当前位置:文档之家› 钢铁渣的资源化利用

钢铁渣的资源化利用

钢铁渣的资源化利用
钢铁渣的资源化利用

钢铁渣的资源化利用

矿业工程学院

矿加 10级

姓名:王海龙

学号:120103707008

钢铁渣的资源化利用

摘要:开展钢铁渣资源化利用,对于减少钢铁渣弃埋用地和防

止环境污染,增加钢铁企业利润,促进我国钢铁工业的持续高速发展具有重要意义.通过对国内钢铁渣资源化综合利用的现状分析,将其与国外相比较,从而确定我国钢铁企业,在钢铁渣资源化利用方面,应该努力发展的方向。

关键词:钢铁渣水泥水淬

我国是钢铁工业大国,2011年的钢产量已经达到了68326.5吨.在钢铁生产过程中,要产生大量的冶金渣.因此,如何有效地综合利用这些冶金渣,减少弃埋用地和防止环境污染,增加企业利润,对于进一步促进我国钢铁工业的持续高速发展具有重要义.本文就冶金渣的资源化利用现状经行讨论。

1 钢铁渣资源化利用现状

1.1 高炉渣

高炉渣主要成分是C a O、S i O2和A l2O3,类似于水泥成分。水淬高炉渣是玻璃质材质,受到碱液作用,急剧水化,可作水泥混和材料,是水泥生产中不可缺少的原料。高炉渣水泥与普通水泥比,石灰量少,生产过程节约资源,节能,C2O排放量少。

日本和德国高炉渣利用率达到95%以上;加拿大、英国、印度高炉渣部分水淬后作水泥混合材和磨细矿渣粉作混凝土掺合料,大部分重矿渣作道路材料和工程骨料;北美地区大多数高炉渣用作工程骨料。

国内外比较成熟的高炉渣处理工艺主要有水淬粒化法(生产水渣)、滚筒法(生产膨珠)、离心机法(生产膨胀矿渣)、热泼法(生产矿渣碎石)几种。由于高炉水渣具有很高水硬胶凝性,做水泥混合材用于水泥生产能起到增加水泥产量,降低水泥成本,改善水泥安全性等优点,所以用高炉矿渣作膨珠和膨胀矿渣、矿渣碎石等方面用途越来越少,而用于水泥、水泥添加剂方面的需求量在明显增加,这就使高炉渣水淬粒化成为目前国内外钢铁企业普遍采用的高炉渣处理工艺。

高炉渣水淬粒化方法有转鼓过滤法、底滤式冲渣法、滚筒法、印巴法(I N B A)等,生产的水渣产品利用途径主要有两个:一是销往水泥厂生产矿渣水泥;二是生产矿渣粉代替部分水泥配制高性

能混凝土。第一种途径是目前绝大部分钢铁企业都在采用的做法,第二种途径是近几年受水泥行业对水渣需求量限制而开发的水渣利用新途径,也是国家目前积极推广的一项水渣利用途径。

1.2 钢渣

钢渣主要成分是C a O、S i O2和F e O,f C a O含量比高炉渣多。矿物相以硅酸二钙为主,因固溶P2O5,所以是稳定相,几乎无反

应特性。钢渣遇水后,水溶液呈强碱性,可作为高炉水淬渣的

碱性刺激剂来利用,也是水硬性材质。但钢渣最大危害成分为

f C a O,其吸水后体积膨胀,使钢渣在应用方面受到了很大的限制。消除钢渣中的f C a O是钢渣大量利用的关键技术。。

国外经济发达国家对钢渣的处理是以钢渣体积稳定性作为

前提条件的,钢渣经稳定处理后需经过严格的稳定性检验,检验合格才可用于建材使用。国外比较典型的钢渣稳定性处理工艺有德国的罐式钢渣加压热焖自解工艺、日本住友的自然陈化箱处理工艺等。

我国由于对钢渣资源化利用途径的不确定性,造成国内钢铁企业钢渣处理的工艺方法种类繁多,有冷弃法、热泼法、盘泼水冷法(I S C法)、熔渣水淬粒化法、罐式热闷法、池式热闷法、水淬——池闷法等。钢渣处理工艺的确定取决于钢渣的利用途径,钢渣处理工艺是钢渣实现资源化的前提条件,在钢渣资源化利用初期,国内钢铁企业多采用冷弃法,国内渣山多是由此工艺而形成,随着钢渣利用途径向建材方向的转移,钢渣自解热焖处理工艺已为大多数钢铁企业所采用。钢渣利用技术介绍如下:

1.2.1钢渣余热自解热闷技术

制约我国钢渣综合利用的关键问题是钢渣中游离氧化钙(f —C a O)和游离氧化镁(f—M g O)遇水体积膨胀,在使用时会造成建筑物、制品、道路开裂。近几年来中冶建筑研究总院有限公司研发出第三代钢渣余热自解热闷处理工艺技术和设备,成功的解决了钢渣的不稳定问题。该技术是将液态钢渣倾翻在热闷装置内,盖上盖自动化喷水。水遇热渣产生蒸汽,消解钢渣中游离氧化钙和游离氧化镁,钢渣粉化后变稳定。钢渣中废钢充分回收,尾渣可100%用于生产建筑材料、建材制品和道路材料,实现钢渣“零排放”。该技术已在新余中冶环保资源开发有限公司、九江中冶环保资源开发有限公司、鞍钢鲅鱼圈新炼钢、本溪钢铁(集团)

有限责任公司、唐山国丰钢铁有限公司、首钢唐钢铁公司(曹妃甸)、日照钢铁公司、福建三明钢铁集团)有限公司、天铁河北物华循环资源有限公司、韶关钢铁有限公司等企业推广应用。其中包括:新余中冶环保资源开发有限公司钢渣热闷生产线(116万t /a)、鞍山钢铁有限公司鲅鱼圈新炼钢钢渣热闷生产线(80万t

/a)、首钢京唐钢铁公司钢渣热闷生产线(96万t/a)、唐山国丰钢铁公司钢渣热闷生产线(160万t/a)、日照钢铁公司钢渣热闷

生产线(170万t/a)、九江中冶环保资源开发有限公司钢渣热闷生产线(50万t/a)。

1.2.2 水淬法

液态高温渣在流出、下降过程中,被压力水分割、击碎、速凝,在水幕中进行粒化。水淬工艺会因炼钢设备工艺布置、排渣特点不同而不同。如盘泼一水淬法,滚筒一水淬法等。盘泼法优点是:用水强制快速冷却,处理时间短,生产能力大;处理过程粉尘少;钢渣粒度小,可减少破碎、筛分的工作量,便于金属料回收;钢渣游离氧化钙含量较低,改善了钢渣的稳定性,有利

于综合利用。缺点是:设备投资比较大;处理过程蒸汽直接排放量较大,对厂房和设备寿命有一定影响;操作工艺比较复杂;对钢渣的流动性有一定要求,粘度高、流动性差的钢渣不能用该方法处理。目前宝钢股份公司使用浅盘法。滚筒水淬法是将熔渣以适宜流速进入滚筒,在离心力和喷淋水作用下,熔渣被水激散并凝成小块而被收集。在滚筒内同时完成冷凝、破碎及渣、钢分离。宝钢经过多年探索,将1995年从俄罗斯拉乌尔钢铁公司引进的滚筒技术进行了多项改进,成功应用于宝钢、马钢等企业。改进后技术兼具工艺简化、流程短、设备布局紧凑、占地小等优点。水淬法目前是我国采用较多的方法之一。该类方法优点是,处理量大、效率较高,处理后的钢渣游离氧化钙较低、粒化较为均匀且粒度分布较为理想,自由氧化钙消解也较为理想,渣中铁较少氧化,多以二价铁或金属铁存在,利于后续磁选分离。缺点是,对渣流动性要求较高,因冷却速度快,凝渣的相析出经历淬冷的非平衡演化完成,因此其结构内应力较大,化学活性相对较高,并存在时效相变的潜在机制。

