当前位置:文档之家› 数量遗传学习知识点情况总结

数量遗传学习知识点情况总结

数量遗传学习知识点情况总结
数量遗传学习知识点情况总结

第一章绪论

一、基本概念

遗传学:生物学中研究遗传和变异,即研究亲子间异同的分支学科。数量遗传学:采用生物统计学和数学分析方法研究数量性状遗传规律的遗传学分支学科。

二、数量遗传学的研究对象

数量遗传学的研究对象是数量性状的遗传变异。

1.性状的分类

性状:生物体的形态、结构和生理生化特征与特性的统称。如毛色、角型、产奶量、日增重等。

根据性状的表型变异、遗传机制和受环境影响的程度可将性状分为数量性状、质量性状和阈性状3类。

数量性状:遗传上受许多微效基因控制,性状变异连续,表型易受环境因素影响的性状,如生长速度、产肉量、产奶量等。

质量性状:遗传上受一对或少数几对基因控制,性状变异不连续,表型不易受环境因素影响的性状,如毛色、角的有无、血型、某些遗传疾病等。

阈性状:遗传上受许多微效基因控制,性状变异不连续,表型易受或不易受环境因素影响的性状。有或无性状:也称为二分类性状(Binary traits)。如抗病与不抗病、生存与死亡等。分类性状:如产羔数、产仔数、乳头数、肉质评分等。

必须进行度量,要用数值表示,而不是简单地用文字区分;

要用生物统计的方法进行分析和归纳;

要以群体为研究对象;

组成群体某一性状的表型值呈正态分布。

3.决定数量性状的基因不一定都是为数众多的微效基因。有许多数量性状受主基因(major gene)或大效基因(genes with large effect)控制。

果蝇的巨型突变体基因(gt);小鼠的突变型侏儒基因(dwarf, df);鸡的矮脚基因(dw);美利奴绵羊中的Booroola基因(FecB);牛

的双肌(double muscling )基因(MSTN );猪的氟烷敏感基因(RYR1)

三、数量遗传学的研究内容

数量性状的数学模型和遗传参数估计;选择的理论和方法;交配系统的遗传效应分析;育种规划理论。 四、数量遗传学与其他学科间的关系

理论基础奠定:孟德尔遗传学+数学+生物统计学 理论体系完善:与群体遗传学关系最为密切;

学科应用:与育种学最为密切,是育种学的理论基础和方法论; 学科发展:与分子生物学、生物进化学、系统科学和计算机科学密切结合,并产生了新的遗传学分支学科,如分子数量遗传学等。 五、数量遗传学与群体遗传学的关系 群体遗传学以孟德尔定律为依据,分析群体内控制质量性状的主基因的活动及其消涨规律,着重于基因频率变化规律的探讨。其基本原理可用于育种学中质量性状的遗传改良。

数量遗传学着重分析群体数量性状的遗传变异规律,主要研究群体内控制数量性状的多基因的数量效应。其重点在于通过统计分析估计各种遗传变异的数量参数,进而用于育种学中数量性状的遗传改良。

第二章 数量遗传学基础

第一节 均数与方差

一、数量性状表型值的剖分

数量性状的表型值,即观察值,是由遗传与环境共同作用的结果,即 P = G + E + IGE 其中,P 为表型值,G 为基因型值,E 为环境偏差,IGE 为遗传与环境效应间的互作。 通常,假定遗传与环境间不存在互作,即IGE=0,则有:P = G + E 基因型值G 是由基因的加性效应(additive effect, A )、显性效应(dominant effect, D )和上位互作效应(epistatic interaction, I )共同作用的结果。假定3种遗传效应间的互作为0,则G = A + D + I 式中的D 和I ,由于世代传递中的分离和重组,不能真实遗传,因而在育种中不能被固定;而加性效应值A 则能稳定地遗传给后代,因此,育种中又称之为育种值。

二、表型值:一个多基因系统控制的数量性状能够直接度量或观察的数值。 基因型值:表型中由基因型决定的那部分数值。环境偏差: 表型值与基因型值的离差。加性效应:等位基因间和非等位基因间的累加作用引起的遗传效应。显性效应:同一基因座上等位基因间的互作所产生的遗传效应。上位效应:不同基因座间非等位基因相互作用所产生的遗传效应。 环境偏差又可剖分为一般环境偏差Eg 和特殊环境偏差Es ,即E = Eg + Es ,综上所述,有:P = G + E = A + D + I + Eg + Es ,从育种学角度来看,上式中,只有A 可以真实遗传,通常将A 和D 合并到环境偏差中,称为剩余值(residual value, R ),即:P=A+R

0D I E ===∑∑∑

大群体中,D 、I 和E 的值有正有负,则:

三、一般环境:是指影响个体全身的、时间上是持久的、空间上是非局部的环境。例如奶牛在生长发育早期营养不良,生长发育受阻,成年后无法补尝,影响是永久的。

特殊环境:是指暂时的或局部的环境。例如,成年奶牛因一时营养条件差而泌乳量减少,但如果环境有了改善,其产量仍可恢复正常。 永久性环境:对某一特定个体的性能产生持久影响,而且是以相似的方式影响一个个体的每个记录的环境。

暂时性环境:只对某一特定性能产生影响的环境。

永久性环境和暂时性环境的剖分,是针对重复测定性状而言的。 群体的平均表型值就等于平均基因型值,也等于平均育种值。 四、群体平均值 显性水平与显性度

设一对等位基因A 1、A 2的频率分别为p 和q ,三种基因型A 1A 1、 A 1A 2 、A 2A 2的基因型值分别为+a 、d 、和-a 。其中d 决定于基因的显性程度大小,即显性水平。 基因型值的标准尺度

不同显性水平下的d 值

群体平均值的计算 注意:

①用上式计算出的群体平均基因型值也

等于群体的平均表型值(各基因型值是以与两纯合子平均值的离差度量的);

②涉及多个基因座时,根据加性原理,由多个基因座产生的群体平均值是各基因座各自贡献之和,即: MP =∑a (p - q) +2∑pqd

五、基因的平均效应 概念:在一个群体内,携带某一基因的配子,随机和群内的配子结合,所形成的全部基因型的均值与群体平均基因型值的离差。 计算:设A 1、A 2基因的平均效应值分别为

α1、α2,A 1可以与A 1、显性水平 显性基因 d

负向超显性 负向完全显性 负向部分显性 无显性 正向部分显性 正向完全显性 正向超显性 A2 A2 A2 无 A1 A1 A1 d < -a

d = -a

0>d>

-a

d = 0

0

a

d = a

d > a 基因型 基因型频率(f ) 基因型值 (x ) 频率×基因型值(fx ) A 1A 1 p 2 +a p 2a A 1A 2 2pq d 2pqd A 2A 2 q 2 -a -q 2a 群体平均值= ∑基因型频率×基因型值 M = ∑fx =[ p 2a+2pqd+q 2 (-a) ]=a (p - q) + 2pqd P G E P G N N N ==+=∑∑∑即: 而: A D I A G A N N N N

=++==∑∑∑∑故: P G A ==

A 2 形成两种基因型A 1A 1、A 1A 2,其均值为pa+qd ;同样A 2可以与A 1、A 2形成两种基因型A 1A 2、A 2A 2,其均值为pd –qa 。 基因平均效应的计算:配 子 产生基因型的频率 基因型平均值

A 1A 1(a) A1A 2(d) A 2A 2(-a )

A1 p q - pa+qd A 2 - p q pd-qa α1 =[ pa + qd ]-[ a (p - q)+2pqd ] =q [a+d (q -p) ]

α2 =[ pd - qa ]-[ a (p - q) +2pqd ]=-p [a+d (q -p) ]

基因替代的平均效应(两个平均效应之差)

设α1与α2之差为,即:α=α1-α2=a +d (q - p),于是:

α1=α+α2=q α;α2=α1-α=-p α;α被称为基因替代的平均效应 六、育种值(BV )

概念:育种值即加性遗传效应值,为组成某一基因型的两个等位基因平均效应之和。

计算:A (A 1A 2) =2α1= 2q α; A (A 1A 2) =α1+α2= (q - p)α; A (A 1A 2) =2α2 = -2p α

说明:育种值是用群体平均值的离差表示的;一个HW 平衡的大群体,平均育种值等于0,即:ā=ΣfA=2p 2q α+2pq (q - p)α-2q 2p α=2pq α(p+q-p-q)=0;如用绝对值表示,则平均育种值等于平均基因型值,也等于平均表型值。

七、显性离差(显性遗传效应) 概念:考虑一个基因座时, 特定基因型值G 与育种值A 之差, 称为显性离差,常用D 表示。

计算:将各基因型值表示为与群体平均值的离差:

G d (A 1A 1) = a-M =2q(α-qd);G d (A 1A 2) = d- M =(q-p)α+2pqd ; G d (A 2A 2) =-a- M =-2p(α+pd) D = Gd-A ,有D (A 1A 1) = Gd (A 1A 1)–A (A 1A 1) = -2q 2d ;D (A 1A 2) = Gd ()–A () = 2pqd ;D () = Gd ()–A () = -2p 2d

