当前位置:文档之家› 热处理代号--(名称)

热处理代号--(名称)

热处理代号--(名称)
热处理代号--(名称)

热处理代号--(名称)

T1--人工时效

T2--退火

T4--固溶处理加自然时效

T5--固溶处理加不完全人工时效

T6--固溶处理加完全人工时效

T7--固溶处理加稳定化处理

固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却(水冷),以得到过饱和固溶体的热处理工艺。

不完全人工时效:采用比较低的时效温度或较短的保温时间, 获得优良的综合力学性能, 即获得比较高的强度, 良好的塑性和韧性, 但耐腐蚀性能可能比较低。

完全人工时效:采用较高的时效温度和较长的保温时间, 获得最大的硬度和最高的抗拉强度, 但伸长率较低。

稳定化处理:为使工件在长期服役的条件下形状和尺寸变化能够保持在规定范围内的热处理。

T0

固熔热处理后,经自然时效再通过冷加工的状态适用于经冷加工提高强度

的产品

T1 适用于由高温成型过程冷却后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品

T2

由高温成型过程冷却,经冷加工后自然时效至基本稳定的状态

适用于由高温成型过程冷却后,进行冷加工、或矫直、矫平以提高强度的产

T3 固熔热处理后进行冷加工,再经自然时效至基本稳定的状态

适用于在固熔热处理后,进行冷加工、或矫直、矫平以提高强度的产品

T4

固熔热处理后自然时效至基本稳定的状态

适用于固熔热处理后,不再进行冷加工(可进行短直、矫平,但不影响力学

性能极限)的产品

T5

由高温成型过程冷却,然后进行人工时效的状态

适用于由高温成型过程冷却后,不经过冷加工(可进行矫直、矫平,但不影

响力学性能极限),予以人工时效的产品

T6

固熔热处理后进行人工时效的状态

适用于固熔热处理后,不再进行冷加工(可进行矫直、矫平、但不影响力学

性能极限)的产品

T7

固熔热处理后进行过时效的状态

适用于固熔热处理后,为获取某些重要特性,在人工时效时,强度在时效曲

线上越过了最高峰点的产品

T8 固熔热处理后经冷加工,然后进行人工时效的状态

适用于经冷加工,或矫直、矫平以提高强度的产品

T9

固熔热处理后人工时效,然后进行冷加工的状态

适用于经冷加工提高强度的产品

T10 由高温成型过程冷却后,进行冷加工,然后人工时效的状态

适用于经冷加工,或矫直、矫平以提高强度的产品

某些6×××系的合金,无论是炉内固熔热处理,还是从高温成形过程急冷以保留可溶性组

分在固熔体中,均能达到相同的固熔热处理效果,这些合金的T3、T4、T6、T7、T8和T9状态

可采用上述两种处理方法的任一种。

热处理炉

十一、炉子技术指标 额定功率:50kW 额定电压:380V 最高使用温度:800℃生产率:100kg/h 相数:3 接线方法:YY 炉膛有效尺寸:1624×692×484mm 炉子外形尺寸:1982×1280×1454.4mm 湘潭大学 课程设计

2017年 1月 8日 1. 炉型的选择 根据给出的技术条件和产品特点,可以选用普通箱式电阻炉。 2.炉膛尺寸的确定 2.1确定炉底面积 根据技术要求生产无定型产品,无法使用实际排料法确定炉底面积,只能用炉底强度指标法计算确定。已知炉子的生产率g 是100kg/h ,根据表3.10[1]选择箱式炉用于正火和淬火的单位面积生产率g 0为120kg/(m2·h),故可以计算求得炉底的有效面积为 A 1/m 2=g g 0=100120≈0.83 取炉底面积利用系数K=0.75,则由式 A 有效 A 实际=0.75可得,炉底的实际面积为 A 实际/m 2= A 有效0.75=0.830.75≈1.11 2.2确定炉底的长度与宽度 当炉底长度小于2m 时,其长宽比可取L/B =2/1。又知, L ×B =1.11,可以解得L ≈1.490m ,B ≈0.745m 。为了便于砌砖,取

L=1.624m,B=0.692m。 2.3确定炉膛的高度 根据统计资料,炉膛高度与宽度之比在0.59-0.9之间。一般取在0.7左右。现按照电热元件布置要求,根据标准砖尺寸,选定炉膛高度为H=0.484m。因此确定炉膛的尺寸为:长L=1.624m;宽B=0.692m;高H=0.484m。 3炉体结构的设计 两侧墙、前后墙的结构基本相同,可以选择相同的结构,耐火层为115mm厚的QN-1.0轻质黏土砖,+65mm厚的、密度为100kg/m3的普通硅酸铝纤维毡,+115mm厚的A级硅藻土砖,保温层外面覆一层5mm厚的石棉板,使用石棉板的目的是防止炉体受潮。 炉顶采用115mm厚的QN-1.0轻质黏土砖,+80mm厚的、密度为100kg/m3的普通硅酸铝纤维毡,+115mm厚的膨胀珍珠岩,保温层外面覆一层5mm厚的石棉板。 炉底采用B级硅藻土保温砖砌筑方格子,内填充蛭石粉的复合炉衬,其厚度为182mm,在其上面铺一层50mm厚的密度为100kg/m3的普通硅酸铝纤维毡,在纤维毡上面平铺四层QN-1.0轻质耐火黏土砖,在四层轻质耐火黏土砖的上面用230mm厚的耐火黏土砖做支架,在支架间隙处放置炉底电热元件的搁砖,电热元件搁砖采用重质高铝砖。然后在支架上放置炉底板。同时在保温层和炉壳之间放一层10mm厚的石棉板。