1.2.3风碎法(钢渣风碎粒化技术)

将出炉熔渣倒入中间罐,运到风淬装置处进行处理。处理时,熔渣流被高速喷出气流打碎并呈抛物线运动,最终落入水池并被捕集。用于风碎的气体可以是空气、惰性气体或高压蒸汽等,被加热的气体可通过另外热交换装置进行热量回收。该法处理获得的渣粒粒径较小、粒径分布范围较窄,此法处理的渣冷凝速度最快,自由氧化钙消解也最为彻底,各晶相分布均匀,晶粒非常细小。颗粒硬度较大,相对其他处理方式,凝渣的结构内应力最大,往往会在一周内或稍长时间出现时效相变与结构重组,重组后的主晶相主要是硅酸二钙,且晶粒变大。用该法处理转炉熔渣,如采用不同的气体做风碎介质,得到的凝渣微粒在性能上存在较大差异。如以空气或纯氧为介质,熔渣氧化剧烈,凝渣中铁以三价铁为主,后续铁组分基本无法磁选回收,因此铁损较大。如以氮气为介质,则凝渣中铁以二价铁为主,并有少量金属铁与之共存,经时效相变后可磁选部分回收金属铁。采用风碎工艺处理时,同样要求钢渣有良好的流动性与低粘度。日本福山制铁所最早开发并采用风碎法,回收预热。我国马钢1988年开发出同类技术,而

后在成都钢铁厂(1991年)开始初步应用,以氮气为载气,马钢则于2007年投入运行,以压缩空气为载气。

1.2.4钢渣粉技术

为了实现钢渣的高价值资源化利用,中冶建筑研究总院有限公司和中国京冶工程技术有限公司研发了钢渣成分与胶凝性能关系,在国际上首次提出钢渣是“过烧硅酸盐水泥熟料”。把钢渣磨细至比表面积在400m/k g~2上,可等量取代10%~30%的水泥配制混凝土,可提高混凝土的后期强度、提高耐磨性和抗腐蚀性、降低水化热等。经北京、杭州、涟源等地生产使用取得了较好的效果。由中冶建筑研究总院负责制定的国家标准《用于水泥和混凝土中的钢渣粉》G B/T20491—2006已发布实施。中国京冶工程技术有限公司从2003年开始调研、论证试验,认为卧式辊磨是钢渣粉最佳粉磨设备。当产品比表面积为400m/k g

以上时,吨产品的粉磨电耗为29k W h,解决了钢渣粉磨电耗高难以推广的瓶颈问题。已引进卧式辊磨建设示范生产线,推动钢渣粉的生产应用。

目前,我国经济建设高速、稳步发展,拉动了建材行业和建筑行业的发展,钢铁渣作为一种宝贵的建材资源已被世界所公认,国内利用钢铁渣生产建材产品的技术也已成熟,因此把钢铁渣资源化利用方向定位在生产建筑材料、建材制品和工程材料是现阶段钢铁企业实现钢铁渣资源化利用的明智选择。

2 结论

冶金渣的资源化利用对于减少弃埋用地、防止环境污染以及促进我国钢铁工业的持续高速发展具有重要意义.目前的冶金渣资源化利用主要集中在矿渣水泥生产、冶金返回料利用以及道路和建筑用材料等方面,所生产制品的附加值较低,而且冶金渣的物理化学潜热没有得到充分利用.未来冶金渣高效资源化利用的发展方向在于开发附加值较高的产品.在水泥生产过程中,使用激发活性冶金渣以及利用脱硅渣生产缓释性钾肥是未来冶金渣高效资源化利用的重要发展方向.

3 参考文献

[1]李志然.安钢钢铁渣资源化利用途径探讨.河南冶金,

2O O7.15(3).

[2]邓琪.王琪.黄启飞.汪群慧.层次分析法评价钢渣资源化-利用途径的研究串.金属矿山,2010(1).

[3]许亚华.日本钢铁造资源化利用技木.中目环保产

业,1996.12.

[4]杨景玲.朱桂林.孙树杉.我国钢铁渣资源化利用现状及发展趋势.冶金环境保护,2009(6).

[5]孙树杉.朱桂林.加快钢铁渣资源化利用是钢铁企业的一项紧迫任务.冶金环境保护,2007(2)

铜冶炼水淬渣中铜的资源化利用研究

铜冶炼水淬渣中铜的资源化利用研究 本文采用湿法冶金技术对我国铜冶炼过程中产生的大量水淬渣进行铜的资 源化利用研究,研究采用氧化氨浸法对铜冶炼水淬渣中铜进行浸取,并考察浸取 时间、浸出温度、过硫酸铵用量、氨水浓度、渣样粒度大小、搅拌转速、液固比对铜浸出率的影响,得出铜浸出的最佳条件。浸出后的溶液与硫化铵反应,制取硫化铜,并研究硫化铵用量、反应温度、机械搅拌速度、反应时间对浸出液中铜回收率及硫化铜纯度的影响,得出影响浸出液中铜回收率及硫化铜纯度的最佳条件。 具体实验结果如下:(1)取10g渣样,当控制温度为50℃,浸取时间为120min,粒径大小为100目,转速为400r/min,(NH4)2S2O8用量为渣样的0.7倍,NH3·H2O 浓度为10mol/L时考察液固比(m/m)对铜冶炼水淬渣中铜、锌浸出率的影响。实验结果表明:最佳液固比为4:1(m/m),此时,Cu浸出率为49.1%,Zn浸出率为 0.32%。 (2)取10g渣样,当控制液固比(m/m)为4:1,浸取时间为120min,粒径大小为100目,转速为400r/min,用量为渣样的0.7倍,NH3·H2O浓度为10mol/L时考察温度对铜冶炼水淬渣中铜、锌浸出率的影响。实验结果表明:最佳温度为35℃,此时,Cu的浸出率为53.5%,Zn的浸出率为0.15%。 (3)取10g渣样,当控制液固比(m/m)为4:1,温度为35℃,粒径大小为100目,转速为400r/min,用量为渣样的0.7倍,NH3·H2O浓度为10mol/L时考察浸取时间对铜冶炼水淬渣中铜、锌浸出率的影响。实验结果表明:最佳浸取时间为180min,此时,Cu的浸出率为58.3%,Zn的浸出率为0.23%。 (4)取10g渣样,当控制液固比(m/m)为4:1,温度为35℃,浸取时间为180min,转速为400r/min,用量为渣样的0.7倍,NH3·H2O浓度为10mol/L时考察粒径大

工业固体废弃物处理 电石渣

工业固体废弃物(电石渣)读书总结学院:化学与化工学院 专业及班级:无机 121 班 学生姓名:李雪 学号:1208110438 指导老师:杨林 2014 年12 月30 日