说明:所有基因型的显性离差都是d 的函数;在一个HW 平衡群体中,

基因型 A 1A 1 A 1A 2 A 2A 2 频率(f ) p 2 2pq q 2 基因型值(G) +a d -a

离差基因型值 (Gd) 或 2q (a-pd) a(q-p)+d(1-2p q) -2p (a+qd) 2q (α-qd) (q-p)α+2pqd -2p (α+pd)

育种值(A) 2q α (q - p)α -2p α 显性离差(D) -2q 2d 2pqd -2p 2d

平均显性离差值为0,即:D=ΣfD= -2p2q2d + 4p2q2d - 2p2q2d= 0

八、上位互作离差

如果考虑两个以上的基因座, 基因型值可能包含基因座间非加性组合产生的互作离差。令G A和G A分别为A、B二基因座的基因型值,则I AB为两个基因座基因的互作离差,即:G = G A + G B + I AB

由于数量性状涉及的基因座很多,互作的情况相当复杂,难以将各单一基因间的作用都区分开来。就一群体而言,∑I = 0。

九、数量性状表型方差的剖分

假定,遗传效应间、环境效应间及遗传及环境效应间无互作,即不考虑协方差的情况,则:V P = V G + V E=V A + V D + V I + V Eg + VEs 式中,V G称为基因型方差,V A称为加性遗传方差,V D称为显性方差,V I称为互作方差,V D+V I=V NA称为非加性遗传方差,VE称为环境方差。V Eg和VEs分别为一般和特殊环境方差。

育种值方差:V A=ΣfA2=p2 (2qα)2 + 2pq [(q-p)α]2 + q2 (-2pα)2 =2pqα2 =2pq[a+d(q-p)]2

显性遗传方差:V D=∑fD2= p2(-2q2d)2+ 2pq (2pqd)2+ q2 (-2p2d)2 = (2pqd)2

基因型值方差:若d = 0,即无显性时,VG = VA = 2pqα2

若d = a,即完全显性时,

V G = V A + V D= 8pq3a2+ 4p2q2a2= 4p2q2a2(1+q)

若0

V G = V A + V D= 2pq[a+d(q-p)]2 + [2pqd]2

均数、方差与协方差

第二节数量性状的遗传机制微效多基因假说

一、多基因:数量性状是由许多基因的联合效应控制的。

微效基因:控制数量性状的基因效应,绝大多数是微小的。

加性基因:控制数量性状的基因效应是加性的,共同作用于性状。无显性基因:微效基因间缺乏显性,或为共显性。对于这些基因,有时用大小写表示,大写表示增效,小写表示减效。但不表示显隐性。以上对数量遗传基础的解释可以用无穷小位点模型概括,该模型假定:控制性状的基因座很多(实际上是无穷多);每个基因座的效应无穷小;各基因座不连锁且不具上位效应。

二、数量性状基因座:Geldermann (1975) 引入数量性状基因座这一概念来描述控制数量性状的基因。

基本概念:

数量性状基因座(QTL):控制数量性状的基因在基因组中的位置,

控制数量性状的单个基因或染色体片段。

经济性状基因座(ETL):控制经济性状的基因在基因组中的位置,控制经济性状的单个基因或染色体片段。

对QTL的进一步说明:

用DNA分子标记技术,对QTL的研究表明,一个数量性状的QTL 并不很多,一般为4~8个。

QTL的效应(a)大小用两种对应纯合子基因型值之差的一半来度量,即a=(AA-aa)/2,当a为0.5个标准差(SD)时被认定为该QTL 具有中等遗传效应。

一般认为,只有QTL效应a>0.5SD时才有进行定位研究的价值。多数QTL既有加性效应也有显性效应。以加性效应为主,显性效应较小。超显性效应和上位效应只有在少数的QTL中才存在。

三、主基因:

主基因是指能对数量性状(或阈性状)的表型值产生较大效应的单个基因或基因座。

它是相对于数量性状的微效基因而言的。一般认为一个主基因的遗传效应应该大于1个表型标准差。

主基因的存在及其在群体中的频率会对遗传参数产生显著的影响。对于遗传力较低的性状和需要进行间接选择的性状,在选择时利用主基因就会显著加大选择反应。

四、QTL和主基因的检测方法

1.分离分析法基本原理:对性状的遗传模式作出不同假设,如微效多基因模型、微效多基因-主基因混合效应模型等;计算不同模型下观察值的似然函数;通过比较不同模型下的似然函数值判断群体中是否有主基因或QTL存在。

2.候选基因法基本原理:根据生理生化理论和对数量性状的剖析以及在其他物种中发现的控制某些性状的基因,选定一些候选基因;研究这些基因和相关的DNA标记对某种数量性状的遗传效应;筛选出对该数量性状有影响的主基因和DNA标记,并估计出对数量性状的效应值。

3.基因组扫描法也称为标记-QTL连锁分析,是基于遗传标记等位基因与QTL等位基因之间的连锁关系,通过对遗传标记从亲代到子代遗传过程的追踪、它们在群体中的分离以及与数量性状表型间关系的分析,来判断是否有QTL存在、它们在染色体上的相对位置以及其效应大小。该方法检测QTL的效率较高,是目前QTL检测的主要方法。

五、几个重要的主基因

1.牛的双肌基因(MSTN/GDF8) 肌肉过分生长;饲料效率提高;难产;常染色体隐性(2q12-q22)

2.猪的恶性高温综合征(MHS)基因(RYR1) 应激/氟烷敏感性加强;产生PSE肉,pH24降低;提高瘦肉量;常染色体隐性(6p11-q21)

3.猪的Rendement Napole (RN)基因(PRKAG3) 加快生长,

A1A 2 A1A 3

A1A 3 A1A 2

A1 A1 A1 A2

A1 A2

A1

A2 IB

D

提高胴体中的瘦肉含量;降低系水力和pH24;提高肌肉中的糖原含

量;常染色体显性(15q2.1);也称为酸肉基因或Hampshire效应

4.猪的抗水肿基因(α-1岩藻糖转移酶基因FUT1) 与大肠杆菌

F18受体(ECF18R)基因座连锁;抗F18大肠杆菌菌株;常染色体

隐性(6q11)

第三节亲属间相关分析

一、亲属间相关的分类

亲属间的表型相关:亲属间性状表型值的相关,包括遗传相关和环境

相关两部分。

亲属间的遗传相关:亲属间的亲缘相关程度,因亲属个体具有共同祖

先而产生,用来自共同祖先的概率计算,与性状无关系。

亲属间的环境相关:主要是指由共同环境造成的亲属间的相似性程

度。

共同环境效应:是指不同的动物组(如家系)在同一环境条件下而产

生的相似性的增加。它可以严重影响遗传协方差估值的准确性。

共同环境效应的主要来源

母体效应:因同一母体环境而造成的后代与母亲以及后代间相似性的

增加。这一效应可能会持续到断奶后较长一段时间,因此,遗传评估

时,往往要考虑母体效应,并将其称作母体永久环境效应。

采食竞争:是一种不利的共同环境效应,往往造成亲属间负的协方差,

即导致相似性的降低。

二、亲属间的遗传协方差

遗传协方差:为两个有亲缘关系个体的基因型值Gx和Gy间的协方

差。

同源相同(IBD)基因与同态基因

IBD基因:亲属个体共享的来自某一共同祖先的等位基因。

同态基因:也称为同类基因,状态相同,但不一定来自同一共同祖先。

IBD 基因同态与同源相同

A1A2 A2A3

A1A3 A1A2

()/2,βφφλφφ''=+= IBS IBD 三、遗传协方差的计算公式

利用亲属个体间基因同源的概率和基因效应,即对遗传协方差的贡献,可计算它们间的遗传协方差。

若不考虑互作,则:

若进一步不考虑显性效应,则:

其中,β= 1/2(两个个体共享1个IBD 基因的概率) +(两个个体共享2个IBD 基因的概率 λ=两个个体共享2个IBD 基因的概率 四、举例 全同胞(Full sibs )

Pr (2个IBD 基因) =来自父亲IBD 基因的概率×来自母亲IBD 基因的概率=1/2×1/2=1/4

Pr (0个IBD 基因) =来自父亲非IBD 基因的概率×来自母亲非IBD 基

因的概率=1/2×1/2=1/4 Pr(1个IBD 基因) =1- Pr (2个IBD 基因)- Pr (0个IBD 基因) =1-1/4-1/4=1/2 ∴β=1/2*1/2+1/4=1/2,λ=1/4。即: 半同胞(Half sibs )

Pr (2个IBD 基因) =1/2×0 (或0×1/2)=0 Pr (0个IBD 基因) =1/2×1=1/2 Pr (1个IBD 基因) =1-0-1/2=1/2 ∴β=1/2*1/2=1/4,λ=0 。即:

亲子(Offspring and one parent ) Pr (2个IBD 基因) =0 (不可能共享2个IBD 基因) Pr (0个IBD 基因) =0 (不可能不共享IBD 基因) Pr (1个IBD 基因) =1 (只可能共享1个IBD 基因) ∴β=1/2×1+0=1/2,λ=0 。即: 计算β和λ的另外方法 公式

其中, 和 是两个个体父系基因和母系基因为同源相同的概率。

举例 全同胞关系示意图

S (e ,f ) D (g ,h ) X (a ,b ) Y (c ,d ) 全同胞关系示意图中,S 和D 分别为父亲和母亲,括号中前面的小写字母表示父系基因,后面的表示母系基因。假定S 和D 是非近交个体,则 因此有:

2222222(,)G x y A D AA AD DD Cov βσλσβσβλσλσ=+++++???22(,)G x y A D Cov βσλσ=+2

(,)G x y A

Cov βσ=2

2),(4/12/1D A y x G Cov σσ+=2

),(4/1A

y x G Cov σ=2

),(2/1A

y x G Cov σ=φ?'