常用材料热处理及热处理代号

常用金属材料及热处理代号 硬度 材料牌号 图纸热处理标注 HB HRc 热处理目的 Q235-A ─ 不热处理 16Mn─ 不热处理 渗碳淬硬S-C59 表面≥59表面耐磨,心部韧性高,去碳处可钻孔 20 20Cr 渗碳高频淬硬 S-G59 表面≥59表面耐磨,心部韧性高,不淬硬处可钻孔正火Z ≤230 组织均匀化,消除应力 调质T235 220~250提高性能,改善组织 调质T265 250~280提高性能,改善组织 淬硬C35 30~40 变形小,硬度略提高 淬硬C42 40~45 提高强度和耐磨性,有一定的韧性 淬硬C48 45~50 提高强度和耐磨性,有一定的韧性高频淬硬G48 表面45~50表面耐磨,心部韧性高,变形小 45 40Cr 高频淬硬G52 表面50~55表面耐磨,心部韧性高,变形小 调质T265 250~280提高性能,改善组织 38CrMoAlA 氮化D900 HV≥850 提高表面硬度及耐磨性,耐疲劳,耐腐蚀性能 退火Th ≤230 降低硬度 65Mn 60Si2MnA 50CrVA 淬硬C42 40~45 提高强度和弹性 退火Th ≤230 降低硬度 GCr15 淬硬C59 ≥59 提高硬度和耐磨性 退火Th ≤230 降低硬度 T8A 淬硬C58 55~60 提高硬度和耐磨性 退火Th ≤230 降低硬度 T10A T12A 淬硬C62 ≥62 提高硬度和耐磨性 退火Th ≤255 降低硬度 9SiCr Cr12MoV W18Cr4V 淬硬C62 ≥62 提高硬度和耐磨性 HT100 HT200 HT250 热时效去应力 QT400-15 QT600-3 热时效去应力 ZG200-400 ZG270-500 正火Z ZCuSn5Pb5Zn5 ─不热处理 ZAlSi7Mg ─不热处理 T2 ─不热处理 H62 ─不热处理 L2 ─不热处理

铝及铝合金热处理工艺

铝及铝合金热处理工艺

1. 铝及铝合金热处理工艺 1.1 铝及铝合金热处理的作用 将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。 1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1) 图1 铝及铝合金热处理分类 1.2.2 铝及铝合金热处理基本作用原理 (1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。 ①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。 铝及铝合金热处理 回归 均匀化退火 退火 成品退火 中间退火 过时效 欠时效 自然时效 人工时效 多级时效 时效 固溶淬火 离线淬火 在线淬火 一次淬火 阶段淬火 立式淬火 卧式淬火

②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料 内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。 ③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再 结晶状态下的软化组织,具有最好的塑性和较低的强度。 (2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定 的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。但此时材料塑性较高,可进行冷加工或矫直工序。 ①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固 溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。 ②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新 加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。 (3)时效:经固溶淬火后的材料,在室温或较高温度下保持一段时间,不稳定的 过饱和固溶体会进行分解,第二相粒子会从过饱和固溶体中析出(或沉淀),分布在α(AL)铝晶粒周边,从而产生强化作用称之为析出(沉淀)强化。自然时效:有的合金(如2024等)可在室温下产生析出强化作用,叫做自然时效。人工时效:有些合金(如7075等)在室温下析出了强化不明显,而在较高温度下的析出强化效果明显,称为人工时效。 人工时效可分为欠时效和过时效。 ①欠时效:为了获得某种性能,控制较低的时效温度和保持较短的时效时间。 ②过时效:为了获得某些特殊性能和较好的综合性能,在较高的温度下或保温 较长的时间状态下进行的时效。 ③多级时效:为了获得某些特殊性能和良好的综合性能,将时效过程分为几个 阶段进行。

热处理代号--(名称)

热处理代号--(名称) T1--人工时效 T2--退火 T4--固溶处理加自然时效 T5--固溶处理加不完全人工时效 T6--固溶处理加完全人工时效 T7--固溶处理加稳定化处理 固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中 后快速冷却(水冷),以得到过饱和固溶体的热处理工艺。 不完全人工时效:采用比较低的时效温度或较短的保温时间,获得优良的综合力学性能,即获得比较高的强度,良好的塑性和韧性,但耐腐蚀性能可能比较低。完全人工时效:采用较高的时效温度和较长的保温时间,获得最大的硬度和最 高的抗拉强度,但伸长率较低。 稳定化处理:为使工件在长期服役的条件下形状和尺寸变化能够保持在规定范围内的热处理。 TO 固熔热处理后,经自然时效再通过冷加工的状态适用于经冷加工提高强度的产品 T1适用于由高温成型过程冷却后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品 T2 由高温成型过程冷却,经冷加工后自然时效至基本稳定的状态 适用于由高温成型过程冷却后,进行冷加工、或矫直、矫平以提高强度的产品 T3固熔热处理后进行冷加工,再经自然时效至基本稳定的状态 适用于在固熔热处理后,进行冷加工、或矫直、矫平以提高强度的产品 T4 固熔热处理后自然时效至基本稳定的状态 适用于固熔热处理后,不再进行冷加工(可进行短直、矫平,但不影响力学性能极限)的产品 T5 由高温成型过程冷却,然后进行人工时效的状态 适用于由高温成型过程冷却后,不经过冷加工(可进行矫直、矫平,但不影响力学性能极限),予以人工时效的产品