工业固体废弃物(电石渣)读书总结 一、电石渣的定义 电石渣是指电石水解解获取乙炔气后的以氢氧化钙为主要成分的废渣。乙炔是基本有机合成工业的重要原料之一,以电石(CaC2)为原料,加水生产乙炔的工艺简单成熟,至今已有60余年工业史,目前在我国仍占较大比重。1t电石加水可生成300多kg乙炔气,同时生成10t含固量约12%的工业废液,俗称电石渣浆。 二、电石渣的一般处理方法 电石废渣的处置有填海、填沟有规则堆放、自然沉降后出售;电石废渣的利用可代替石灰石制水泥、生产生石灰用作电石原料、生产化工产品、生产建筑材料及用于环境治理等虽然电石废渣的利用方法很多,但各有优缺点,每种方法的处理效果均不尽人意,各地区、各厂在制订处理方案时,应综合考虑各自的条件,诸如各厂的生产能力、废电石渣的排出量,周围自然环境,经济效益等。 从目前国内诸多生产厂家的实际情况看,大多采用自然沉降法,将电石渣浆经重力沉降分离、机械脱水,清液循环利用;电石废渣用汽车运送至低凹的山谷或海边,填沟填海。由于电石废渣及渗滤液呈强碱性,含有硫化物、磷化物等有毒有害物质。根据国家标准《危险废物鉴别标准》,电石废渣应属Ⅱ类一般工业固体废物;根据标准《化工废渣填埋场设计规定》,对Ⅱ类一般工业固体废(物)渣,应采取防渗措施并作填埋处置。 有效利用电石废渣,不但能带来良好的经济效益、环境效益和社会效益,而且能实现变废为宝。但是要真正作到综合利用尚需作大量的研究开发工作。 三、关于电石渣的相关文献阅读的读书总结 1、王欣荣《浅谈电石渣的综合利用》 [J],中国氯碱,2003,08:(37-39) 通过阅读这篇文章,我的理解是:电石渣是电石水化后的残渣,其主要成分是氢氧化钙及少量的无机和有机杂质(如硫化物、磷化物、氧化铁、氧化镁、二氧化硅等),电石渣颗粒非常细微,具有较强的保水性,即使是长期堆放的陈渣,其含水量也高达40%以上。电石渣呈强碱性,其渣液pH值为12以上,因而常给环境造成严重污染。由于数量大,运输成本高,且会造成二次污染,在石灰石资源丰富的地区处理难度大,常就地堆放,占用土地,污染环境。

浅谈电石渣在脱硫系统中的应用

浅谈电石渣在脱硫系统中的应用 新疆华电昌吉热电二期有限责任公司袁晖李志刚赵峰 会对环境造成严重污染,因此烟气必须经过脱硫装置处[摘要]火力发电厂烟气中的尾气SO 2 理达标后方可排放大气,在石灰石—湿法脱硫装置中,利用新疆中泰化学股份有限公司(以下简称“中泰化学”)大量推挤废料电石渣代替传统脱硫剂石灰石,不仅脱硫后烟气各项指标达到国家标准,而且有效利用“以废治废”手法,来达到资源循环利用和节约公司脱硫装置运行成本的目的。 [关键词]电石渣;脱硫剂;经济运行 1 引言 中电投远达环保工程有限公司成立于1999年2月,注册资本7500万元,注册地点重庆市。主要股东有中国电力投资集团公司、重庆九龙电力股份有限公司和中冶集团重庆钢铁设计研究总院。主营业务范围为烟气脱硫、脱硝、污水处理、核电环保等环境污染治理和节能产品的研发、生产、销售。远达公司是全国骨干环保企业,公司持有环保工程专业承包一级资质、环境工程专项工程设计甲级资质、环境污染治理甲级资质、环境污染治理设施运营甲级资质,拥有对外承包工程经营资格和自营进出口权,通过了ISO9001质量管理体系、ISO14001环境管理体系和GBT28001职业健康安全管理体系认证。中电投远达环保工程有限公司承建新疆华电昌吉热电二期2×125MW机组烟气脱硫改造项目,为新疆昌吉地区蓝天工程“蓝天更蓝、绿水更清”而服务。 2、脱硫工艺流程简述 本脱硫系统主要由烟气系统,吸收塔系统,脱硫剂制浆系统,脱水系统,公用系统,事故浆液箱系统、废水系统及其电气控制系统组成。 除尘后锅炉烟气通过引风机进行主烟道,后经过入口烟气挡板,经增压风机(简称BUF)升压后,通过出口烟气挡板进行吸收塔,烟气与吸收塔循环泵打出喷淋浆液进行逆流接触反应,处理后烟气通过除雾器收集烟气带水后排放大气中。 电石渣系统设备包括电石渣抓斗机、浓浆泵、旋转过滤除污机及电石渣旋流器供浆泵、电石渣旋流器、电石渣浆液箱及电石渣浆液供给泵。电石渣运至现场堆放后,用铲车把电石渣放至电石渣储存地坑,用电石渣抓斗机将电石渣送至电石渣配浆池的冲槽,在冲槽上方和配浆池入口有冲洗电石渣的喷嘴,浓浆泵运行后浆液把电石渣冲至配浆池,配制好的浆液通过电石渣浓浆泵至旋转过滤除污机,经过除污后的浆液流入电石渣浆液沉清池,通过电石渣旋流器供浆泵至旋流器,旋流器溢流口出来的浓度低的电石渣浆液自流入电石渣浆液箱,最后通过电石渣供浆泵送至吸收塔,一路直接输送至吸收塔内部反应区处,另一路输送至循环

中和渣资源化利用研究进展

Sustainable Development 可持续发展, 2020, 10(4), 501-506 Published Online September 2020 in Hans. https://www.doczj.com/doc/d56912852.html,/journal/sd https://https://www.doczj.com/doc/d56912852.html,/10.12677/sd.2020.104063 中和渣资源化利用研究进展 张艺婷1,2,尹少华1,2*,李浩宇1,2,朱镕1,2,张利波1,2* 1昆明理工大学冶金与能源工程学院,云南昆明 2昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,云南昆明 收稿日期:2020年5月31日;录用日期:2020年8月17日;发布日期:2020年8月24日 摘要 中和渣通常含有锌、铜、镍、钴、锗等有价元素,是综合回收重要的二次资源。目前国内中和渣处理方法大致有三类:1) 通过火法处理回收有价元素;2) 通过湿法处理回收有价元素;3) 替代水泥在建筑领域或作为辅剂进行直接利用。本文总结归纳了以中和渣为研究对象,针对不同有价金属综合回收的工艺流程及过程参数等,为冶金企业的工艺选择提供参考依据。 关键词 中和渣,二次资源,有价元素,资源化利用 Research Progress on Resource Utilization of Neutralization Slag Yiting Zhang1,2, Shaohua Yin1,2*, Haoyu Li1,2, Rong Zhu1,2, Libo Zhang1,2* 1Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming Yunnan 2State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming Yunnan Received: May 31st, 2020; accepted: Aug. 17th, 2020; published: Aug. 24th, 2020 Abstract Neutralization slag usually contains some valuable elements, such as zinc, copper, nickel, cobalt and germanium, and it is an important secondary resource for comprehensive recovery. At present, *通讯作者。