(e f )(g h)0P P ====(a c)(a e c)(a g c)1/41/41/2(b d)(b f d)(b h d)1/41/41/2P P P P P P Φ=====+===+='Φ=====+===+=

若X 和Y 为父系半同胞,则Φ'=0。因此有: 思考题

1.名词解释:表型值、基因型值、环境偏差、加性效应、显性效应、上位效应、一般环境、特殊环境、永久环境、临时环境、共同环境、QTL 、主基因、IBD 基因、遗传协方差、母体效应

2.数量性状的表型值如何剖分?

3.什么是基因的平均效应和基因替代的平均效应?

4.什么是育种值、显性离差和互作离差?

5.数量性状的表型方差如何剖分?

6.微效多基因假说的要点是什么?

7.主基因和QTL 检测的常用方法有哪些?

第三章 重复力

一、遗传参数概述

参数:是大量同类数量现象的概括,是某些规律的量化特征。

遗传参数:是数量遗传学的基本内容,也是各种育种方法和技术得以实施的基础。

遗传参数包括遗传力、重复率和遗传相关。 三个遗传参数反映了数量性状的三种重要关系。 遗传力反映性状遗传与环境的关系;

重复力(率)反映同一性状各次度量值间的关系; 遗传相关表明性状与性状间的遗传关系。 3.设计选择方案 2.育种群中,方差和协方差已随时1.同。如产奶量、产仔数、产毛量等。2.就某一性状而言,究竟需要度量多少次就能代表个体的真正生产力?3.不同次记录间有多大相似程度呢?4.只有一次记录的性状,重复力为0。如屠宰率、鸡的开产日龄等。 概念2:从遗传上讲:是遗传方差和永久环境方差占表型方差的比例。

单次和重复记录情况下,环境效应的对应关系

单次记录重复记录

一般环境效应(V EG)永久环境效应(V EP)

特殊环境效应(V ES)暂时环境效应(V ET)

概念3:从统计学估计方法上讲,重复力是以个体多次度量值为组的组内相关系数。

若每次记录都相同,组内相关系数为1,重复力也等于1。

若各次记录很不一致,几乎没有关系,则重复力接近于0。

重复力的取值范围为0≤re≤1。可将re分为3类:

高重复力中等重复力低重复力

re≥0.60 0.30≤re<0.60 re<0.30

二、组内相关系数

1.组内相关系数是指组内(有某种特定联系的)多组数据两两之间的平均相关系数。

2.这里的组可以是个体,也可以是家系。

3.若以个体分组,则每组数据就是一个个体的多次度量值(不同生产周期的度量值)。

4.若以家系分组,则每组数据就是一个家系内各个个体的度量值。

5.组内相关系数可通过计算方差和协方差得到。

第二节重复力的估计原理和方法

一、重复力的估计:重复力只能用统计学方法估计,即重复力是以个体多次度量值为组的组内相关系数。

如有n个家系,每个家系有k个成员,家系及个体组成如下:

家系1:x11,x12,…x1k

家系2:x21,x22,…x2k

家系n:x n1,x n2,…x nk 由此列出方差分析表如下:

22

()() B

x x SS

k N

=-

∑∑∑∑

SSW 为组内平方和,且有:

其中,N 为总的个体数,即: 表中,k

若每个家系的度量次数不等,则需用下式计算加权平均度量次数k :

于是,重复力可用如下公式计算:

二、重复力估值的显著性检验

实质:对组内相关系数的显著性检验 原理:t 检验 方法:

计算抽样标准误: 计算 t 值:

t 检验(自由度为df B): 比较 t 值与t 0.05, df B 即可。

举例:下表中列有5头母猪的产仔数,试估计猪产仔数的重复力,并检验其显著性。

三、估

计步骤

1. 计算有关总和及平方和等中间数据(上表右侧各列);

2. 计算组间和组内平方和; 1

(1)(1)B W

W B B W e B W W B B W MS MS df SS df SS r MS k MS df SS k df SS -?-?==+-?+-?re S =222()()2642856.868.96

25

B x x SS k N =-=-=∑∑∑∑2

2

()29202856.863.20

W

x SS x k

=-

=-=∑∑∑∑re re t S =

3. 计算组间和组内自由度;

4. 计算组间和组内均方;

5. 计算加权 k 值;

6. 计算重复力估值;

7. 计算组内相关系数的标准误; 8. 作 t

检验; 因而 t 值不显著。 9. 结果:母猪产仔数的重复力为0.473±0.242。 四、重复力估值的含义: 估值高,说明性状受暂时性环境效应影响小,每次度量值的代表性强,所需度量次数就少; 估值低,说明性状受暂时性环境效应影响大,每次度量值的代表性差,所需度量次数就多。

第三节 重复力的用途

1.确定性状需要度量的次数 设某一性状度量 k 次,这 k 次度量值的平均数为P(k),则其方差为: 式中,特殊环境方差之所以用 k 去除,是因为k 次不同的度量中,只有特殊环境方差受影响。

将(1)、(2)式代入VP (k)得:

1514

B df n =-=-=(1)25520W df n k nk n =-=-=-=63.20 3.1620W W

W SS MS df ===68.9617.244B B B SS MS df ===21

11

()11129()(25) 4.9615125

n

i n

i n i k k k n k =-=-=--∑

17.24 3.16

0.473(1)17.24(4.961) 3.16

B W B W MS MS re MS n MS --===+-+-?(1)[1(1)]

re re k re S -+-=

0.05,4

0.473

1.99

2.020.242

re re t t S ===<=()Es Eg G

P k V V V V k =++()P k V s (1)(2)P E re V =-?P P Es ∴()[1(-1)](1)P P

P P k k re V e k

re V V r V k +=-=?+()

1(-1)P

P k k k re V V +=

上式可作为衡量不同度量次数相对准确度的一个指标

当重复力较低时,需要度量多次;而当重复力较高时,只需度量少数几次即可。

2.综合评定家畜的育种值

在 两边同除以VP ,且同乘以VA 得:

式中, (遗传力)。若称 为k 次记录的均值遗传力,则: 如家畜个体有 k 次记录,于是可以根据 k 次记录的均值进行综合遗传评定。其育种值为: 式中, =全群度量值的平均值;

=第i 个个体ki 次度量值的平均值; =第i 个个体的度量次数。 3.估计个体的最大可能生产力

上式的左手项可称为re (k),即k 次记录均值的重复力。

而个体的最大可能生产力(most probable producing ability )定义为(Lush, 1937):

式中, =全群度量值的平均值; =第i 个个体ki 次度量值的平均值; =第i 个个体的度量次数。 利用多次度量值评定个体生产力时,准确性的提高可用下式给出: 4.判断遗传力估计的正确性 重复力可以作为衡量遗传力估计准确度的一个指标

根据重复力的定义: 根据遗传力的定义:

(狭义) (广义) 因为,一般情况下,V G +V EP >V G 或V A ,所以,r e 总大于H 2或h 2,即重复力是遗传力的上限,遗传力不可能大于重复力,否则,估计有误。 思考题 1.数量遗传学的三个重要遗传参数是什么?分别反映了数量性状的哪三种关系? ()1(-1)P

P k k k re V V +=()1(-1)A P

A P k V k

k re V V V ?+=2

A P h V V =()

2k A P k V h V =1(-1)22

k k h h k re ?+=?()2i k i

A P h X -P =+P i X i k ()

,1(-1)A G Eg P

P

A

P k V k V +V =re V k re V

V V ??+=且()

()1(-1)1(-1)G Eg

G Eg e

e P e

P k V +V k V +V kr 1=

k r V k r V ∴

?++=()?()()1(-1)i e k i i i e k r MPPA P re X -P P X -P k r =+=++P i X i k 1(-1)1i e i k r Gain in accuracy k +=-(准确度)P

G E e P

V V r V +=2A P V h V =2

G P V H V =

2.估计遗传参数的目的是什么?

3.什么是重复力?

4.重复力的取值范围和分类。

5.什么是组内相关系数?

6.估计重复力时,如何进行方差分析?

7.重复力估值的高低说明什么问题?

8.重复力有哪些用途?

9.什么情况下,遗传力估值可能高于重复力?