T6 固熔热处理后进行人工时效的状态 适用于固熔热处理后,不再进行冷加工(可进行矫直、矫平、但不影响力学性能极限)的产品 T7 固熔热处理后进行过时效的状态 适用于固熔热处理后,为获取某些重要特性,在人工时效时,强度在时效曲线上越过了最高峰点的产品 T8固熔热处理后经冷加工,然后进行人工时效的状态适用于经冷加工,或矫直、矫平以提高强度的产品 T9 固熔热处理后人工时效,然后进行冷加工的状态适用于经冷加工提高强度的产品 T10由高温成型过程冷却后,进行冷加工,然后人工时效的状态适用于经冷加工,或矫直、矫平以提高强度的产品 某些6xx>係的合金,无论是炉内固熔热处理,还是从高温成形过程急冷以保留可溶性组 分在固熔体中,均能达到相同的固熔热处理效果,这些合金的T3、T4、T6、T7、T8和T9状态 可采用上述两种处理方法的任一种。

金属热处理工艺的分类及代号

金属热处理工艺的分类及代号

金属热处理工艺的分类及代号(GB/T12693-90) 1.分类:热处理分类由基础分类和附加分类组成. (1)基础分类 根据工艺类型、工艺名称和实践工艺的加热方法,将热处理工艺按三个层次进行分类,见附录表 1-1. (2)附加分类 对基础分类中某些工艺的具体条件的进一步分类.包括退火、正火、淬火、化学热处理工艺加热介质(附录表1-2);退火冷却工艺方法(附录1-3);淬火冷却介质或冷却方法(附录表(1-4);渗碳和碳氮共渗的后续冷却工艺(附录表1-5),以及化学热处理中非金属、渗金属、多元共渗、熔渗四种工艺按元素的分类. 2.代号 (1)热处理工艺代号标记规定如下: 5热处理 X工艺类型 X工艺名 称 X 加热方法 附加分类工艺代号 (2)基础工艺代号 用四位数字表示.第一位数字“5”为机械制造工艺分类与代号中表示热处理的工艺代号;第二,三,四位数字分别代表基础分类中的第二,三,四层次中的分类代号。当工艺中某个层次不需分类时,该层次用0代号。 (3)附加工艺代号 它用英文字母代表。接在基础分类工艺代号后面。具体代号见附录表1-2至附录表1-5。 (4)多工序热处理工艺代号

多工序热处理工艺代号用破折号将各工艺代号连接组成,但除第一工艺外,后面的工艺均省略第一位数字“5”,如5151-331G表示调质和气体渗碳。 (5)常用热处理工艺代号见附录表1-6。 附录表1-1.热处理工艺分类及代号 工艺总称代号工艺类 型代 号 工艺名称代 号 加热方法代号 热处理 5 整热处理 体 1 退火 1 加热炉 1 正火 2 淬火 3 感应 2 正火和淬火 4 调质 5 火焰 3 稳定化处理 6 固溶处理,水韧处理7 固溶处理和时效8 表面热处 理 2 表面淬火和回火 1 电阻 4 物理气相沉淀 2 化学气相沉淀 3 激光 5 等离子体化学气相沉淀 4 化学热处 理 3 渗碳 1 电子束 6 碳氮共渗 2 渗氮 3 等离子体 7 氮碳共渗 4 渗其他非金属 5 其他8 渗金属 6 多元共渗7 溶渗8 附录表1-2.加热介质及代号 加热介质固体液体气体真空保护气氛可控气氛流态床代号S L G V P C F

热处理炉复习题1

复习题(论述题) 1 自然对流与强制对流换热机理有何区别 答:1)引起流动的原因不同,自然对流是由于流体与表面换热后温度发生变化,导致不同部位流体的密度产生差异,受热部分受浮力作用产生向上的流动,变冷的流体部分向下流动,从而产生对流;2)强制对流的动力来自外界,不受温度场影响或影响较小;3)换热强度不同。一般由于强制对流速度大,边界层厚度小、热阻小,因而对流换热强度大;而自然对流给热强度一般较小;4)影响对流换热系数的因素不同。 自然对流换热系数一般受温差大小、流体物性参数、表面形状等因素影响较大,而强制对流一般受外来动力影响较大。 2 试述外热式真空热处理炉的工作原理及缺点有哪些 答:原理:外热式真空热处理炉是指有真空罐的炉子。加热元件,耐火材料等在罐外,被处理工件放在管内。当工件放入炉罐内密封后,开始抽真空到规定的真空度,再加热到规定温度。工件冷却有炉内冷却和炉外冷却两种,炉内冷却通入特殊气体冷却介质:氢气、氮气、氩气等。 缺点:由于热源在炉罐外,热惰性大、热效率低、加热速度慢、生产周期长。由于炉罐材料高温强度所限,炉子尺寸小,使用温度低于1100℃,合金钢或耐热钢罐价格昂贵,不易加工,仅适用于合金的退火、真空除气、真空渗金属等。 3 为什么要做燃烧计算?包括哪些方面? 答:燃料的燃烧是一种剧烈的氧化反映,是燃料中的可燃成分与空气中的氧气所进行的氧化反应。要使燃料达到完全燃烧、所放热能充分利用,首先需要对燃烧反应过程做物料平衡计算,诸如,了解燃烧时需要的空气量,以及确定供风能力的大小;了解燃烧后生成燃烧产物量,以确定排烟设备的能力大小;还要了解燃烧后的炉气成分,等等。另外,还要根据热平衡计算出炉气可以达到的温度,看是否能满足工艺的要求。知道了这些数据,人们才能有根据地去改进燃烧设备,控制燃烧过程,达到满意的燃烧效果。 4 试分析窑内气体与窑外空气通过墙壁的换热过程,各个环节有哪些热量传递方式? 答:有以下换热环节及传热方式:(1)窑内气体到炉墙内壁,热传递方式为对流换热和辐射换热。窑内气体温度越高,则窑内气体与炉墙内壁辐射换热量就越大;(2)墙的内壁到外壁,热传递方式为固体导热;(3)炉墙的外壁到车间空气,热传递方式有对流换热和辐射换热,由于车间环境温度较低,辐射换热量相对较小。 5 什么是炉子的供热量?如何确定炉子的供热量? 答:炉子的供热量通常是指由燃料燃烧供入炉内的最大热量,其值应能满足炉子在最高额定产量时所需的热量。 确定炉子供热量有两种办法,常用的方法是直接采用类似条件(产量、炉型、钢种和燃料种类等)的炉子的实际生产资料来确定,条件越接近,准确度越高。 在确定新建炉子的供热量时,往往要通过详细的热平衡计算来确定供热量。采用热平衡计算方法可以科学地把许多具体的有利和不利的因素包括进去,有时会更精确一些。