冶金固体废弃物资源化处理与综合利用

冶金过程固体废弃物资源化 班级:冶金11-A2 学号:120113202047 姓名:匡德强

冶金固体废弃物资源化处理与综合利用 匡德强 辽宁科技大学,冶金工程,E-mail:917409473@https://www.doczj.com/doc/d56912852.html, 摘要:随着我国冶金工业的快速发展,固体废弃物处理及利用日益得到重视。本文从绿色生态建设、提高回收利用率、综合利用研究等方面入手,较为全面地阐述了高炉渣、钢渣、尾矿,污泥等四个具有代表性的冶金固体废弃物处理及利用方面的进展,并结合各大钢厂在固体废弃物处理及利用方面的经验,系统地总结了固体废弃物的处理利用方法。文章最后还对冶金固体废弃物处理利用的发展前景进行了展望。 关键词:冶金,固体废弃物,资源化 引言 据统计,目前我国冶金工业固体废弃物年产生量约 4.3亿吨,综合利用率为18.03%。其中工业尾矿产生量为2.84亿吨,利用率1.5%;高炉渣产生量7557万吨,利用率65%;钢渣产生量3819万吨,利用率10%;化铁炉渣60万吨,利用率65%;尘泥1765万吨,利用率98.5%;自备电厂粉煤灰和炉渣494万吨,利用率59%;铁合金渣 90万吨,利用率90%;工业垃圾436万吨,利用率45%。针对我国冶金工业固体废弃物的现状,资源化处理与综合利用是相关企业和机构必须重视和加大力度进行研究突破的课题。本文就冶金固体废弃物资源化处理与综合利用进行了深刻探索。 1 高炉渣的资源化处理和综合利用 我国的大部分高炉渣接近于中性渣(R=0.99~1.08),高碱性高炉渣数量较少,由于矿石的品味和炼生铁的种类不同,高炉渣的化学成分波动范围很大。 1.1利用高炉水渣生产水泥 高炉渣的综合利用技术在我国已经有几十年的历史,到2000年高炉渣的利用率已经达到90%以上,其中90%冲成水渣,大部分用作水泥的混合原料,我国部分钢铁企业的高炉水渣成分如上表 1 所示。 由表1可知,高炉水渣的主要化学成分为CaO 和SiO2,约占其渣总量的70% ~80% 。由于水冷(急冷)条件抑制了钙铝黄长石(AS),镁黄长石(M) ,钙长石(C) 和硅酸二钙(S) 等矿相的形成,进而形成具有潜在水硬胶凝性能的玻璃体矿相结构,这些矿相在水泥熟料、石灰和石膏等激发剂的作用下,可以显示出水硬胶凝性能并产生强度,因此,水渣是生产水泥的良好原料。目前,使用高炉水渣研制开发出的矿渣水泥主要有下面几种:( 1 ) 矿渣硅酸盐水泥.矿渣硅酸盐水泥是用硅酸盐水泥熟料和颗粒状高炉水渣加3%~

电石渣的综合利用

信息文献检索作业 余晓川化学化工学院2008级7班 一、查出下列词语和人物 1、超铀元素《中国大百科全书》笔画检索P3-336 2、快化学《中国大百科全书》笔画检索P13-182 3、通识教育《中国大百科全书》笔画检索P22-270 4、元认知《中国大百科全书》笔画检索P27-307 5、回归分析《中国大百科全书》笔画检索P10-341 6、阿伏伽德罗《中国大百科全书》笔画检索P1-47 7、道尔顿《中国大百科全书》笔画检索P4-436 8、哈伯《中国大百科全书》笔画检索P8-511 二、查出下列化合物的有关信息 1、干酪素的理化性质及用途 《中国大百科全书》笔画检索P7-129 2、丝肽的理化性质及用途 《生物科技词典》拼音检索 P611 3、食品中维生素C的测定 三、查下列事实与数据 1、《国家中长期教育改革和发展规划纲要(2010-2020)》颁布的时间和内容 2、《中华人民共和国教育法》颁布的时间和内容 《中国大百科全书》笔画检索29-322 3、2008年我国主要城市工业废水排放及处理情况

《中国统计年鉴》2008资源与环境11-21(2007)P398 4、2008年化学原料及化学制品制造业主要经济效益指标 《中华人民共和国年鉴2008》P605 论文 电石渣的综合利用 余晓川西华师范大学化学化工学院2008级7班【摘要】乙炔生产中,每消耗1t电石约产生1.2t电石渣,电石渣的治理是解决电石渣对环境污染的一项重要工作。重点介绍了电石渣在建材、环境保护和化工产品生产几个方面的应用,对今后的发展和存在的问题进行了讨论。 【关键词】电石渣;综合利用;环境保护 Comprehensive Utilization for Carbide Slag Wei Shao-dong Ke Guo-liang (East China Engineering Science and Technology Co.,Ltd.,Hefei 230024,China) Abstract:In the production of the acetylene, consumption 1 ton calcium carbide will produce 1.2 ton carbide slag. The treatment of the carbide slag is one important work to the environment pollutes. This paper is summarized for comprehensive utilization of carbide slag, such as building materials, environment protection, the production of chemical products, etc., as well as existent problems and development are discussed. Keywords:carbide slag, comprehensive utilization, environment protection 前言 电石是有机合成工业的重要原料,主要用于生产乙炔,进一步生产聚氯乙烯(PVC)、醋酸乙烯(V Ac)、氯丁橡胶(CR)、三氯乙烯(TCE)、四氯乙烯(PCE)、双氰胺(DICY)等化工产品及金属加工(切割焊接等)。电石渣是电石生产乙炔时产生的废渣,主要成分除Ca(OH)2外,还含有Fe2O3、SiO2、Al2O3等金属的氧化物、氢氧化物及少量有机物,其主要化学组成见表1。

铜冶炼行业现行政策条件 2020版

铜的冶炼仍以火法冶炼为主,我国铜产量约占世界铜总产量的85%。为进一步加快铜产业转型升级,促进铜冶炼行业技术进步,提升资源综合利用率和节能环保水平,推动铜冶炼行业高质量发展,根据国家有关法律法规和产业政策,经商有关部门,工业和信息化部制定了《铜冶炼行业规范条件》,下面我们一起来看一下2019年铜冶炼行业规范条件主要有哪些内容。 2019年铜冶炼行业规范条件 为推进铜冶炼行业供给侧结构性改革,促进行业技术进步,推动铜冶炼行业高质量发展,制定本规范条件。 本规范条件适用于已建成投产利用铜精矿和含铜二次资源的铜冶炼企业(不包含单独含铜危险废物处置企业),是促进行业技术进步和规范发展的引导性文件,不具有行政审批的前置性和强制性。 一、企业布局 (一)铜冶炼项目须符合国家及地方产业政策、土地利用总体规划、主体功能区规划、环保及节能法律法规和政策、安全生产法律法规和政策、行业发展规划等要求。 二、质量、工艺和装备 (二)铜冶炼企业应建立、实施并保持满足GB/T19001要求的质量管理体系,并鼓励通过质量管理体系第三方认证。阳极铜符合行业标准(YS/T1083),阴极铜符合国家标准(GB/T467),其他产品质量符合国家或行业相应标准。