第四章 遗传力

第一节 通径分析(Path analysis )

一、通径分析概述

两个变量间的关系及其统计分析:

因果关系:原因已知,结果未知:通径分析; 原因未知,结果已知:回归分析; 平行关系:相关分析。

通径分析是以图解方式阐明变量(性状)之间关系的一种统计方法 通径分析中变量间的关系

因果关系:用单箭头线表示,方向由因到果,称为通径线 平行关系:用双箭头线表示,称为相关线 每条线的相对重要性称为系数 通径线的系数称为通径系数 相关线的系数称为相关系数 通径分析中各变量间的关系示例 猪的屠宰体重(Y )、生长速度(X1)、4月龄体重(X2)、饲养条件

(X3)关系如下:

Y 由X1和X2决定,Y 为依变量、 X1 和X2为自变量,且其间为平行关系。 而X1和X2又由X3决定。

X1和X2到Y 的单箭头线为通径线, X1和X2间的双箭头线为相关线。

二、通径系数的概念:通径系数就是标准化的回归系数,多变量情况下,为标准化的偏回归系数。

1.通径系数下标中依变量在前,自变量在后,二者用点号分开。

2.通径系数没有单位。

3.只有两个变量时,通径系数等于相关系数。

三、决定系数的概念:一个自变量到依变量通径系数的平方称为该自

x

y x y x

y σP =b σ??2

y x y x d =P ??

变量对依变量的决定系数(determination coefficient)。决定系数用d表示,下标表示方法与通径系数相同。

两个自变量间相关系数与它们各自到依变量的通径系数乘积的2倍,称为该两个自变量共同对依变量的决定系数。

四、通径系数的性质

性质1:当一个后果的诸原因互不相关时,

1.各原因对此后果的各决定系数之和等于1;

2.各原因到此

后果的通径系数等于该原因与该后果间的关系数。

例如:d y.x1+d y.x2=1 :

P y.x1=r y.x1, P y.x2=r y.x2

当原因大于2个时:∑dy.xi =1 P y.xi=r y.xi

性质2:当后果的直接和间接原因均无相关时,

1.间接原因到后果的通径系数等于该间接原因到后果的通径链所组成的全部通径系数之乘积;

2.直接原因到后果的决定系数等于该直接原因的各个间接原因到该后果间的决定系数之和。

例如:P y.x3 = P y.x1×P x1.x3 ,P y.x4 = P y.x1×P x1.x4,d y.x1 = d y.x3 + d y.x4

性质3. 1:当有两个后果时,两个后果有一个共同原因,而每一后果的诸原因间又无相关时,该后果间的相关系数就等于此共同原因分别到两后果的通径系数之乘积;

例如:r x1x2=r x2x3=r x1x3=0

r y1y2 = P2×P'2

2:对于两个后果,当一个后果的诸原因中的一个原因与另一后果的诸原因中的一个原因相关时,这两个后果的相关等于这两个相关原因间的相关系数乘以它们分别到两后果的通径系数;

例如:r y1y2 =r x2x3×P2×P 3

3:对于两个后果,当具有两个以上的共同原因时,两个后果间的相关系数就等于各个共同原因分别到两后果的通径系数的乘积之和;例如:r y1y2 = P2×P2'×+P3×P3'

121212

2

y x x x x y x y x

d=r P P

???

2A A P A R V V h V V V ==+2G G

P G E V V H V V V ==+

性质4. 1:一个后果的诸原因间如有相关,则后果与一个原因间的相关等于该原因到后果的通径系数加上该原因与其他原因的相关乘以相关原因到后果的通径系数之和。

例如: r y1.x1=P 1+r 12×P 2+r 13×P 3

2:当一个后果的诸原因间有相关时,各原因对后果的决定系数之和加上相关的原因共同对后果的决定系数等于1。

例如: d y.x1 + d y.x2 + d y.x1x2=1

性质5:两个变量间的相关系数等于连接它们的所有通径链的系数之和,而各通径链的系数就等于组成该通径链的全部通径线和相关线的系数之乘积。

例如: r y1y2 = P 2×P 2'+P 3×P 3' + P 2×r 23×P 3'+ P 3×r 23×P 2'

第二节 遗传力的概念

1.广义遗传力

遗传(或基因型值)方差占表型方差的比例

反映一个性状受遗传效应影响有多大,受环境效应影响多大。 2.狭义遗传力

加性遗传(或育种值)方差占表型方差的比例

反映一个性状受加性遗传效应影响有多大,受环境效应影响多大。 在育种上具有重要意义,一般情况下所说的遗传力就是指狭义遗传力。

3.实现遗传力

选择数量性状时,亲代的选择效果(选择差)能遗传给后代的比例式中,R为选择反应,即子代的平均表型值与全群平均表型值之差;S为选择差,即选留群的平均表型值与候选群(全群)平均表型值之差。

实际上通常是通过遗传力来预测选择反应大小。

数量遗传学知识点总结

第一章绪论 一、基本概念 遗传学:生物学中研究遗传和变异,即研究亲子间异同的分支学科。数量遗传学:采用生物统计学和数学分析方法研究数量性状遗传规律的遗传学分支学科。 二、数量遗传学的研究对象 数量遗传学的研究对象是数量性状的遗传变异。 1.性状的分类 性状:生物体的形态、结构和生理生化特征与特性的统称。如毛色、角型、产奶量、日增重等。 根据性状的表型变异、遗传机制和受环境影响的程度可将性状分为数量性状、质量性状和阈性状3类。 数量性状:遗传上受许多微效基因控制,性状变异连续,表型易受环境因素影响的性状,如生长速度、产肉量、产奶量等。 质量性状:遗传上受一对或少数几对基因控制,性状变异不连续,表型不易受环境因素影响的性状,如毛色、角的有无、血型、某些遗传疾病等。 阈性状:遗传上受许多微效基因控制,性状变异不连续,表型易受或不易受环境因素影响的性状。有或无性状:也称为二分类性状(Binary traits)。如抗病与不抗病、生存与死亡等。分类性状:如产羔数、产仔数、乳头数、肉质评分等。 必须进行度量,要用数值表示,而不是简单地用文字区分; 要用生物统计的方法进行分析和归纳; 要以群体为研究对象; 组成群体某一性状的表型值呈正态分布。 3.决定数量性状的基因不一定都是为数众多的微效基因。有许多数量性状受主基因(major gene)或大效基因(genes with large effect)控制。 果蝇的巨型突变体基因(gt);小鼠的突变型侏儒基因(dwarf, df);鸡的矮脚基因(dw);美利奴绵羊中的Booroola基因(FecB);牛的双肌(double muscling)基因(MSTN);猪的氟烷敏感基因(RYR1)三、数量遗传学的研究内容

遗传学知识点

《现代遗传学》内容整理 第二章遗传学三大基本定律 一、内容提要: 分离定律、自由组合定律、连锁与互换定律是遗传学的三大基本定律。 二、知识点: 1,人ABO血型-复等位基因 2,完全连锁:同一条染色体上的基因,以这条染色体为单位传递,只产生亲型配子,子代只产生亲型个体。 不完全连锁:连锁基因间发生重组,产生亲型配子和重组型配子,自交和测交后代均出现重组型个体。 3,交换(crossing over)与交叉(chiasma):遗传学上把在细胞减数分裂前期Ⅰ,联会的同源染色体发生非妹妹染色单体片段的互换称为交换。交换导致在双线期—终变期表现染色体的交叉现象。交叉是发生交换的细胞学证据。 4,端粒的作用:保护染色体不被核酸酶降解;防染色体融合;为端粒酶提供底物,保证染色体的完全复制。 5,常染色质(euchromatin)区:碱性染料着色浅而均匀、螺旋化程度低;主要是单一序列DNA和中度重复序列DNA;是基因活性区,具有转录和翻译功能。 异染色质(heterochromatin):指在细胞间期呈凝缩状态,而且染色较深,很少进行转录的染色质。其特点:1.在细胞间期处于凝缩状态 2.是遗传惰性区,只含有不表达的基因 3.复制时间晚于其他染色质区域异染色质又可分为结构异染色质和兼性异染色质。 6,异固缩现象:在同一条染色体上既有常染色质又有异染色质,或者说既有染色浅的区域(解螺旋而呈松散状态)又有染色深的区域(高度螺旋化而呈紧密卷缩状态),这种差异表现称为异固缩现象。 第三章性别决定与性别遗传 一、内容提要: 性别决定系统可分为基因型性别决定系统和环境性别决定系统。性染色体主要有四种类型XY型、XO型、ZW型、ZO型。性相关遗传包括伴性遗传、从性遗传、限性遗传。 二、知识点: 1,植物性别决定类型:性染色体决定性别;两对基因决定性别;多对基因决定性别。 2,伴性遗传:位于性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象称为性连锁。其中,基因位于X或Z染色体的,称为伴性遗传。

