理环境的影响?5点☆
7、我国水资源的特点
8、水资源与人类社会(三句话)
9、当前水资源的利用现状(分别从质量和数量上来讲,存在资源性缺水和水质性缺水)
10、开源和节流的措施☆
第四章:地表形态的塑造
1、内力作用的表现(12个字)
2、地壳运动的分类
3、外力作用的表现?(风化、侵蚀、搬运、堆积的形式及每种对应的地貌)☆
4、内外力作用的影响(内力:高低不平,外力:趋向平缓)
5、背斜、向斜的比较☆
6、全球六大板块的位置
7、断块山形成的地貌(水平、垂直)
8、火山的地貌(熔岩高原、火山),火山的分类,火山的利弊
9、山地地区的交通运输方式、布局原则、延伸方向。
10、河流侵蚀类型(溯源侵蚀,下蚀,侧蚀)☆
11、河谷发育的两个时期☆
12、河流的堆积地貌(三类)☆
13、三大岩石圈的物质循环(我给大家抄的)☆
第五章:自然地理环境的整体性和差异性
1、地理要素相互作用产生的两种新功能
2、自然地理环境具有统一演化的过程,牵一发而动全身
3、陆地地带性分异规律(三类)☆
4、非地带性分异规律☆
注:以上题目全部要背诵,☆为重点内容。