金属热处理及表面处理工艺规范

北京奇朔科贸有限公司 部分金属材料热处理及表面处理工艺规范 第一版 编写:赵贵波 审核: 批准: 北京奇朔科贸有限公司 二零一二年六月

目录 1.0 热处理的工艺分类及代号---------------------------------------------------------------------3 1.1 基础分类-----------------------------------------------------------------------------------------------3 1.2 附加分类-----------------------------------------------------------------------------------------------3 1.3 热处理工艺代号--------------------------------------------------------------------------------------4 1.4 图样中标注热处理技术条件用符号--------------------------------------------------------------7 2.0 金属材料的热处理方法和应用目的-------------------------------------------------------8 2.1 钢的淬火-----------------------------------------------------------------------------------------------8 2.2 热处理的过程方法和应用目的--------------------------------------------------------------------9 3.0 部分金属材料的热处理规范-----------------------------------------------------------------17 3.1 渗碳钢的热处理工艺--------------------------------------------------------------------17 3.2 渗氮钢的热处理工艺--------------------------------------------------------------------------------20 3.3 调质钢的热处理工艺-------------------------------------------------------------------------------21 3.4 -弹簧钢的热处理工艺------------------------------------------------------------------------------23 3.5 轴承钢的热处理工艺-------------------------------------------------------------------------------25 3.6 合金工具钢的热处理工艺------------------------------------------------------------------------- 26 3.7 碳素工具钢的热处理工艺--------------------------------------------------------------------------29

热处理炉考点总结(同上)=。=

1、传热的方式及其共同性和特殊性。 传热三种基本的方式:传导传热、对流传热、辐射传热 传导传热:通过热振动和碰撞中发生能量传递,热量从物体的高温部分传导低温部分。 对流传热:依靠流流体质点的导热作用和位移而进行的热量传递。 辐射传热: ①辐射传热不需要任何介质; ②辐射传热伴随着能量的转化 :热能→辐射能→热能; ③辐射体之间能同时向对方辐射能量和吸收对方投射来的辐射能量; ④ “对等性”——无论物体(气体)温度高低都向外辐射。 2、不同传热求解时要测量的主要参数,如反映材料热传导能力大小的热导率; 传导传热计算: )/m (2W dn dt F Q q λ-== 其中,F —与热流方向垂直的传热面积( m2 ) λ—比例系数,称为热导率, [W/(m ·℃)] dn dt —温度梯度,(℃/m ) 对流传热计算: )(21t t a Q -= F 式中:Q 一单位时间内对流换热量,即热流量(w); t1-t2一流体与固体表面的温度差(℃); F 一流体与固体的接触面积(m2); a 一对流换热系数[w /(m2·℃)],它表示流体与固体表面之间的温度差为1℃ 时,每秒钟通过1m2面积所传递的热量。 辐射传热计算: 212424112.].)100()100[(?F T T C Q -=导 导C ——辐射系数,与两物体为灰体或黑体相关; 1T 、2T —— 两物体的温度; 21? ——物体2对物体1的角度系数 2F ——物体2的面积。 3、黑体辐射基本定律:普朗克定律、斯蒂芬-波尔兹曼定律、灰体和实际物体的辐射力、克希荷夫定律。 4、分析不同情况下的传热方式,如描述工件和炉墙的综合传热过程。 实际热处理加热过程,热源和工件表面主要进行辐射换热和对流换热。 F T T C F t t a Q ])100(-)100[()-(Q Q 424121导对辐对+=+=

金属热处理工艺的分类及代号

金属热处理工艺的分类及代号(GB/T12693-90) 1.分类:热处理分类由基础分类和附加分类组成. (1)基础分类 根据工艺类型、工艺名称和实践工艺的加热方法,将热处理工艺按三个层次进行分类,见附录表1-1. (2)附加分类 对基础分类中某些工艺的具体条件的进一步分类.包括退火、正火、淬火、化学热处理工艺加热介质(附录表1-2);退火冷却工艺方法(附录1-3);淬火冷却介质或冷却方法(附录表(1-4);渗碳和碳氮共渗的后续冷却工艺(附录表1-5),以及化学热处理中非金属、渗金属、多元共渗、熔渗四种工艺按元素的分类. 2.代号 (1)热处理工艺代号标记规定如下: 5热处理X工艺类型X工艺名称X 加热方法 (2)基础工艺代号 用四位数字表示.第一位数字“5”为机械制造工艺分类与代号中表示热处理的工艺代号;第二,三,四位数字分别代表基础分类中的第二,三,四层次中的分类代号。当工艺中某个层次不需分类时,该层次用0代号。 (3)附加工艺代号