数量遗传学

质量性状:指由一对或对基因控制,在个体间能够明显区分,呈不连续性变异的性状。 数量性状:由微效多基因控制,在群体中不能明显区分,呈连续性变异的性状。 门阈性状:由微效多基因控制的,在群体中呈不连续分布的性状,一般能够明显地区分其表现形式。 数量遗传学:指用数理统计方法和数学分析方法研究数量性状遗传和变异规律的科学。 选择:在人类和自然干预下,某一群体的基因在世代传递的过程中,某种基因型个体的比例所发生的变化现象,称作选择。 适应度:比较群体中各种基因型(以个体平均留种子女数为标准)生存适应力的相对指标。适应度就是特定基因型的留种率和群体最佳基因型留种率之比值。 选择系数:1减去适应度就是该基因型的选择系数。留种率+淘汰率=1 遗传漂变:如果群体规模较小,下一代的实际基因频率都可能由于抽样误差而偏离理论上应有的频率。 始祖效应:当来自大群体的一个小样本在特定环境中成为一个新的封闭群体,其基因库仅包括亲本群体中遗传变异的一小部分,并在新环境中承受新进化压力的作用,因而最终可能与亲本群分体。这种过程在体现的般规律,称为始祖效应。 瓶颈效应:当大群体经历一个规模缩小阶段之后,以及在漂变中改变了基因库(通常是变异性减少)又重新扩大时,基因频率发生的变化。 同型交配:如果把同型交配严格地定义为同基因型交配,那么近交和同质选配都只有部分的同型交配,只有极端的近交方式——自交才是完全同型交配。 群体遗传学:专门研究群体的遗传结构及其变化规律的遗传学分支学科。 群体:是指一个种、一个变种、一个品种或一个其它类群所有成员的总和。 孟德尔群体:在个体间有相系交配的可能性,并随着世代进行基因交流的有性繁殖群体。基因库:以各种基因型携带着各种基因的许多个体所组成的群体。 亚群:由于各种原因的交配限制,可能导致基因频率分布不均匀的现象,形成若干遗传特性有一定差异的群落通常称为亚群。 随机资本:在一个有性系列的生物群体中,任何一个雌性式雄性的个体与其任何一个相反性别的个体交配的机率是相同的。 基因频率:指一个群体中,二倍体染色体特定基因位点某种等位基因所占比例。 基因型频率:一个群体中,某一相对发送的不同基因型所占的比率就是基因型频率。

13遗传学 课后练习 复习题 总结 第十三章 数量性状的遗传

第十三章数量性状的遗传 本章习题 1.解释下列名词:广义遗传率、狭义遗传率、近交系数、共祖系数、数量性状基因位点、主效基因、微效基因、修饰基因、表现型值、基因型与环境互作广义遗传率:通常定义为总的遗传方差占表现型方差的比率。 狭义遗传率:通常定义为加性遗传方差占表现型方差的比率。 近交系数:是指个体的某个基因位点上两个等位基因来源于共同祖先某个基因的概率。 共祖系数:个体的近交系数等于双亲的共祖系数。 数量性状基因位点:即QTL,指控制数量性状表现的数量基因在连锁群中的位置。 主效基因:对某一性状的表现起主要作用、效应较大的基因。 微效基因:指一性状受制于多个基因,每个基因对表现型的影响较小、效应累加、无显隐性关系、对环境敏感,这些基因称为微效基因。 修饰基因:对性状的表现的效应微小,主要是起增强或减弱主基因对表现型的作用。 表现型值:是指基因型值与非遗传随机误差的总和即性状测定值。 基因型与环境互作:数量基因对环境比较敏感,其表达容易受到环境条件的影响。因此,基因型与环境互作是基因型在不同环境条件下表现出的不同反应和对遗传主效应的离差。

2.质量性状和数量性状的区别在哪里?这两类性状的分析方法有何异同? 答:质量性状和数量性状的区别主要有:①. 质量性状的变异是呈间断性,杂交后代可明确分组;数量性状的变异则呈连续性,杂交后的分离世代不能明确分组。②. 质量性状不易受环境条件的影响;数量性状一般容易受环境条件的影响而发生变异,而这种变异一般是不能遗传的。③. 质量性状在不同环境条件下的表现较为稳定;而控制数量性状的基因则在特定时空条件下表达,不同环境条件下基因表达的程度可能不同,因此数量性状普遍存在着基因型与环境互作。 对于质量性状一般采用系谱和概率分析的方法,并进行卡方检验;而数量性状的研究则需要遗传学方法和生物统计方法的结合,一般要采用适当的遗传交配设计、合理的环境设计、适当的度量手段和有效的统计分析方法,估算出遗传群体的均值、方差、协方差和相关系数等遗传参数等加以研究。 3.叙述表现型方差、基因型方差、基因型×环境互作方差的关系。估计遗传协方差及其分量在遗传育种中有何意义? 答:表现型方差由基因型方差(V G)、基因型×环境互作方差(V e)和环境机误方差()构成,即,其中基因型方差和基因型×环境互作方差是可以遗传的,而纯粹的环境方差是不能遗传的。 由于存在基因连锁或基因的一因多效,生物体的不同数量性状之间常存在不同程度的相互关连。在统计分析方法中常用协方差来度量这种相互关联的变异程度。由于遗传方差可以进一步区分为基因型方差和基因型×环境互作方差等不同的方差分量,故遗传协方差也可进一步区分为基因型协方差和基因型×环境互作协方差等分量。在作物遗传改良过程中,对某一性状进行选择时常会引起另一相关性状的变化,为了取得更好地选择效果, 并使一些重要的性状能够得到同步改

数量遗传学基础

第九章数量遗传学基础 概述 一、质量性状和数量性状的遗传 动物的遗传性状,按其表现特征和遗传机制的差异,可分为三大类:一类叫质量性状(Qualitative trait ), 一类叫数量性状(Quantitative trait ), 再一类叫门阈性状(Threshold trait)。动物的经济性状(Economic trait)大多是数量性状。因此,研究数量性状的遗传方式及其机制,对于指导动物的育种实践,提高动物生产水平具有重要意义。 质量性状:是指那些在类型间有明显界限,变异呈不连续的性状。例如,牛的无角与有角,鸡的芦花毛色与非芦花毛色,等等。这些性状由一对或少数几对基因控制,它不易受环境条件的影响,相对性状间大多有显隐性的区别,它的遗传表现完全服从于三大遗传定律。 数量性状:是指那些在类型间没有明显界限,具有连续性变异的性状,如产奶量、产卵量、产毛量、日增重、饲料利用率等。 门阈性状:是指由微效多基因控制的,呈现不连续变异的性状。这类性状具有潜在的连续分布遗传基础,但其表型特征却能够明显的区分,例如,产子数,成活或死亡,精子形态正常或畸形,这类性状的基因效应是累积的,只有达到阈值水平才能表现出来。 二、数量性状的一般特征 数量性状表现特点表明,数量性状受环境因素影响大,因此其表型变异是连续的,一般呈现正态分布(Normal distribution),很难分划成少数几个界限明显的类型。例如,乳牛的产奶量性状,在群体中往往从3000kg至7000kg范围内,各种产量的个体都有。由于数量性状具有这样的特点,所以对其遗传变异的研究,首要的任务是对性状的变异进行剖分,估计出数量性状变异的遗传作用和环境的影响程度。具体地说,对数量性状遗传的研究必须做到以下几点:第一,要以群体为研究对象;第二,数量性状是可以度量的,研究过程要对数量性状进行准确的度量;第三,必须应用生物统计方法进行分析;第四,在统计分析基础上,弄清性状的遗传力以及性状间的相互关系。对数量性状遗传的深入研究,可为动物品质的改良提高提供可靠数据,为选种和杂交育种找出正确而有效的方法,从而可以加速育种进程。 三、数量性状的遗传方式 数量性状的遗传有以下几种表现方式: (一)中间型遗传 在一定条件下,两个不同品种杂交,其杂种一代的平均表型值介于两亲本的平均表型值之间,群体足够大时,个体性状的表现呈正态分布。子二代的平均表型与子一代平均表型值相近,但变异范围比子一代增大了。 (二)杂种优势 杂种优势是数量性状遗传中的一种常见遗传现象。它是指两个遗传组成不同的亲本杂交的子一代,在产量、繁殖力、抗病力等方面都超过双亲的平均值,甚至比两个亲本各自的水平都高。但是,子二代的平均值向两个亲本的平均值回归,杂种优势下降。以后各代杂种优势逐渐趋于消失。 (三)越亲遗传 两个品种或品系杂交,一代杂种表现为中间类型,而在以后世代中,可能出现超过原始亲本的个体,这种现象叫做越亲遗传。例如,在鸡中有两个品种,一种叫新汉县鸡,体格很大,另一种叫希氏赖特观赏鸡,体格很小,两者杂交产生出小于希氏赖特鸡和大于新汉夏鸡的杂种。由此,可能培育出更大或更小类型的品种。

孟德尔的豌豆杂交实验知识点总结(教师版)