(三)利用铜精矿的铜冶炼企业,应采用生产效率高、工艺先进、能耗低、环保达标、资源综合利用效果好、安全可靠的闪速熔炼和富氧强化熔池熔炼等先进工艺(如旋浮铜熔炼、合成炉熔炼、富氧底吹、富氧侧吹、富氧顶吹、白银炉熔炼等工艺),不得采用国家明令禁止或淘汰的设备、工艺。鼓励有条件的企业对现有传统转炉吹炼工艺进行升级改造,提升无组织烟气排放管控水平。须配置烟气制酸、资源综合利用、节能等设施。烟气制酸须采用稀酸洗涤净化、双转双吸等先进工艺,烟气净化严禁采用水洗或热浓酸洗涤工艺,硫酸尾气需设治理设施。配备的冶炼尾气余热回收、收尘工艺及设备须满足国家《节约能源法》《清洁生产促进法》《环境保护法》等要求。 (四)利用含铜二次资源的铜冶炼企业,须采用先进的节能环保、清洁生产工艺和设备。企业应强化含铜二次资源的预处理,最大限度进行除杂、分类。禁止采用化学法以及无烟气治理设施的焚烧工艺和装备。冶炼工艺须采用NGL炉、旋转顶吹炉、倾动式精炼炉、富氧顶吹炉、富氧底吹炉、100吨以上改进型阳极炉(反射炉)等生产效率高、能耗低、资源综合利用效果好、环保达标、安全可靠的先进生产工艺及装备。同时,应根据原料状况配套二噁英排放控制设施或净化设施,须使用预热空气和余热锅炉等设备。禁止使用直接燃煤的反射炉熔炼含铜二次资源。禁止使用无烟气治理措施的冶炼工艺及设备。 (五)鼓励有条件的企业开展智能工厂建设。建立铜冶炼大数据平台,广泛应用自动化智能装备,逐步建立企业资源计划系统(ERP)、数据采集与监视控制系统(SCADA)、制造执行系统(MES)、产品数据管理系统

东北大学冶金资源综合利用和环境保护期末试题

一.简答题 1.国家工信部对钢铁企业的定位是什么? 答:定位如下: (1)化解产能过剩将促进僵尸企业退出,为行业未来发展腾挪出更多市场空间。(2)企业仍有较大经营压力 (3)钢材出口难度加大,钢材出口总量仍将维持在较高水平,但受贸易摩擦压力及国际大宗原材料价格下降影响,出口阻力较大。 (4)在积极化解钢铁行业过剩产能的基础上,加快推进钢铁行业转型升级,推进钢铁行业转型升级的重点是加快智能制造发展,智能制造是制造业未来发展的重大趋势,也是当前钢铁行业提质增效的重要着力点,要做好规范企业动态管理、智能制造试点示范、钢结构建筑推广应用等重点工作。 2.冶金固体废弃物资源化再利用包括哪些内容 答:冶金固体废弃物资源化再利用包括以下内容: (1)冶金过程固体废物来源、分类及特点 (2)冶金过程固体废物的危害 (3)冶金过程固体废物治理现状及存在的问题 (4)冶金过程固体废物理治理的基本政策 (5)有关冶金过程固体废物法规的建立 (6)冶金行业固体废物治理的思考 (7)重有色金属冶金固体废物处理与利用:重有色金属冶金固体废物污染概述、重有色冶金工业固体废物处理技术、冶金铜渣的处理与资源化利用、冶金铅锌渣的处理与资源化利用、冶金络渣的处理与资源化、冶金砷渣的处理与资源化利用(8)铝工业固体废物处理与利用:铝工业固体废物的来源、赤泥的处理及资源化利用、铝工业电解废料的控制处理与资源化利用 (9)稀有金属冶金固体废物治理与利用 (10)钢铁工业固体废物治理与利用:冶金钢渣的资源化处理和综合利用(发展方向、节能环保)、冶金尘泥的资源化处理与综合利用、冶金固体废弃物资源化处理与综合利用的发展趋势 3.清洁生产的意义及目的是什么? 答:清洁生产是指将综合预防的环境保护策略持续应用于生产过程和产品中,以期减少对人类和环境的风险,从本质上来说,是对生产过程与产品采取整体预防的环境策略,其目的是为了减少或者消除它们对人类及环境的可能危害,同时充分满足人类需要,使社会经济效益最大化的一种生产模式。 清洁生产的意义诸如:清洁生产是实现可持续发展战略的需要,是控制环境污染的有效手段,可大大减轻末端治理的负担,是提高企业市场竞争力的最佳途径。 4.高炉、转炉、精炼、轧钢生产过程中的原料、产品和副产品有哪些? 答:高炉的原料:焦炭,熔剂,铁矿石。产品主要为生铁。副产品有高炉煤气和炉渣 转炉原料为铁水,氧气,废钢,相关合金元素。产品,钢水,钢锭或连铸坯。

电石渣综合利用水泥生产线项目可行性研究报告

电石渣综合利用水泥生产线项目可行性研究报告

目录 第1章总论 (1) 第2章市场分析 (21) 第3章原料与燃料 (28) 第4章生产工艺 (36) 第5章总图运输 (60) 第6章电气及生产过程自动化 (64) 第7章建筑工程 (73) 第8章给水、排水 (81) 第9章采暖、通风及空调 (88) 第10章节约与合理利用能源 (90) 第11章环境保护 (94) 第12章劳动安全与工业卫生 (106) 第13章消防 (111) 第14章组织机构及劳动定员 (116) 第15章建设进度安排设想 (119) 第16章投资估算 (121) 第17章技术经济分析与评价 (127) 附件 1.水泥生产线总平面布置图 2.水泥生产线工艺流程图 3.水泥生产线水量平衡图

第1章总论 1.1项目概况和背景 1.1.1项目概况 项目名称:XXXXXXXX能源化工有限公司电石渣综合利用2×2300t/d熟料 2×100万吨水泥/年生产线建设工程 建设地点:内蒙古XXXX市蒙西工业园区 建设单位:XXXX市XXXX能源化工有限公司 法人代表:XXXX 1.1.2企业概况 XXXX市XXXX能源化工有限公司是由内蒙古XXXX有限责任公司在XXXX 市组建的新公司,内蒙古XXXX有限责任公司是在原内蒙古黄河化工集团公司的基础上,经国家经贸委批准以债转股的方式于2002年3月26日组建的有限责任公司,是乌海市大化工基地的骨干企业,也是内蒙古自治区60户重点企业之一,有着多年氯碱、聚氯乙烯生产经验,和有着强大的技术队伍。注册资金为18615万元。经营范围PVC树脂、烧碱、电石、液氯、盐酸、编织袋;机械加工修理、非标件制作、白灰生产。主要产品PVC树脂、烧碱。公司下设氯碱厂、树脂厂、电气厂、机修厂,共有职工400人,专业技术人员123人,经过多年的化工生产技术改造,培养和锻炼了一批技术过硬、经验丰富的专业技术力量。目前企业经营正常,效益良好。 XXXX有限责任公司坐落在内蒙古西部著名的资源性工业城市乌海市,

电石渣

电石渣是电石与水反应生成乙炔气体的过程中产生的工业废弃物,含有大量的氧化钙和少量的硅、铁、铝、钙、镁及碳渣,其溶液中一般还含有硫化物、磷化物、镁、乙炔等其它杂质,可广泛用于材料生产,如水泥、陶瓷、涂料等。 碱性的电石渣具有黏度高、粒度细、易流淌等物理特性,传统利用方式不仅基建费用高、占地面积大,而且滴、淌、粘、挂,严重污染周围环境。由我公司设计研发的电石渣资源化利用系统成功解决了这一制约电石渣综合利用的难题。 电石渣资源化利用—高温煅烧制水泥工艺: 脱水后的电石渣经搅拌、均浆、除杂等预处理工艺后进入储料仓中缓存;然后通过正压给料、泵送等工艺环节将电石渣送入水泥窑尾,经水泥窑高温煅烧,从而达到利用电石渣中Ca、Si等成分制备水泥的目的。 特点: 1、制成的水泥品质高; 2、节约了大量的石灰石资源; 3、全套工艺密闭、洁净、环保,无二次污染; 4、系统自动化程度高,全程可实现远程调控、实时监控,运行成本低。