它用英文字母代表。接在基础分类工艺代号后面。具体代号见附录表1-2至附录表1-5。 (4)多工序热处理工艺代号 多工序热处理工艺代号用破折号将各工艺代号连接组成,但除第一工艺外,后面的工艺均省略第一位数字“5”,如5151-331G表示调质和气体渗碳。 (5)常用热处理工艺代号见附录表1-6。 附录表1-1. 热处理工艺分类及代号

附录表1-2. 加热介质及代号 附录表 1-3 退火工艺代号 附录表1-4 淬火冷却介质和冷却方法及代号 附录表1-5 渗碳,碳氮共渗后冷却方法及代号 附录表1-6 常用热处理工艺及代号

铸钢件常见热处理工艺

铸钢件常见热处理 按加热和冷却条件不同,铸钢件的主要热处理方式有:退火(工艺代号:5111)、正火(工艺代号:5121)、均匀化处理、淬火(工艺代号:5131)、回火(工艺代号:5141)、固溶处理(工艺代号:5171)、沉淀硬化、消除应力处理及除氢处理。 1.退火(工艺代号:5111) 退火是将铸钢件加热到Ac3以上20~30℃,保温一定时间,冷却的热处理工艺。退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。适用于所有牌号的铸钢件。图11—4为几种退火处理工艺的加热规范示意图。表ll—1为铸钢件常用退火工艺类型及其应用。 2.正火(工艺代号:5121) 正火是将铸钢件目口热到Ac3温度以上30~50℃保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。图11—5为碳钢的正火温度范围示意图。正火的目的是细化钢的组织,使其具有所需的力学性能,也司作为以后热处理的预备处理。正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。经正火的铸钢强度稍高于退火铸钢,

其珠光体组织较细。一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。 正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火;可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组织,从而减少铸件在淬火时产生的缺陷。 3.淬火(工艺代号:5131) 淬火是将铸钢件加热到奥氏体化后(Ac。或Ac•以上),保持一定时间后以适当方式冷却,获得马氏体或贝氏体组织的热处理工艺。常见的有水冷淬火、油冷淬火和空冷淬火等。铸钢件淬火后应及时进行回火处理,以消除淬火应力及获得所需综合力学性能。图11—6为淬火回火工艺示意图。 铸钢件淬火工艺的主要参数: (1)淬火温度:淬火温度取决于铸钢的化学成分和相应的临界温度点。图11—7为铸钢件淬火工艺温度范围示意图。原则上,亚共析铸钢淬火温度为Ac。以上20~30℃,常称之为完全淬火。共析及过共析铸钢在Ac。以上30~50℃淬火,即所谓亚临界淬火或两相区淬火。这种淬火也可用于亚共析钢,所获得的组织较一般淬火的细,适用于低合金铸钢件韧化处理。 (2)淬火介质:淬火的目的是得到完全的马氏体组织。为此,铸件淬火时的冷却速率必须大于铸钢的临界冷却速率。否则不能获得马氏体组织及其相应的性能。但冷却速率过高易于导致铸件变形或开裂。为了同时满足上述要求,应根据铸件的材质选用适当的淬火介质,

常用材料的热处理代号及目的

常用金属材料热处理 钢号 热处理硬度热处理目的钢 号 热处理硬度热处理目的代号工艺规范HB HRC 代号工艺规范HB HRC 45 Z 840~860℃空冷≤229 -组织均匀化 消除应力CrWMn C62 160~200℃回火-≥62 提高硬度 和耐磨性 T215 820~840℃水冷200~230 -提高性能 改善组织65Mn Th 810~830℃ 保温后炉冷 196~229 -细化组织 T235 550~630℃回火220~250 -C52 790~820℃油冷-50~55 提高硬 度和弹性T265 820~840℃水冷250~280 -提高性能 改善组织 C52 260~300℃回火- T265 530~570℃回火-C58 (G58) 790~820℃油冷-56~61 提高硬度 和耐磨性 C42 820~840℃水冷-40~45 提高硬度 和耐磨性 200~220℃回火- C42 350~400℃回火--830℃油冷≤302 -- C48 820~840℃水冷-46~51 提高硬度 和耐磨性 -540℃回火-- C48 240~280℃回火-40Cr T215 840~860℃油冷200~230 -改善组 织和性能 G42 860~900℃ 高频、水冷-40~45 表面耐磨,芯部 韧性好,变形小 T235 600~650℃回火220~250 - G42 340~370℃回火-T265 840~860℃油冷250~280 -改善组织 提高性能G48 860~900℃-46~51 表面耐磨,芯部T265 540~600℃回火-