孟德尔的豌豆杂交实验知识点总结 知识点1:几组基本概念(要求:在理解的基础上要熟记) 1、交配类 杂交:基因型不同的个体交配,如DD×dd等;×(显隐性判定) 自交:基因型相同的个体交配,如DD×DD、Dd×Dd等;○×(显隐性判定、鉴别纯合子和杂合子、获×符号需给学生讲清) 得植物纯种)(何时用○ 测交:杂种一代×隐性纯合子,如Dd×dd(验证杂(纯)合子、测定基因型) P:亲本、♀:母本、♂:父本、 F1:子一代、F2:子二代 2、性状类 (1)性状:生物体所表现出的形态特征和生理生化特性的总称。 (2)相对性状:同种生物同一性状的不同表现类型。 (3)显性性状和隐性性状 (4)性状分离:在杂种后代中,同时出现显性性状和隐性性状的现象,在遗传学上叫做性状分离。 3、基因类 (1)相同基因:同源染色体相同位置上控制同一性状的基因。在纯合子中由两个相同基因组成,控制同一性状的基因,如图中A和A就是相同基因。 (2)等位基因:生物杂合子中在一对同源染色体的相同位置上,控制着相对性状的基因。如图中B和b、C和c、D和d 就是等位基因。 (3)非等位基因:非等位基因有两种,即一种是位于非同源染色体上的基因,符合自由组合定律,如图中的A和D;还有一种是位于同源染色体上的非等位基因,如图中的A和b。 (4)复等位基因:若同源染色体上同一位置上的等位基因的数目在两个以上,称为复等位基因。如控制人类ABO血型的I A、I B、i三个基因,ABO血型是由这三个复等位基因决定的。因为I A对i是显性,I B对i是显性,I A和I B是共显性,所以基因型与表现型的关系只能是:I A I A,I A i—A型血;I B I B,I B i—B 型血;ii—O型血;I A I B—AB型血。 4、个体类 (1)基因型与表现型 ①基因型:与表现型有关的基因组成;表现型:生物个体表现出来的性状。 ②关系:表现型是基因型与环境共同作用的结果。 (2)纯合子与杂合子 ①纯合子:由相同基因型的配子结合成的合子发育成的个体(如DD、dd、AABB、AAbb)。 ②杂合子:由不同基因型的配子结合成的合子发育成的个体(如Dd、AaBB、AaBb)。 注意①多对基因中只要有一对杂合,不管有多少对纯合都是杂合子。 ②纯合子自交后代都是纯合子,但纯合子杂交,后代会出现杂合子;杂合子自交,后代会出现性状分离,且后代中会出现一定比例的纯合子。 知识点2:孟德尔获得成功的原因 1、正确选材; 选豌豆为实验材料的优点: ①豌豆是自花传粉,是闭花受粉,自然状态下,都是纯种。②具有易于区分的相对性状。 ③花比较大,易于做人工杂交实验。④繁殖周期短,后代数量大 补充:果蝇常作为遗传学实验材料的原因 (1)相对性状多、易于观察(2)培养周期短(3)成本低(4)容易饲养(5)染色体数目少,便于观察等。

《数量遗传学》复习资料

《数量遗传学》复习资料 第一章绪论 1.数量遗传学:采用生物统计学和数学分析方法研究数量性状遗传规律的遗传学分支学科。 2.性状:生物体的形态、结构和生理生化特征与特性的统称。如毛色、角型、产奶量、日增重等。根据性状的表型变异、遗传机制和受环境影响的程度可将性状分为数量性状、质量性状和阈性状3类。 3.?1908年:英国数学家(哈迪)和德国医学家(温伯格)提出遗传的平衡定律,奠定了群体遗传学的基础。?1918年:英国统计学家(费舍尔)发表《根据孟德尔遗传假说的亲属间相关研究》,系统地论述了数量遗传学的研究对象和方法,成为数量遗传学诞生的标志。?1908年:瑞典遗传学家(尼尔森-埃勒) 提出多基因学说,用每对微效基因的孟德尔式分离来解释数量性状的遗传机制,奠定了数量遗传学的基石。 4.数量性状:遗传上受许多微效基因控制,性状变异连续,表型易受环境因素影响的性状,如生长速度、产肉量、产奶量等。 5.质量性状:遗传上受一对或少数几对基因控制,性状变异不连续,表型不易受环境因素影响的性状,如毛色、 角的有无、血型、某些遗传疾病等。 6.阈性状:遗传上受许多微效基因控制,性状变异不连续,表型易受或不易受环境因素影响的性状。 7.数量性状的特点:(1)必须进行度量,要用数值表示,而不是简单地用文字区分;(2)要用生物统计的方法 进行分析和归纳;(3)要以群体为研究对象;组成群体某一性状的表型值呈正态分布。 8.决定数量性状的基因不一定都是为数众多的微效基因。有许多数量性状受主基因或大效基因控制。 9.数量遗传学的研究内容:(1)数量性状的数学模型和遗传参数估计;(2)选择的理论和方法;(3)交配系统的遗传效应分析;(4)育种规划理论。 第二章数量遗传学基础 1.数量性状的表型值,即观察值,是由遗传与环境共同作用的结果,即P = G + E + IGE其中,P为表型值,G为基因型值,E为环境偏差,IGE为遗传与环境效应间的互作。通常,假定遗传与环境间不存在互作,即IGE=0,则有:P = G + E 2.基因型值G是由基因的加性效应(A)、显性效应(D)和上位互作效应(I)共同作用的结果。假定3种遗传效应间的互作为0,则G = A + D + I 式中的D和I,由于世代传递中的分离和重组,不能真实遗传,因而在育种中不能被固定;而加性效应值A则能稳定地遗传给后代,因此,育种中又称之为育种值(breeding value)。 3.①表型值:一个多基因系统控制的数量性状能够直接度量或观察的数值。②基因型值:表型中由基因型决定的那部分数值。③环境偏差:表型值与基因型值的离差。④加性效:等位基因间和非等位基因间的累加作用引起的遗传效应。⑤显性效应:同一基因座上等位基因间的互作所产生的遗传效应。⑥上位效应:不同基因座间非等位基因相互作用所产生的遗传效应。 ⑦一般环境: 是指影响个体全身的、时间上是持久的、空间上是非局部的环境。例如奶牛在生长发育早期营养不良,生长发育受阻,成年后无法补尝,影响是永久的。 ⑧特殊环境: 是指暂时的或局部的环境。例如,成年奶牛因一时营养条件差而泌乳量减少,但如果环境有了改善,其产量仍可恢复正常。 ⑨永久性环境: 对某一特定个体的性能产生持久影响,而且是以相似的方式影响一个个体的每个记录的环境。⑩暂时性环境: 只对某一特定性能产生影响的环境。 4.环境偏差又可剖分为一般环境偏差Eg和特殊环境偏差Es,即E = Eg + Es 综上所述,有:P = G + E = A + D + I + Eg + Es 从育种学角度来看,上式中,只有A可以真实遗传,通常将A 和D合并到环境偏差中,称为剩余值(residual value, R),即:P=A+R 5.基因的平均效应:在一个群体内,携带某一基因的配子,随机和群内的配子结合,所形成的全部基因型的均 值与群体平均基因型值的离差。 6.育种值:即加性遗传效应值,为组成某一基因型的两个等位基因平均效应之和。说明:育种值是用群体平均 值的离差表示的;一个HW平衡的大群体,平均育种值等于0。 7.显性离差:考虑一个基因座时, 特定基因型值G与育种值A之差, 称为显性离差, 常用D表示。说明:所有基因 型的显性离差都是d 的函数;在一个HW平衡群体中,平均显性离差值为0。 8.上位互作离差:如果考虑两个以上的基因座, 基因型值可能包含基因座间非加性组合产生的互作离差。令GA 和GB分别为A、B二基因座的基因型值,则IAB为两个基因座基因的互作离差,即:G = GA + GB + IAB

数量遗传学软件使用总结

植物数量遗传软件总结 Mapmaker,JoinMap,WinQTLCart,PowerMarker,TASSEL,Structure 刘兵 1.分别利用Mapmaker和JoinMap软件对数据marker and trait data.xls(F2群体,300个个体,29个分子标记,1个数量性状,标记编码中0、1和2分别表示aa、Aa和AA基因型)进行分析,构建分子标记连锁图。(要求:列出主要的步骤和结果,并对结果进行说明;提交转换后的电子版数据文件,即Mapmaker的raw格式数据文件和JoinMap的loc格式数据文件)(30分) 解答:Mapmaker的主要操作步骤: (1)、之前准备一个 .PRE格式文件,见附件。 (2)、准备文件f.RAW,导入数据文件,pd f 。 (3)、s all (4)、assign (5)、list chrom (6)、看是否还有标记没有定位到染色体上的,假如有,用指令s unassigned和list status,假如没有,用 links指令。(7)、s chrom1 (8)、three point (9)、order (10)、s order1 (11)、map (12)、error detection on (13)、map (14)、error detection off (15)、framework chrom1 (16)、place (17)、draw chromosome (18)、s chrom2 (19)、重复步骤(8)到步骤(17)。 (20)、s chrom3 (21)、重复步骤(8)到步骤(17)。 (22)、quit Mapmaker所得结果: =============================================================================== chrom1 framework: Markers Distance 10 M10 18.2 cM 25 M25 4.6 cM 29 M29 5.7 cM 21 M21 1.5 cM 1 M01 13.0 cM 28 M28 6.8 cM 13 M13 10.2 cM