电石水解获取乙炔气后的以氢氧化钙为主要成分的废渣。乙炔(C2H2)是基本有机合成工业的重要原料之一,以电石(CaC2)为原料,加水(湿法)生产乙炔的工艺简单成熟,至今已有60余年工业史,目前在我国仍占较大比重。1t电石加水可生成300多kg乙炔气,同时生成10 t含固量约12%的工业废液,俗称电石渣浆。它的处置一直令生产厂头痛。 乙炔是生产onclick="g('聚氯乙烯');">聚氯乙烯树脂(PVC)的主要原料,按生产经验,每生产1 t PVC产品耗用电石1.5~1.6t,同时每t电石产生1.2 t电石渣(干基),电石渣含水量按90%计,那么每生产1 t PVC产品,排出电石渣浆约20t。由此可见,电石渣浆的产生量大大超过了PVC的产量。大多数PVC生产厂家将电石渣浆经重力沉降分离后,上清液循环利用;电石渣经进一步脱水,其含水率仍达40%~50%,呈浆糊状,在运输途中易渗漏污染路面,长期堆积不但占用大量土地,而且对土地有严重的侵蚀作用。要想从根本上解决问题,只有在技术上谋求突破,寻求新的治理工艺,综合利用,化害为利,变废为宝。 在电石乙炔法生产'聚氯乙烯'产品时,电石(CaC2)加水生成乙炔和氢氧化钙,其主要化学反应式如下: CaC2+2H2O C2H2+ Ca(OH)2+127.3 KJ/克分子 在电石和水反应同时,电石中杂质也参与反应生成氢氧化钙和其他气体: CaO+ H2O Ca(OH)2 CaS+ 2H2O Ca(OH)2 +H2S↑ Ca3N2+ 6H2O 3Ca(OH)2 +2NH3↑ Ca3P2+6H2O 3Ca(OH)2 +2PH3↑ Ca2Si+4H2O 2Ca(OH)2 + SiH4↑ Ca3As2+ 6H2O 3Ca(OH)2 + 2AsH3↑ Ca(OH)2在水中溶解度小,固体Ca(OH)2微粒逐步从溶液中析出。整个体系由真溶液向胶体溶液、粗分散体系过渡,微粒子逐步合并、聚结、沉淀,在沉淀过程中又因粒子互相碰撞、挤压,促使颗粒进一步结聚、长大、失水,沉淀物逐步变稠,俗称电石渣浆。此外电石中不参加反应的固体杂质如矽铁、焦炭等也混杂在渣浆中。副反应产生的气体部分进入乙炔气体,部分溶解在渣浆中。 电石渣浆为灰褐色浑浊液体。在静置后分成三部分,澄清液、固体沉积层及中间胶体过渡层。三者比例随静置时间及环境条件变化呈可逆变换。固体沉积物即是我们常说的电石废渣。 干电石废渣中主要含Ca(OH)2 ,可以作消石灰的代用品,广泛用在建筑、化工、冶金、农业等行业。但当电石废渣含水量>50%时,其形态呈厚

高砷硫酸渣处理技术方案

高砷硫酸渣处理技术方案 一、概述: 含砷高的硫酸渣是一种属于危险的固体废物,若不把它作资源化的处理,处理起来很困难,处理不当若造成砷流失,后果不堪设想。一般来说,含砷高的硫酸渣,其铁品位亦较高,因此若回收高砷硫酸渣的铁,必须除砷以达到铁精矿对砷的要求。经过多次试验,是能够把含砷1%以上降至0.1%以下,符合铁精矿对砷的要求。根据试验结果,提出硫酸渣脱砷的工艺路线,是否做放大试验,有待考虑确定。 二、原料来源与成分: 由于硫铁矿日益减少,含砷高的硫铁矿用于制酸亦越来越多,由于制酸的工艺不同,为了保护触媒不被中毒,很多厂家采用固砷焙烧工艺,即是把砷固定在硫酸渣里,变成砷酸铁,这样硫酸渣的砷含硫严重超标,若不处理会对环境造成严重的影响。因此对采用高砷硫铁矿制酸的硫酸企业,其硫酸渣是本项目的主要原料来源。 高砷硫酸渣的主要成分:砷含量超过1%;铁一般在60%以上;其它为钙、镁、铝、硅等。 三、高砷硫酸渣脱硫的工艺方案: 砷在制酸过程中的行为,一般有两种:一是富氧焙烧时,砷变成As2O3与烟气一起挥发,进入制酸烟气中,叫脱砷焙烧,留在矿渣中的砷较少,对触媒的损坏很严重,这是多数硫酸厂家不愿意的;二是弱氧焙烧,砷与硫铁矿中的Fe2O3反应,生成砷酸铁,沉积在硫酸渣里,叫固砷焙烧。砷酸铁比较稳定,不溶于水,但在一定条件下,溶于某种酸和碱,因此处理含砷高的硫酸渣,就是利用这种性质,找到一种既能脱砷,又能把铁留在渣里的溶剂,这是本项目的技术关键。同时这种溶剂在市场上又很容易获得才能实现工业化的处理技术。 根据多次试验结果,处理含砷高的硫酸渣的工艺流程如下: 溶剂 ↓①②③ 硫酸渣Ⅰ→洗涤渣Ⅰ→合格渣Ⅰ ↓①②③ 溶剂④→硫酸渣Ⅱ→洗涤渣Ⅱ→合格渣Ⅱ ↓②③④ 溶剂⑤→硫酸渣Ⅲ→洗涤渣Ⅲ→合格渣Ⅲ ┆③④⑤