高频、水冷韧性好,变形小 G48 220~250℃回火-C42 830~850℃油冷-40~45 有一定的强度 和适当的韧性 G54 860~900℃ 高频、水冷-52~57 表面耐磨,芯部 韧性好,变形小 C42 360~400℃回火- G54 100~200℃回火-C48 830~850℃油冷-46~51 提高强度和耐磨 性,但韧性稍低 H48 860~900℃ 高频、水冷-46~51 表面耐磨 芯部韧性好 C48 280~320℃回火- H48 250~300℃回火-C52 840~860℃油冷-50~55 提高强度和耐磨 性,但韧性降低Cr12 -950~980℃油冷-61~63 -C52 160~200℃回火- -160~180℃回火--G48 860~880℃ 高频、乳冷-46~51 表面耐磨,芯部 韧性好,变形小 不淬硬处可装配 钻孔 -950~980℃油冷-57~59 -G48 240~280℃回火- -200~270℃回火--G52 860~880℃ 高频、乳冷-50~55 表面耐磨,芯部 韧性好,变形小 不淬硬处可装配 钻孔 CrMoV Th 850~870℃保温207~255 -降低硬度 细化组织 G52 160~200℃回火- Th 720~750℃ 等温炉冷-D500 500~560℃ 氮化处理 -HV≥ 500 表面耐磨 变形极小 C48 1030~1050℃油冷-46~51 -GCr15 C59 (G59) 840~860℃油冷-≥59 提高硬度 及耐磨性 C48 570~590℃回火--160~200℃回火-

(完整版)热处理炉说明书

辽宁福鞍重工股份有限公司新跨车间燃气台车式6.5m×2.8m×1.7m热处理窑 使用说明书 中国联合工程公司 2012年10月

目录 1概述 (1) 2 主要技术参数 (2) 3 热处理炉主要部件说明 (3) 3.1炉体 (3) 3.2炉车 (3) 3.3炉门 (3) 3.4燃烧系统 (3) 3.5管路系统 (4) 3.5.1 空气管路 (4) 3.5.2 煤气管路 (4) 3.5.3 压缩空气管路 (4) 3.6排烟系统 (5) 3.7电气控制系统 (5) 4操作规程 (6) 4.1开炉准备 (6) 4.2点火 (6) 4.3热处理过程控制 (7) 4.4停炉出炉 (7) 5 安全须知 (8) 6特别说明 (10) 7 主要电控单元说明 (11) 7.1炉门炉车控制柜操作说明 (11) 7.2计算机监控系统操作说明 (11) 7.2.1 烧嘴控制 (12) 7.2.2 工艺曲线设置 (12) 7.2.3 压力控制与阀门操作 (14) 8 常见故障及排除方法 (15) 9 工作中断电的处理 (18)

1概述 福鞍重工股份有限公司新跨车间6.5m×2.8m×1.7m台车式热处理炉是我公司承建的热处理炉,用于铸钢件的正火、回火热处理。在温度控制和压力控制等过程控制中采用先进PLC 实现高精度的自动化。要求操作和维修人员严格按照操作规程操作,使炉子在良好状态下运行,充分发挥其效益。 本炉可分为炉体、炉车、炉门、燃烧系统、管路系统、排烟系统和电气控制系统等七个部分。各部分详细说明请参照本说明书第3部分。

2 主要技术参数 热处理炉有效加热区(长×宽×高):6.5m×2.8m×1.7m;炉膛尺寸(长×宽×高):7.5m×3.6m×2.8m; 炉车尺寸(长×宽):7.5m×3.0m; 最大净装炉量:50吨(含垫铁); 最高工作炉温:950o C; 温度均匀性:有效加热区内,保温期内≤±10o C; 煤气总管道压力:15KPa; 燃料发热值:焦炉煤气,4000kcal/ Nm3; 最大煤气耗量:480Nm3 / h; 高速烧嘴:SGCW400D-298型,8套; 控温区:8个,每个控温区有一支控温热电偶(K分度)。

热处理代号

铝合金热处理状态代号及意义 代号 名称 说明与应用 F 自由加工状态 适用于在成型过程中,对于加工硬化和热处理条件无特殊要求的产品,该状态产品的力学性能不作规定。 O 退火状态 适用于经完全退火获得最低强度的加工产品。 H 加工硬化状态 适用于通过加工硬化提高强度的产品,产品在加工硬化后可经过(也可不经过)使强度有所降低的附加热处理,H代号后面必 须跟有两位或三位阿拉伯数字 W 固溶处理状态 一种不稳定状态,仅适用于经固溶热处理后,室温下自然时效的合金,该状态代号仅表示产品处于自然时效阶段 T 热处理状态 适用于执处理后,经过(或不经过)加工硬化达到稳定状态的 产品 说明与应用 T0 固溶热处理后,经自然时效再通过冷加工状态 适用于经冷加工提高强度的产品 T1 由高温成型过程冷却,然后自然时效至基本稳定的状态 适用于由高温成型过程冷却后,不再进行冷加工(可矫直、矫平,但不影响力学性能极限)的产品 T2 由高温成型过程冷却,经冷加工后自然时效至基本稳定的状态 适用于由高温成型过程冷却后,进行冷加工或矫直、矫平以提高强度的产品 T3 固溶热处理后进行冷加工,再经自然时效至基本稳定的状态 适用于在固溶热处理后,进行冷加工或矫直、矫平以提高强度的产品 T31 固溶化热处理,并通过一定控制量的拉伸(恒定状态 对于薄板:0.5%至3%,对于板:1.5%至3%,对于轧制的或冷精加工的棒或杆:1%至3%,对于手锻件或环锻件和轧制环:1%至5%),产品在拉伸后,不再作进一步的校直 T3510 固溶化热处理,并通过一定控制量的拉伸(恒定状态 对于挤出的棒,杆,型材和管:1%至3%,对于拉管:0.5%至3%),并自然时效,产品在拉伸后不再做进一步的校直 T3511 除了允许在拉伸后做小量的校直,以便符合标准的公差这一点外,其余方面均于3510相同T352 固溶化热处理,通过压缩产生一个1%至5%的恒定状态的变形,以消除应力,并自然时效。T354 固溶化热处理,通过在精锻模内再冲压至冷态,自然时效