遗传学所有重点内容总结

第一章绪论 1什么是遗传,变异?遗传、变异与环境的关系? (1).遗传(heredity):生物亲子代间相似的现象。 (2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。 遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。生物与环境的统一,这是生物科学中公认的基本原则。因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。 2.生物进化和新品种选育的三大因素是遗传,变异和选择 四、近交与杂交在育种上的应用 1、近亲繁殖在育种上的应用 固定优良性状 保持个别优秀个体的血统 发现并淘汰隐性有害(不良)基因 2、杂交在育种和生产上的应用 在育种上,利用杂交组合不同品种、或品系、或类群间的优良特性,培育具有多种特点的优良品种 在生产上,主要利用杂交产生的杂种优势 杂种优势理论: 显性假说:认为双亲对很多座位上的不同等位基因的纯合体形成杂种后,由于显性有利基因的积聚,遮盖了隐性有害基因,从而表现出 超显性假说:认为双亲基因型异质结合所引起基因间互作杂种优势等位基因间无显隐性关系,但杂合基因间的互作> 纯合基因明显 杂种优势特点: 杂交(h y b r i d i z a t i o n):指通过不同个体之间的交配而产生后代的过程近交(i n b r e e d i n g):亲缘关系相近个体间杂交,亦称近亲交配 近亲系数(F):是指个体的某个基因座上两个等位基因来源于共同祖先某个基因(即得到一对纯合的,而且遗传上等同的基因)的概率。 近交与杂交的遗传效应: 近交增加纯合子频率,杂交增加杂合子频率。 近交降低群体均值,杂交提高群体均值。 近交使群体分化,杂交使群体一致。 近交加选择能加大群体间基因频率的差异,从而提高杂种优势。 近交产生近交衰退,杂交产生杂种优势 数量性状遗传的多基因假说多基因假说要点: 1.决定数量性状的基因数目很多; 2.各基因的效应相等; 3.各个等位基因的表现为不完全显性或无显性或有增效和减效作用; 4.各基因的作用是累加性的。 1. 细胞质遗传的特点 ①正、反遗传表现不同:性状通过母本才能传递给后代。 ②连续回交,可置换母本全部核基因,但母本胞质基因及其控制的性状不消失。 ③基因定位困难,有时表现出类于病毒的传导或感染。 ④细胞质中由附加体或共生体决定的性状,其表现类似于病毒的传导或感染,即能传递给其它细胞。

数量遗传学综述

数量遗传学的发展历程 摘要:数量遗传学经过近百年的发展,形成了一整套理论体系。本文以数量遗传学的诞生、发展、现状为线索,阐述了该学科诞生的背景及所得到的启示、体会,介绍了数量遗传学发展历程的三次结合,分析了它的研究现状和发展前景。 关键词:数量遗传学数量性状发展历程 1865年,孟德尔(G·Mendel)根据豌豆杂交试验,表了论文《植物杂交试验》,提出了遗传因子分离重组的假设,形成了孟德尔理论,标志着经典遗传的诞生。19世纪末,孟德尔遗传学与数学相结合成了群体遗传学(population genetics)。20世纪年代,Fisher在关于方差组分剖分的论文[1]中将体遗传学进一步与生物统计学相结合,奠定了数遗传学(quantitative genetics)的基础。数量遗学是以数量性状(quantitative trait)为研究对的遗传学分支学科[2],它作为育种的理论基础已发展了近百年。而将数量遗传学的理论应用于动育种则应归功于Lush(1945)在其划时代的著作物育种方案》(Animal Breeding Plan)中的系统述[3]。在中国,1958年吴仲贤教授翻译的出版了英K·Mather 的第一版《生统遗传学》(Biometricalnetics),对我国动植物数量遗传学的发展起到了键性的推动作用。在基因组学时代,随着对数量状基因型的识别,人们通过对经典数量遗传学模的修改完善,数量遗传学为分析表型信息和基因信息构建筑了合理框架,数量遗传学将会比过去挥更大的作用[4]。在畜牧业生产中,与生产性能有的大多数经济性状属于数量性状。因此,研究数量性状的遗传规律具有重要的实践意义。 1数量遗传学诞生的背景 数量遗传学的诞生可以追溯到Fisher(1918)关于方差组分剖分的论文[1],它作为育种的理论基础已经发展了近1O0年,而数量性状的遗传研究可追溯到19世纪。1885年,Galton[5]报道了205对父母与其930个后裔的身高关系。其后,Pearson陆续提出了13种密度函数,用以描述数量变异的分布。他们可算是数量遗传研究的先行者,但当时并没有遗传学理论作指导,人们也没有把他们

遗传学总结

医学遗传学 一. 名词解释: 1. 医学遗传学(medical genetics):医学与遗传学相结合、并互相渗透的一门交叉学科,是遗传学知识在医学领域的应用;它研究人类遗传性疾病的发病机制、传递规律、诊断方法以及治疗与预防措施。 2. 遗传病(genetic disease):遗传物质结构和功能改变所导致的疾病;其发生需要一定的遗传基础,并按一定的方式传给后代。 3.性染色质:间期细胞核中,性染色体上的异染色质显示出的一种特殊结构,包括X染色质和Y染色质。 4. 核型(karyotype):将一个细胞内的染色体按照一定的顺序排列起来所构成的图像称为该细胞的核型。 5. 有丝分裂(mitosis):是体细胞增殖方式,分为前、中、后和末四个时期。 6.显带核型:染色体标本经显带技术处理,可使染色体长轴上显示出明暗或深浅相间的带纹,每个染色体都有独特而恒定的带纹。经显带技术显示的核型称为显带核型。 7.非显带核型:未经特殊处理,只用常规方法染色的人类染色体标本,除着丝粒和次缢痕外,整条染色体均匀着色,由此获得的核型称为非显带核型。 8.活性染色质:指具有转录活性的染色质。 9.非活性染色质:指不进行转录的染色质,既有异染色质,也有部分常染色质。 10. 人类基因组:指人的所有遗传信息的总和,包括两个既相对独立又相互关联的基因组;包括核基因组和线粒体基因组;如果不特别注明,通常所说的人类基因组是指核基因组。11. 基因(gene):是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。(或:合成有功能的蛋白质多肽链或RNA所需要的全部核苷酸序列。) 12. 基因突变(gene mutation):指基因在分子结构上发生碱基组成或排列顺序的改变。 13.中性突变:是指基因突变的后果轻微,对机体不产生可察觉的有害或有利的效应。包括同义突变和错义突变。 14. 单基因遗传病(monogenetic or single-gene disease):指一对等位基因异常引起的疾病。符合孟徳尔遗传方式,所以又称为孟徳尔式遗传病。 15. 性状(character):是生物体一切形态、结构和生理、生化等方面可鉴别的特征、特性的统称。 16. 显性性状(dominant character):在F1代中表现出来的亲本性状。 17. 隐性性状(recessive character):在F1代中没有表现出来的亲本性状。 18. 表现型(phenotype):受遗传因子控制而表现出来的性状。 13. 基因型(genotype):控制生物性状的遗传因子的组合形式。 14. 系谱(pedigree)指某种遗传病患者与家庭各成员相互关系的图解。不仅包括患病个体也包括全体健康的家庭成员。 15. 先证者(proband):指某个家庭中第一个被医生或遗传研究者发现的罹患某种遗传病的患者或具有某种性状的成员。 16. 纯合体(homozygote):基因型是由两个相同的显性基因或两个相同的隐性基因结合而成的个体。 17 杂合体(heterozygote):一对基因彼此不同的个体称为杂合体。 18. 不完全显性(incomplete dominance):指在常染色体显性遗传的情况下,隐性基因对显性基因的表达起到一定的抑制作用,即显性基因和隐性基因的作用均得到一定程度的表现。 19. 不规则显性(irregular dominance):有些杂合子不表现出临床症状,但能将致病基因传给下一代,下一代可能患病。

遗传学知识点总结

1遗传:生物亲代与子代之间、子代个体之间相似的现象。 2变异:指亲代与子代之间子代与个体之间的差异。 3遗传与变异二者关系:遗传与变异是生物进化中的一对矛盾,生物体不断产生变异,又不断地通过遗传把变异保存下来,从而形成进化,遗传是暂时的有条件的相对的,而变异是永恒的无条件的绝对的。 4有丝分裂与减数分裂的异同点;相同之处:同是把遗传物质准确的传给子细胞的过程。不同之处:《1》有丝分裂:(1)目的增大营养体维持正常的新陈代谢,生物从生到死,除了性母细胞之外,都在进行有丝分裂,各种器官内都可进行。(2)细胞分裂一次,染色体分裂一次,(3)一个细胞产生两个子细胞,并且每个子细胞中的染色体数为2n(4)中期:以染色体为单位排列在赤道板上,不发生联会,不产生交换,(5)后期以染色体为单位向两极移动,不出现减半的现象,<2>减数分裂:(1)目的:形成配子,产生母细胞,而且只有性母细胞成熟时才可进行的分裂方式,(2)细胞分裂两次,染色体只分裂一次(3)一个母细胞产生四个子细胞,子细胞的染色体数为n(4)中期;以二价体为单位排列于赤道板两侧,产生联会,并发生交换(5)后期I:以染色体为单位向两极移动,2n→n 根本原因是以染色体为单位向两极移动,同源染色体被分开,出现减半现象。 5果实直感;在种皮或果皮的组织发育过程中,由于花粉基因的影响而表现出父本的某些形状,这种现象称为果实直感 6胚乳直感:在死胚乳的性状上由于精核的影响而直接表现父本的某些性状。 7双受精:花粉管和两个精子一起进入胚囊,接着营养核解体,一个精核与卵细胞融合为合子,将来发育成胚;另一个精核与两个极核融合形成胚乳核,将来发育成胚乳 8配子的形成过程; 9几种主要作物的染色体: 10完全显性:具有相对性状的纯合体亲本杂交后,F1只表现一个亲本性状的现象。即外显率为100% 11不完全显性:又称半显性,杂合体的表型介于纯合体显性与纯合体隐性之间。12共显性:如果双亲的性状同时在F1个体上表现出来,这种显性表现称为共显性,或叫并显性。 13ABO血型的遗传:ABO血型中O基因为隐性基因,A和B为显性基因。 这就是说,当O基因与A或B基因组合在一起时,只显示A或B基因的性状,即A型或B