高炉熔渣处理及资源化利用技术概述

第11卷 第5期 中 国 水 运 Vol.11 No.5 2011年 5月 China Water Transport May 2011 收稿日期:2011-03-11 作者简介:朱文渊(1981-),男,武汉都市环保工程技术股份有限公司工程师。 高炉熔渣处理及资源化利用技术概述 朱文渊 (武汉都市环保工程技术股份有限公司,湖北 武汉 430071) 摘 要:文中针对钢铁企业高炉渣的处理及资源化利用技术进行了概述。首先介绍了高炉熔渣的物性,然后概述了目前高炉渣处理及资源化利用的现状,并分析了其存在的问题,接着介绍了目前国外高炉渣处理及资源化利用的新技术,最后提出了高炉渣处理及资源化利用的工艺技术路线及发展趋势。 关键词:高炉渣;粒化;热能回收 中图分类号:X705 文献标识码:A 文章编号:1006-7973(2011)05-0107-03 一、引言 高炉渣是冶炼生铁时从高炉中排出的一种熔融状态的废渣,其从高炉中排出的温度在1450~1650℃。2010年我国生铁产量5.9亿吨,按平均每吨生铁产生0.35t 渣来计算[1],高炉渣产量为2.065亿吨。由于高炉熔渣温度高,产量很大,如果得不到合理的处理和利用,不但是对二次能源及资源的极大浪费,而且还会对环境造成很大的污染,国内外都在对高炉渣的处理及资源化利用进行研究。 二、高炉熔渣的物性 1.成分 高炉渣主要成分为CaO、SiO 2和Al 2O 3,另外含有少量的MgO、FeO 和一些硫化物如CaS、MnS 和FeS [2]。碱度(CaO/SiO 2)大于1的高炉渣具有基本的水泥质特性(潜在的水硬活性),同时也可能具有一些火山灰质特性(与生石灰反应)。 2.温度及热焓 高炉出口熔渣温度约为1450~1650℃。1500℃时,高炉渣理论焓为1606.21kJ/kg,约合54.8kg 的标准煤。 3.粘度 普通高温熔渣粘度为0.2~0.6Pa·S,熔化性温度为1250~1400℃[3]。熔渣粘度随温度的降低缓慢增加,大约1320℃时开始出现凝固相后,熔渣粘度急剧增加。成分对熔渣粘度的影响较大。实验研究表明,刚粒化的热渣粒具有依赖于温度的粘附力,非晶质渣粒间的不粘附温度小于950℃,高温渣粒对被撞击表面的不粘附温度为1050~1070℃。 4.表面张力 高炉熔渣的表面张力随温度的变化显示出明显的阶段性,不论成分怎样,T>1390-1400℃表面张力处于一稳定的较低水平(0.54-0.59N/m);T<1390℃,表面张力随温度下降急剧升高。 5.比热 高炉渣的比热与温度有关,实验研究表明,温度在900K 以上时,比热与温度近似呈线性关系。 6.导热特性 高炉渣的导热特性与其状态(温度)紧密相关,在液渣状态(T>1400℃),导热系数很小,仅0.1~0.3W/(m.K),在凝固过程中,导热系数迅速增大到2~3W/(m.K),在固化过 程中,导热系数随着温度的降低而增加,约为1~2W/m.K) [4] 。 三、国内高炉渣处理及资源化利用现状及存在的问题 1.现状 目前,高炉渣主要通过水淬处理,产品作为水泥生产原料。而对于高炉渣的显热回收,国内对此仍然处在工业试验性阶段,还没有完整的设备。 水淬处理工艺主要有INBA 法、图拉法、沉渣池法和底滤法、RASA 法、螺旋法等,这些水淬工艺按其形式可以分为两大类: 1)高炉熔渣直接水淬工艺,其处理过程是首先将高炉熔渣渣流用高压水进行水淬,然后进行渣水输送和渣水分离; 2)高炉熔渣先机械破碎,后水淬工艺,其处理过程是将高炉熔渣渣流首先采用机械破碎,形成运动的液滴后进行水淬粒化,然后进行渣水分离和输送。 在实际应用中,INBA 法、图拉法、沉渣池法和底滤法,RASA 法、螺旋法等水淬工艺方法采用较多。 2.存在的问题 高炉渣水淬处理过程中存在的主要问题是: (1)水耗高。水淬渣过程中水压大于0.2MPa,水渣之比为(8~15):1,吨渣新水消耗约0.8t~1.2t。 (2)在水淬渣的过程中产生的硫化物会随蒸汽排入大气造成大气污染,渣中的碱性元素会进入冲渣水中造成水污染。 (3)未回收显热。1t 液态渣水淬时散失的热量约为1600~1800MJ,相当于标准煤55~61kg 完全燃烧后所产生的热量。液态高炉渣的温度为1450~1500℃,从火用分析的角度看,其余热品质非常高,极具利用价值。 (4)需干燥处理。高炉水渣含水率高达10%以上,作为水泥原料生产时须干燥处理,仍要消耗一定的能源。 (5)对于水渣系统而言,电耗和系统维护的工作量非常大。水冲渣系统循环水中所含大量为细颗粒对水泵和阀门等部件的磨损和堵塞非常严重,故使用一段时间后会导致水压下降、电耗增加、冲渣效果变差,清除水中的微粒还需大量资金。

钢铁冶金废物综合利用

钢铁冶金废物综合利用 摘要:在钢铁生产过程中,要产生大量的废弃物。而且随着我国钢铁产量的不断步提高,其排放量也在不断地增加。因此,如何有效地综合利用这些冶金渣以及冶金废气,减少废弃物堆放占用地和防止废气环境污染,对于进一步促进我国钢铁工业的持续高效发展具有重要意义,本文就冶金渣和冶金废气的资源化利用情况,进行介绍。 关键词:冶金渣;冶金废气;冶金炉尘 Abstract: in steel production process, to generate a lot of waste. And with China's steel production, its emissions to improve continuously step in constantly increased. Therefore, how to effectively use the comprehensive metallurgical slag, reduce the waste gas, metallurgy, and prevent waste pile to further promote the environmental pollution, the steel industry sustained development is of great significance,Based on metallurgical slag and metallurgy, the utilization of waste。 Key words: metallurgical slag;Metallurgy exhaust;Metallurgy furnace dust 1引言 我国是—个钢铁工业大国,2009年的钢产量已经达到了5.68亿t 并且全部被利用,表明了我国经济发展的良好情况。同时我国工业曾经走过高速发展,高能耗,工艺设备落后,污染严重的弯路,数据统计显示,目前钢铁工业的污染物排放占工、农业和日常生活等总排量的15%左右,目前钢铁企业废气和废渣的排放量分别在7.55~53.5Kg/t钢和0.5~1.32t/t钢的范围,如何减少钢铁各生产环节的废物的排放,增大其利用率,不但减少对环境的污染,还可以减少燃料的消耗,降低钢铁生产成本。 2冶金渣的利用 炼铁和炼钢过程中会产生大量的炉渣,如果直接将它们丢弃,不但占用土地资源也不利于资源的综合利用可以对它们进行综合回收利用。

2电石渣循环利用途径

内蒙古工业大学学报 JOURNAL OF INNER MONGOLIA 第30卷第3期UNIVERSITY OF TECHNOLOGY Vo1.30No.32011 文章编号:1001-5167(2011)03-0016-03 电石渣循环利用途径 高俊,王素娥,林明丽,智科端 (内蒙古工业大学化工学院,呼和浩特,010050) 摘要:针对目前电石生产过程消耗大量石灰石原料,而同时生产聚氯乙烯 产生大量电石渣废弃的现状,本文提出了将电石渣进行分离后转化为氧化 钙,作为电石生产过程的原料循环使用。该法既能充分利用资源,又能解 决环境污染,符合循环经济发展的理念。 关键词:电石渣;循环利用;资源化 中图分类号:X78文献标识码:A 0前言 近年来随着世界石油价格的攀升,电石法生产聚氯乙烯又出现方兴未艾的景象,特别在我国西部地区由于具有得天独厚的煤炭、电力和石灰石资源,电石法生产聚氯乙烯已经成为经济发展的一大增长点。2010年我国电石产量达到了1600万吨,而其中大约80%的电石用于生产聚氯乙烯。在电石法生产聚氯乙烯的过程中,将产生大量的电石渣,如不加以利用不仅堆放占用土地,同时还对周围的土壤、水体和空气造成污染。因而实现电石渣的就地转化,按照减量化、再利用、资源化的原则,不断推进循环经济模式,解决当前经济发展与资源、环境之间的矛盾就成为社会迫切关注的问题。 目前关于电石渣的利用和研究一般都是将电石渣进行简单的处理或者不加以任何处理而直接使用,如作为水泥、修筑公路的材料等[1、2]。但这些利用实际上对电石渣的有效成分未进行充分发挥,没有做到对其资源化方面的效能得以利用,本论文就电石渣的循环利用途径进行探讨。电石渣循环途径是指将电石法生产聚氯乙烯过程中产生的电石渣,经过适当的分离处理后,使其转化为氧化钙(即生石灰)再作为生产电石的原料,在生产电石与聚氯乙烯的过程中实现循环。过程的关键是将电石渣转化为氧化钙的方法和步骤。 1电石渣转化氧化钙的实验 1.1原料和实验及测试仪器 电石渣是电石溶解生产乙炔时产生的残渣,其主要成分是氢氧化钙,此外含有少量的硫化物、磷化物、氧化铁、氧化镁、氧化铝、二氧化硅等[3],过65目筛后的平均粒度为21.8μm。某企业电石渣主要化学成分分析结果和粒度分布见表1和表2。 表1电石渣主要化学成分(质量分数/%) Table1the chemical composition of calcium(%) 氧化钙氧化铁氧化镁氧化铝水分酸不溶物灼烧减量 65.440.0510.6953.8211.832.0925.71 作者简介:高俊,内蒙古工业大学化工学院教授,研究方向为化学工程与工艺 基金项目:内蒙古工业大学重点科研基金项目(ZD200613)