金属材料及热处理工艺常用基础英语词汇翻译对照

金属材料及热处理工艺常用基础英语词汇翻译对照 X线结晶分析法 X – ray crystal analyics method 奥氏体 Austenite 奥氏体碳钢 Austenite Carbon Steel 奥氏铁孻回火 Austempering 半静钢 Semi-killed steel 包晶反应 Peritectic Reaction 包晶合金 Peritectic Alloy 包晶温度 Peritectic Temperature 薄卷片及薄片(0.3至2.9mm厚之片)机械性能 Mechanical Properties of Thin Stainless Steel(Thickness from 0.3mm to 2.9mm)– strip/sheet 杯突测试(厚度: 0.4公厘至1.6公厘,准确至0.1公厘 3个试片平均数)Erichsen test (Thickness: 0.4mm to 1.6mm, figure round up to 0.1mm)贝氏体钢片 Bainite Steel Strip 比电阻 Specific resistivity & specific resistance 比较抗磁体、顺磁体及铁磁体 Comparison of Diamagnetism, Paramagnetic & Ferromagnetism 比热 Specific Heat 比重 Specific gravity & specific density 边缘处理 Edge Finish 扁线、半圆线及异形线 Flat Wire, Half Round Wire, Shaped Wire and Precision Shaped Fine Wire 扁线公差 Flat Wire Tolerance 变态点 Transformation Point 表面保护胶纸 Surface protection film 表面处理 Surface finish 表面处理 Surface Treatment 不破坏检验 Non – destructive inspections 不锈钢 Stainless Steel 不锈钢–种类,工业标准,化学成份,特点及主要用途 Stainless Steel – Type, Industrial Standard, Chemical Composition, Characteristic & end usage of the most commonly used Stainless Steel 不锈钢薄片用途例 End Usage of Thinner Gauge 不锈钢扁线及半圆线常用材料 Commonly used materials for Stainless Flat Wire & Half Round Wire 不锈钢箔、卷片、片及板之厚度分类 Classification of Foil, Strip,Sheet & Plate by Thickness 不锈钢材及耐热钢材标准对照表 Stainless and Heat-Resisting Steels 不锈钢的磁性 Magnetic Property & Stainless Steel 不锈钢的定义 Definition of Stainless Steel 不锈钢基层金属 Stainless Steel as Base Metal 不锈钢片、板用途例 Examples of End Usages of Strip, Sheet & Plate 不锈钢片材常用代号 Designation of SUS Steel Special Use Stainless

热处理炉复习提纲

传热的方式; 1、传导传热 2、对流传热 3、辐射传热描述工件和炉墙的综合传热过程。 工件:工件在热处理电阻炉内加热时,电热体和炉墙以辐射和对流的方式先将热量传给工件表面,然后热量在由工件表面以传导方式传至工件内部,工件加热的快慢是三种传热方式综合作用的结果; 炉墙:在炉内热通过炉墙传到周围的空气中,这一过程包括炉气以对流和辐射的方式传给内壁,内壁又以传导方式传到外壁,外壁则以对流和辐射方式传给周围的空气。 如何判断热处理炉的不同位置发生溢气和吸气; 单位体积炉气的压强能Pg与同一水平面上炉外单位体积空气的压强能Pa之差,称为静压头(hs),即hs=Pg-Pa。hs在数值上等于炉气的相对压强,即表压强,故可直接测得。当hs>0,即炉内压强大于炉外压强时,炉气就向外溢出;相反,当hs<0,即炉内压强小于炉外压强时,冷气就会被吸入炉内。 如何判断炉气的上浮能力 单位体积炉气的位能与同一水平面上炉外单位体积的位能之差,称为位压头(hp),即: 位压头的物理意义是:单位面积上的热炉气所受到的炉外同一水平面上冷空气的浮力大小的量度。(位压头用来分析炉气上浮能力的大小)hs越大,上浮能力越强根据热处理处理条件,从耐火材料的高温化学稳定性等方面解释选材的原因; 耐火材料在高温下抵抗熔渣、熔盐、金属氧化物及炉内气氛等的化学作用和物理作用的性能。例如:制造无罐气体渗碳炉时,高碳气氛对普通黏土砖有破坏作用,炉墙内衬的耐火材料需用Fe2O3小于1%的耐火砖,即抗渗砖;制造电极盐浴时,由于溶盐对耐火材料的冲刷作用,坩埚材料必须采用重质耐火材料或耐火混凝土;电热原件搁砖不得与电热原件材料发生化学作用,对铁铬铝电热原件要用高铝砖作搁砖 陶瓷涂料的作用: 陶瓷涂料的辐射能力强,使炉子升温速度快,炉温均匀,可降低能耗15%~30%。涂料的气孔率低,化学稳定性好,可阻止使耐火材料损坏的各种氧化性气氛扩散渗透,能成倍地提高耐火材料的使用寿命 保温材料的作用: 减少炉子的热损失,提高炉子的热效率,节省能源,降低成本 炉用金属材料的要求: 因炉内构件是在高温下工作,承受一定载荷,并受高温介质的化学腐蚀,要求具有良好的抗高温氧化性和高温强度 如何选择热处理电阻炉的基本类型 1、周期作业炉式热处理电阻炉(这类炉子 结构简单,便于制造,可以完成多种工 艺,适用于多品种,小批量生产) 2、连续作业电阻炉(生产效率高,产品质 量稳定,节约能源,生产成本低,容易 实现机械化与自动化,适用于大批量生 产,但一次性投资大,不易改变工艺 井式电阻加热炉采取什么措施实现炉内的温度均匀 井式电阻加热炉炉膛较深,为了炉膛均匀加热,常分区布置电热元件,各区单独供电并控制温度,还可以在炉盖上装风扇,强迫炉气对流循环,使加热均匀 根据工件的特点等情况选择合适的热处理炉电阻炉; 既要满足工艺及产量要求,又技术先进,经济合理。从以下六个方面考虑: 1.工件的特点(形状,尺寸,质量):加工细长轴类工件,为防止变形宜用井式炉;加工大中型铸、锻毛坯件的退火、正火、回火等处理,宜用台车炉;小型轴承钢球、滚子等则选用滚筒式炉。 2.技术要求:对加热温度、炉膛介质、冷却速度、冷却方式、表面状态、允许变型量等有特殊要求时,如皋合金钢模具淬火需要用高温炉,精加工零件表面要求不氧化则需要保护气氛炉或真空炉(罩式炉),有表面硬度及化学热处理要求的则需渗碳、渗氮炉等。 3.产量大小。生产量大、品种单一、工艺稳定情况下,可考虑使用连续炉;产量不大、

