炼钢炉渣的处理及资源化利用
- 格式:ppt
- 大小:4.33 MB
- 文档页数:24
钢铁生产中冶炼渣的处理和利用引言钢铁生产是目前全球最重要的工业生产之一,但伴随着钢铁生产过程中产生的冶炼渣也带来了一系列环境问题。
处理和利用冶炼渣既能有效解决环境污染问题,又能实现资源的回收利用。
本文将详细介绍钢铁生产中冶炼渣的处理和利用技术,为相关从业人员和研究者提供有价值的参考。
1. 冶炼渣的来源和组成冶炼渣是指在钢铁冶炼过程中,通过熔炼、转炉或电炉等工艺产生的固体废弃物。
冶炼渣的来源主要包括高炉渣、转炉渣、电炉渣和钢水中的夹杂物等。
不同渣种的组成和性质也有所不同,通常包含SiO2、CaO、MgO、FeO、Al2O3等元素。
2. 冶炼渣的处理技术2.1 渣的分离和净化钢铁生产中,冶炼渣往往与金属熔体混合在一起,需要通过分离技术将其分离出来。
常用的分离技术包括物理分离、化学分离和浸出法等。
物理分离技术主要是通过重力、磁力和离心力等原理,将冶炼渣与金属熔体分离。
化学分离技术则通过化学反应,将渣与熔体产生化学反应,从而实现分离。
浸出法是将冶炼渣浸在特定的溶液中,通过溶液的溶解、沉淀、浸出等过程将渣分离出来。
2.2 渣的降温和固化冶炼渣一般在高温状态下生成,在处理过程中需要将其降温至环境适应温度。
常用的降温方法包括自然冷却和水冷却,可根据具体情况选择合适的方法。
降温后的冶炼渣需要进行固化处理,常用的固化方法包括水淬固化、高炉渣浸取固化以及粉尘富集技术等。
2.3 渣的资源化利用冶炼渣中包含大量有价值的金属元素和物质成分,实现其资源化利用是解决冶炼渣问题的主要途径之一。
冶炼渣的资源化利用主要包括矿渣综合利用和建材利用两个方面。
矿渣综合利用是指将冶炼渣中的金属元素、非金属元素和矿石中的元素等进行分离和提取,用于生产水泥、砖块、路面材料等。
建材利用是指将冶炼渣直接作为建筑材料使用,例如将高炉渣用作水泥制造的辅料。
3. 冶炼渣处理与利用的案例3.1 高炉渣的综合利用高炉渣是钢铁冶炼过程中产生的主要冶炼渣之一。
冶金工艺中的炉渣处理与资源化利用方法研究进展炉渣是在冶金工艺中产生的一种固体废弃物,它由金属矿石中的非金属元素化合物和冶炼中所添加的草酸盐、氧化铁等物质组成。
炉渣对环境和人体健康造成了一定程度的威胁,因此炉渣的处理和资源化利用成为了冶金工艺领域中重要的研究方向。
本文将介绍炉渣处理与资源化利用的研究进展,包括炉渣的成分和特性分析,炉渣处理的技术方法和资源化利用的应用。
炉渣的成分和特性分析是研究其处理与资源化利用的基础。
炉渣的成分主要取决于冶炼过程中矿石的品位和矿石的种类。
常见的炉渣成分包括二氧化硅、氧化铝、氧化铁等。
此外,炉渣的特性也与冶炼温度、冶炼时间和冶炼过程中添加的草酸盐、氧化铁等物质有关。
准确分析炉渣的成分和特性对于选择合适的处理方法和资源化利用途径至关重要。
炉渣处理的技术方法多种多样,常见的方法包括物理处理、化学处理和生物处理。
物理处理主要包括研磨、筛分和磁选等技术,通过改变炉渣颗粒的大小和形状,提高其密度和流动性,从而降低其对环境的污染性。
化学处理主要包括酸洗、浸出和沉淀等技术,通过将炉渣中的有害元素转化为无害物质,达到净化炉渣的目的。
生物处理主要包括微生物处理和植物处理,通过利用微生物和植物的生长过程中所产生的酶和有机物质,将炉渣中的有害元素转化为无害物质。
炉渣处理技术的选择应根据炉渣的成分和特性以及处理的具体需求作出合理的选择。
炉渣的资源化利用是处理的重要方向,它可以将废弃物转化为资源,从而减少对自然资源的开采和环境的污染。
炉渣的资源化利用通常包括水泥熟料生产、路面修复和土壤改良等领域。
炉渣中的二氧化硅可用于水泥熟料的生产,提高水泥的强度和耐腐蚀性。
炉渣中的氧化铝可用于路面修复中的防滑材料和路面层的增强剂。
炉渣中的氧化铁可用于土壤改良剂的生产,提高土壤的保水性和肥力。
炉渣资源化利用不仅能解决废弃物处理问题,还能减少对矿石和其他原材料的开采,提高资源利用效率。
炉渣处理与资源化利用方法的研究进展取得了显著的成果。
钢渣处理工艺及资源化利用技术钢渣处理工艺及资源化利用技术“十五”以来,在钢渣综合利用方面走出一条以废养废、自我完善、良性循环的可持续发展道路,成功探索出“资源-产品-再生资源-再生产品”的循环经济模式,建立了钢渣资源化循环利用平台,即环保稳定型钢渣全粉化处理工艺—节能高效型渣铁分离生产工艺—循环提质的含铁渣粉精选工艺—资源化利用的建材生产工艺—综合利用的钢渣微粉生产工艺,再建立输送物流平台,形成一体化综合控制系统,使莱钢转炉钢渣得到了100%资源化处理利用。
2 钢渣处理工艺节能环保型钢渣全粉化处理工艺将热融钢渣冷却至300~800 ℃后倾入热焖池中,进行喷水热焖处理,利用钢渣自身热量所产生的热应力使大块钢渣裂解,同时在罐中产生的大量常压饱和蒸汽与渣中游离氧化钙、游离氧化镁作用所产生的化学应力使钢渣进一步破碎粉化,达到钢渣破碎的目的。
该工艺主要包括翻盆装置、自动打水装置、热焖池、蒸汽回收装置、热焖盖、循环水系统、筛分贮运系统等。
工艺流程为:钢渣盆→翻盆倒渣至热焖池→封盖打水热焖淋化→取渣→筛分(7 mm 的粗颗料经第3 次破碎后再返送回振动筛筛分破碎,如此循环处理,加工成为粒度≤7 mm 的尾渣成品。
在皮带机上安装有4 级永磁滚筒,对破碎后的钢渣进行磁选,主要包括上料系统、粗颚破碎系统、细颚破碎系统、可调式高细破碎系统、悬挂除铁装置、振动筛分装置、电磁除铁装置、除尘系统和皮带输送系统等。
该工艺主要特点:1)在入料前用铸钢落料筛控制原料粒度,≤220 mm 的渣块进入颚破机进行破碎,保护了颚破设备,保证了生产稳定顺行。
在落料量控制上采用电动给料机进行机械化控制,保持上料均匀性。
2)该生产线全部采用皮带输送,转运站转运料,设备垂直布置,尾渣及球磨料均采用汇集皮带收集输送至原料场地的方式,占地面积小,减少车辆倒运量,降低物流成本。
3)利用“三破七选四筛分”工艺将钢渣中的含铁物质基本清除,特别是选择使用了永磁滚筒对汇流尾渣进行最后一道磁选,充分选出钢渣中的含铁物质,提升钢渣的最终产品—球磨料和尾渣质量,实现全部钢渣资源的闭路循环。