2012年人教版(秋季使用)3.1 从算式到方程
- 格式:ppt
- 大小:1.00 MB
- 文档页数:52
3.1.1从算术到方程一、教学目标:(1)通过对多个实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.(2)在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.(3)使学生经历把实际问题抽象为数学方程的过程,体会方程是刻画现实世界的一种有效的数学模型,体会建立数学模型的思想.教学重点、难点:使学生理解问题情境,探究情境中包含的数量关系,最终用方程来描述和刻画事物间的相等关系.教学方法:启发和讲授二、教学过程:1、小学时我们曾见过如同2x=4, 3x+1=4, 5x-7=8这样的式子什么样的式子我们称之为方程?我们把含有末知数的等式称之为方程判断下列式子是不是方程,正确打“√”,错误打“x ”.(1) 1+2=3( ) (4) x+2>8 ( )(2) 1+2x=4 ( ) (5) x+y=2 ( )(3)x+1-3 ( )引出课题:3.1.1 从算术到方程2、问题1:世界上最大的动物是蓝鲸.一只蓝鲸重124吨,比一头大象体重的25倍少1吨.问这头大象重几吨?问题2:汽车匀速行驶途径王家庄、青山、翠湖、秀水四地(如图)。
翠湖距青山50千米,距秀水70千米。
请问王家庄到翠湖的路程有多远?小结:列算式:只用已知数,表示计算程序,依据是问题中的数量关系。
列方程:既可用已知数,也可用未知数,表示相等关系,依据是问题中的等量关系。
3、数学应用例1根据下列条件列出方程:(1)X的两倍与3的差是5;(2)某数的1/3与15的差的3倍等于2;(3)比某数的5倍大2 的数是17;(4)某数的3/4与它的1/2的和为5.提示:做上面的题时请注意怎样设未知数,怎样建立等量关系,特别注意关键字“大、小、多、少”,“和、差、倍、分”的含义.例2 :用一根长24cm的铁丝围成一个长方形,使它长是宽的1.5倍,长方形的长、宽各应是多少?4、练习:(1)、根据下列问题,设未知数,列出方程:①、环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?②、甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?③、一个梯形的下底比上底多2㎝,高是5㎝,面积是40㎝2,求上底.一元一次方程的概念只含有一个未知数(元)x,未知数x的指数都是1(次)方程叫做一元一次方程。
新人教版七年级数学上册3.1《从算式到方程》教学设计一. 教材分析新人教版七年级数学上册3.1《从算式到方程》是学生在学习了整数和分数的基础上,开始接触代数的知识。
本节课主要让学生了解方程的概念,学会将实际问题转化为方程,从而解决实际问题。
教材通过丰富的实例,引导学生认识方程,理解方程的含义,并掌握方程的解法。
二. 学情分析七年级的学生已经具备了一定的数学基础,对整数和分数有了深入的理解。
但是,对于代数知识,尤其是方程,可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中发现方程,理解方程,并掌握解方程的方法。
三. 教学目标1.让学生了解方程的概念,理解方程的含义。
2.培养学生将实际问题转化为方程,并解决实际问题的能力。
3.引导学生掌握方程的解法,提高学生的数学素养。
四. 教学重难点1.重点:方程的概念,方程的解法。
2.难点:将实际问题转化为方程,并解决实际问题。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生认识方程,理解方程。
2.启发式教学法:在教学过程中,引导学生主动思考,发现规律,掌握方法。
3.合作学习法:鼓励学生之间相互讨论,共同解决问题。
六. 教学准备1.准备相关实例,用于引导学生认识方程。
2.准备练习题,用于巩固学生对方程的理解。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生认识方程。
例如:小明有2个苹果,小红的苹果数是小明的3倍,请问小红有多少个苹果?让学生尝试用数学语言表述这个问题,从而引出方程的概念。
2.呈现(15分钟)呈现一组实际问题,让学生尝试用方程来解决。
例如:甲车和乙车同时出发,甲车每小时行驶60公里,乙车每小时行驶80公里,请问甲车追上乙车需要多少时间?引导学生发现实际问题中存在的等量关系,并将其转化为方程。
3.操练(15分钟)让学生分组讨论,尝试解决呈现的实际问题。
教师巡回指导,解答学生的疑问。
在这个环节中,重点让学生掌握方程的解法,并能够将实际问题转化为方程。
从算式到方程课型:新授课【教学习目标】一、知识与技能1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。
3、培养学生获取信息,分析问题,处理问题的能力。
二、过程与方法通过实际问题,感受数学与生活的联系。
三、情感态度与价值观培养学生热爱数学热爱生活的乐观人生态度。
【教学方法】探索式教学法教师准备教学用课件。
【教学过程】一、新课引入教师提出教科书第79页的问题,同时出现下图:问题2:你会用算术方法求出王家庄到翠湖的距离吗?()50701510702301513+⨯--=-()50701310502301513+⨯-+=-问题3:能否用方程的知识来解决这个问题呢?可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)当学生列出不同算式时,应让他们说明每个式子的含义) 教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:如果设王家庄到翠湖的路程为x 千米,那么王家庄距青山 千米,王家庄距秀水 千米.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?教师引导学生寻找相等关系,列出方程.教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:507035x x -+=依据“王家庄至青山路段的车速=青山至秀水路段的车速” 可列方程:50507032x -+= 给出方程的概念,介绍等式、等式的左边、等式的右边等概念.含有未知数的等式叫方程.归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z 等字母);(2)根据问题中的相等关系,列出方程对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?如果直接设元, 还可列方程:70605x += 如果设王家庄到青山的路程为x 千米,那么可以列方程: 12060;335x x x +== 依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:552126⨯=,再列出方程536x +=60二、巩固练习 1、例题P/802、练习(补充):(1) 列式表示:① 比a 小9的数; ② x 的2倍与3的和;③ 5与y 的差的一半; ④ a 与b 的7倍的和.(2)根据下列条件,列出关于x 的方程:(1) 12与x 的差等于x 的2倍;(2)x 的三分之一与5的和等于6.三、课堂小结可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:1、 本节课我们学了什么知识?教师引导学生设未知数,并用含未知数的字母表示有关的数量 谈谈你的收获和体会2、你有什么收获?说明方程解决许多实际问题的工具。