电石渣和粉煤灰的综合利用

目录 摘要 (1) 关键词 (1) 前言 (1) 1 用电石渣代替钙质材料生产建筑材料 (1) 1. 1 生产水泥 (1) 1.1.1传统湿法窑生产工艺 (1) 1.1.2带料浆压滤系统的湿法窑生产工艺 (2) 1.1.3湿磨干烧工艺 (2) 1.1.4新型干法生产工艺 (2) 1. 2 作为普通建筑材料 (2) 1. 3 作防水涂料的主要填料 (2) 1. 4 生产建筑砌砖 (2) 2 用于生产化工产品 (3) 2. 1 代替石灰生产KClO3 (3) 2. 2 生产过氧化钙 (3) 2. 3 与氯气作用生产漂白粉( 液、精) (3) 2. 4 制成石灰作为电石的生产原料 (3) 2. 5 生产CaCO3系列产品 (3) 2. 6 生产CaCl2 (4) 2. 7 生产环氧丙烷、环氧乙烷、氯仿 (4) 2. 8 用于钢铁生产 (4) 2. 9 用于软PVC (4) 2. 10 生产轻镁肥田粉 (4) 3 环境治理 (4) 3. 1 矸石山自燃的灭火材料 (4) 3. 2 处理废水 (4) 3. 2. 1 处理酸性废水 (4)

3. 2. 2 处理选煤产生的煤泥水 (5) 3. 2. 3 处理硫酸废水中的砷和氟 (5) 3. 2. 4 处理含铬电镀废水 (5) 3. 2. 5 处理化学纤维含锌废水 (5) 3. 3 处理废气 (5) 4结语 (6)

电石渣和粉煤灰的综合利用 摘要:指出利用电石渣和粉煤灰生产水泥和制砖是处理工业废渣的最好途径。具体介绍了新型干法生产水泥的工艺及灰渣砖生产工艺。 关键词:电石渣;粉煤灰;PVC;水泥;灰渣砖;综合利用 前言 当前,随着国民经济的发展和人们环保意识的不断加强,以及环保法规的实施,处理废渣的传统方式已不能适应社会要求,因而对废渣的综合利用显得尤为重要。利用电石渣和粉煤灰配料生产水泥和灰渣砖、利用电石渣进行烟气脱硫等是工业三废的治理工程,将在很大程度上解决电石渣和粉煤灰造成的环境污染问题。 1用电石渣代替钙质材料生产建筑材料 目前,电石渣主要来源于聚氯乙烯(PVC) 、乙炔、聚乙烯醇等化工产品的生产。电石渣是在乙炔发生器中,电石水解而产生的工业废弃物,也就是电石水解后的残渣,化学成分与消石灰基本相同。电石渣呈强碱性,因此严重污染环境。 1. 1生产水泥 生产水泥是大规模处理电石渣的有效方法。水泥的主要原料是石灰石,其主要成分为CaO,水泥工业用石灰石含CaO 的质量分数为45% ~ 52% 。电石渣是电石水解后的产物,主要成分为Ca ( OH) 2,约占70%,CaO 质量分数高达65%,因此可代替石灰石生产水泥。 用电石渣代替石灰石制水泥有如下优点: ( 1)CaO 含量高且粒度细,改善了生料的易烧性。 ( 2) 电石渣中的Ca(OH) 2分解温度比石灰石中CaCO3的分解温度低很多,烧成热耗较低。 ( 3) 利用电石渣可减少石灰石的用量,节约资源。 电石渣与煤渣等煅烧生产电石渣水泥。这种水泥一般是在立窑中煅烧而成,备料有干法和湿法两种。当电石渣含水质量分数较多( 60% ~ 80%) 时,可采用干法备料,需要采用机械分离脱水使电石渣含水质量分数降至30%~ 40%, 其他原料也需干燥。湿法备料是在电石渣中加入一定量的煤、黄土、矿煤等,经过湿法备料、过滤、成球、立窑燃烧和熟料细磨等加工步骤后,即可制成电石渣水泥。 1.1.1传统湿法窑生产工艺

硫酸渣综合利用技术简介

硫酸渣综合利用技术简介(螺旋溜槽法) From: 金马选矿设备厂由单一超极限(h/D)螺旋溜槽构成的一粗二精一扫的硫酸渣分选新工艺,工艺流程简单,操作简便,所获产品指标稳定先进,易于实施,不产生二次污染(实现无尾生产)。自主研制的分选设备——超极限(h/D)螺旋溜槽,突破了距径比不能小于0.45的传统理论极限,采用了0.36的超极限距径比设计,具有操作便利、低耗、高效、运行成本低等明显特性;在增大螺旋槽直径后仍可对微细粒物料进行有效回收,提高了小密度差物料的分选效率。该工艺技术同时还可用于其它含金属固体废渣、低密度非金属物料、金属矿山尾矿和化工微细物料的分选提纯、富集分离及综合回收等,为综合利用固体废料提供了可靠的资源化处理新技术、新工艺、新设备。 (1)、超极限(h/D)螺旋溜槽设备创新点: ①采用了0.36的超极限距径比设计。超极限(h/D)螺旋溜槽,突破了距径比不能小于0.45的传统理论极限,采用了0.36的超极限距径比设计。具有操作便利,低耗、高效等明显优越性;在增大螺旋槽直径后仍可对微细粒物料进行有效回收;提高了小密度差硫酸渣的分选效率。 ②增加了横向冲洗水的设计。采用该设计后提高了单机富集比,从而更适合于处理硫酸渣和其它低品位尾渣的资源化处理。

③采用了1500mm的大直径设计。单机设计处理能力是传统LL螺旋溜槽最大规格1200mm螺旋溜槽处理能力的2倍。 (2)、硫酸渣分选提纯工艺创新点: ①采用单一超极限(h/D)螺旋溜槽构成的一粗二精一扫硫酸渣分选提纯新工艺。所获产品指标稳定,工艺流程简单,操作简便,易于生产,运行成本低。本工艺流程生产成本,按已投产厂家平均生产成本计算为:129.51元/吨精,远远低于其它分选工艺生产成本; ②与传统浮选—磁选法相比,精矿品位可提高3-5%,金属回收率提高10-15%;该工艺克服了因硫酸渣焙烧后的矿物表面活性不足,导致浮选无法进行,分选效果差等不足。 ③与传统磁选—摇床和洗矿—分级—磁选工艺相比,该工艺可有效排除精矿产品中的S含量,S含量最低可达0.13%,并且克服了上述两方法工艺流程复杂等缺点; ④与酸浸—磁选—浮选联合流程及磁化焙烧-磁选和高温氯化法相比。上述三种流程工艺流程复杂且涉及高温热工,维修操作困难,运行成本高; ⑤硫酸渣超极限(h/D)螺旋溜槽分选提纯工艺,能实现无尾生产,不产生二次环境污染。分选过程产生的尾砂可作为水泥添加剂和制砖使用,可实现无尾生产;此外,分选过程中,唯一分选介质为循环水,故不会产生二次环境污染,也是该工艺突出特点之一。 (3)、国内外所处水平:

相关主题
文本预览
相关文档 最新文档