铝合金热处理代号

1.T的细分状态 在字母T后面添加一位或多位阿拉伯数字表示T×的细分状态。 A.在T后面添加0~10的阿拉伯数字,表示的细分状态(称作T状态)如表2-18所示。T后面的数字表示对产品的基本处理程序。 表2-18 T×细分状态代号说明与应用 状态代号说明与应用 T0 固溶热处理后,经自然时效再通过冷加工的状态。适用于经冷加工提高强度的产品 T1 由高温成型过程冷却,然后自然时效至基本稳定的状态。适用于由高温成型过程冷却后,不再进行冷加工(可进行矫直、矫平,但水影响力学性能极限)的产品 T2 由高温成型过程冷却,经冷加工后自然时效至基本稳定的状态。适用于由高温成型过程冷却后,进行冷加工、或矫直、矫平以提高强度的产品。 T3 固溶热处理后进行冷加工,再经自然时效至基本稳定的状态。适用于在固溶热处理后,进行冷加工、或矫直、矫平以提高强度的产品。 T4 固溶热处理后自然时效至基本稳定的状态。适用于在固溶热处理后,不再进行冷加工(可进行矫直、矫平,但水影响力学性能极限)的产品 T5 由高温成型过程冷却,然后进行人工时效的状态适用于由高温成型过程冷却后,不经过冷加工(可进行矫直、矫平,但水影响力学性能极限)。予以人工时效的产品。 T6 固溶热处理后进行人工时效的状态。适用于在固溶热处理后,不再进行冷加工(可进行矫直、矫平,但水影响力学性能极限)的产品 T7 固溶热处理后,进行过时效的状态。适用于在固溶热处理后,为获取某些重要特性,在人工时效时,强度在时效曲线上越过了最高峰点的产品。 T8 固溶热处理后经冷加工,然后进行人工时效的状态。适用于经冷加工、或矫直、矫平以提高强度的产品。 T9 固溶处理后人加工时效,然后进行冷加工的状态。适用于经冷加工提高强度的产品K T10 由高温成型过程冷却后,进行冷加工,然后人工时效的状态。适用于经冷加工、或矫直、矫平以提高强度的产品。注:某些6×××系的合金,无论是炉内固熔热处理,还是从高温成型过程急冷以保留可溶性组分在固溶体中,均能达到相同的固溶热处理效果,这些合金的T3、T4、T5、T6、T7、T8、T9状态可采用上述两种处理方法的任一种。 B.在T×状态代号后面再添加一位阿拉伯数字(称作T××状态),或添加两位阿拉伯数字(称7A(K h0B)A-q6B h\ 作T×××状态),表示经过了明显改变产品特性(如力学性能、抗腐蚀性能等)的特定工艺处理的状态,如表2-19所示。 表2-19 T××及T×××细分状态代号说明与应用 状态代号说明与应用 T42 适用于自O或F状态固溶热处理后自然时效到充分稳定状态的产品,也适用于需方对任何状态的加工产品热处理后,力学性能达到了T42状态的产品 T62 适用于自O或F状态固溶热处理后,进行人工时效的产品,也适用于需方对任何状态的加工产品热处理后,力学性能达到了T62状态的产品 T73 适用于固溶热处理后,经过时效已达到规定的力学性能和抗应力腐蚀性能指标的产品(M A e ` `'r*V6A n L T74 与T73状态定义相同。该状态的抗拉强度大于T73状态,但小于T76状态 T76 与T73状态定义相同。该状态的抗拉强度分别高于T73、T74状态,抗应力腐蚀断裂性能分别低于T73、T74状态,但其抗剥落腐蚀性能仍较好r j A _ M y } T7×2 适用于自O或F状态固溶热处理后,进行人工时效处理,力学性能和抗腐蚀性能达到了T7×状态的产品 T81 适用于固溶热处理后,经1%左右的冷加工变形提高强度,然后进行人工时效的产品 T87 适用于固溶热处理后,经7%左右的冷加工变形提高强度,然后进行人工时效的产品 2.原状态代号相应的新代号见表2-20。

相关主题
文本预览
相关文档 最新文档