医学遗传学名词解释总结

数量性状(quantiative character)受多对等位基因控制,相对性状之间的变异呈连续的正态分布,受环境因素影响。EX:人的身高、各种多基因病。 质量性状(qualitative charaeter)受一对等位基因控制,相对性状之间的变异是不连续的,不受环境因素影响。EX:抗原的有无、各种单基因病。 微效基因(minor gene)在多基因性状中,每一对控制基因的作用是微小的,故称微效基因。积累效应(additive effect)若干对基因作用积累之后,可以形成一个明显的表型基因,称为积累效应或累加效应。 易患性(变异)(liability)1、在遗传和环境两个因素的共同作用下,一个个体患某种多基因遗传病的可能性称之为易患性。2.本质:是数量性状。遗传基础-多对基因(正常基因和致病基因);变异呈正态分布;受环境影响。 发病阀值(threshold)指个体的易患性达到或超过一定的限度后就会患病,把该限度的易患性叫做发病阀值。 遗传度(heritability)(又称为遗传率)是在多基因疾病形成过程中,遗传因素贡献大小。遗传度越大,表明遗传因素的贡献越大。 群体:广义:同一特种的所有个体。狭义:生活在某一地区的可以相互婚配的所有个体。群体遗传学:以群体为单位研究群体内遗传结构及其变化规律的分支学科。 遗传平衡定律(law of genetic equilibrium):如果一个群体满足下述所有条件:1.群体无限大2.随机婚配,指群体内所有个体间婚配机会完全均等3.没有基因突变,同时也没有来自其他群体的基因交流4.没有任何形式的自然选择5.没有个体的大量迁移,在这样一个理想群体中,基因频率和基因型可以一代一代保持不变。这一规律称为遗传平衡定律,又称为hardy-weinberg定律。 突变律(mutation rate):每一代每100万个基因中出现突变的基因数量。(在一定时间内,每一世代发生的基因突变总数或特定基因座上的突变数) 中性突变(neutral mutation)指突变的结果既无益,也无害,没有有害的表型效应,不受自然选择的作用。此时,基因频率完全取决于突变率。(或者:产生的新等位基因与群体己有的等位基因的适合度相同的突变) 自然选择(natural selection)自然界中,有些基因型的个体生存和生育能力较强,留下的后代较多,有些基因型的个体生存和生育能力较弱,留下的后代较少,这种优胜劣汰的过程叫自然选择。 适合度(fitness ,f):是一定环境条件下,某一基因型个体能够生存并将基因传递给后代的相对能力。(或者,个体生存和生育能力叫适合度,不同基因型的个体适合度不同。) 相对生育率(f)用f来代表适合度的高低,所谓相对是指相对于正常人而言,正常人f=1. 选择系数(压力)(selection coefficient,s)指在选择作用下适合度降低的程度。S反映了某一基因型在群体中不利于存在的程度,因此s=1-f. 医学遗传学(medical genetics):1.简单讲:医学遗传学是研究人类疾病与遗传关系的一门学科。2.具体讲,医学遗传学是遗传学与临床医学结合而形成的一门边缘学科,是遗传学知识在医学领域的应用,可被视为遗传学的一个分支。 遗传病(genetics disease)经典遗传学认为,人体生殖细胞(精子或卵子)或受精卵细胞,其遗传物质发生异常改变后所导致的疾病叫遗传病。 等位基因(allele又作allelomorph)一般是指位于一对同源染色体的相同位置上控制着相对性状的一对基因。 修饰基因(modifier,modifying gene)某些基因对某种遗传性状并无直接影响,但可以加强或减弱与该遗传性状有关的主要基因的作用。具有此种作用的基因即为修饰基因。 系谱(pedigree)所谓系谱是从先证者或索引病例开始,追溯调查其家族各个成员的亲缘关

高中生物遗传学知识点总结.doc

高中生物遗传学知识点总结 高中生物遗传学知识点总结 1基因的分离定律 相对性状:同种生物同一性状的不同表现类型,叫做相对性状。 显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。 隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。 性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。 显性基因:控制显性性状的基因,叫做显性基因。一般用大写字母表示,豌豆高茎基因用D表示。 隐性基因:控制隐性性状的基因,叫做隐性基因。一般用小写字母表示,豌豆矮茎基因用d表示。 等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。显性作用:等位基因D 和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。 等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。D∶d=1∶1;两种雌配子D∶d=1∶1。) 非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。 表现型:是指生物个体所表现出来的性状。

基因型:是指与表现型有关系的基因组成。 纯合体:由含有相同基因的配子结合成的合子发育而成的个体。可稳定遗传。 杂合体:由含有不同基因的配子结合成的合子发育而成的个体。不能稳定遗传,后代会发生性状分离。 2基因的自由组合定律 基因的自由组合规律:在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫基因的自由组合规律。 对自由组合现象解释的验证:F1(YyRr)X隐性(yyrr) (1YR、1Yr、1yR、1yr)Xyr F2:1YyRr:1Yyrr:1yyRr:1yyrr。 基因自由组合定律在实践中的应用:基因重组使后代出现了新的基因型而产生变异,是生物变异的一个重要来源;通过基因间的重新组合,产生人们需要的具有两个或多个亲本优良性状的新品种。 孟德尔获得成功的原因: ①正确地选择了实验材料。 ②在分析生物性状时,采用了先从一对相对性状入手再循序渐进的方法(由单一因素到多因素的研究方法)。 ③在实验中注意对不同世代的不同性状进行记载和分析,并运用了统计学的方法处理实验结果。 ④科学设计了试验程序。 基因的分离规律和基因的自由组合规律的比较: ①相对性状数:基因的分离规律是1对,基因的自由组合规律是2对或多对;

细胞遗传学知识点归纳总结

细胞遗传学知识点归纳总结 着丝粒(centromere) 是染色体上染色很淡的缢缩区,由一条染色体所复制的两个染色单体在此部位相联系。含有大量的异染色质和高度重复的DNA序列。 包括3种不同的结构域: 1. 着丝点结构域(kinetochore domain):纺锤丝附着的位点; 2.央结构域(central domain):这是着丝粒区的主体,由富含高度重复序列的DNA构成; 3. 配对结构域(pairing domain):这是复制以后的姊妹染色单体相互连接的位点。 着丝粒的这三种结构域具有不同的功能,但它们并不独立发挥作用。正是3种结构域的整合功能,才能确保有丝分裂过程染色体的有序分离。 发芽酵母(Saccharomyces cerevisiae)的着丝粒由125bp左右的特异DNA序列构成,其它模式生物包括裂解酵母(Schizosaccharomyces pombe)、果蝇(Drosophila melanogaster) 以及人类,它们的着丝粒均由高度重复的DNA序列构成、但序列均不同。 染色体着丝粒与纺锤丝相连接的实际位置,微管蛋白的聚合心,由蛋白质所组成。

与着丝粒的关系:着丝粒是动粒的附着位置,动粒是着丝粒是否活跃的关键。每条染色体上有两个着丝点,位于着丝粒的两侧,各指向一极。 功能:姊妹染色单体的结合点 着丝点的组装点 纺锤丝的附着点 着丝粒的功能高度保守 在染色体配对及维系生物体遗传信 息稳定传递起作重要作用。 组成(DNA-蛋白质复合体):着丝粒DNA:不同的生物具有特异性,着丝粒蛋白:在真核生物是保守的。 水稻着丝粒DNA的组成:CentO:155-bp重复序列,CRR:着丝粒特异的逆转座子。 在活性着丝粒,着丝粒特异组蛋白H3(CENH3)取代了核小体组蛋白八聚体的组蛋白H3, 形成含CENH3的核小体。因此,CENH3是真核生物内着丝粒的根本特征, 是功能着丝粒的共同基础, 可作为功能着丝粒染色质的识别标记。 →着丝粒分裂:正常分裂(纵向分裂),横分裂或错分裂(misdivision)。说明问题:着丝粒并不是一个不可分割的整体,而是一个复合结构,断裂的着丝粒具有完整功能。

遗传学总结

遗传学总结 孟德尔学说: 名词解释: .遗传学: .颗粒式遗传:代表一对相对性状的遗传因子在同一个体内个别存在,而不相沾染,不相混合。 等位基因:位于同源染色体上,位点相同,控制着同一性状的基因。 纯合体:同源染色体上相同位点上的两基因成员完全一致(双显或双隐),具这种基因型的个体为纯合体。如:CC、cc。 杂合体:等位基因中的两个成员不一致的个体称为杂合体。如Cc。 测交:是指被测验的个体与隐性纯合体间的杂交。测交可以判断被测验的个体是纯合还是杂合。 亲组合:亲本原有的性状组合。 重组合:亲本原来没有的性状组合。 相乘法则:两个或两个以上独立事件同时出现的概率是它们各自概率的乘积。 相加法则:如果两个事件相互排斥,那么出现这一事件或另一事件的概率是两个个别事件的概率之和。 孟德尔选择豌豆为材料的原因: ⑴豌豆具有稳定的可以区分的性状,在区分时无困难,使研究者能进行简明直接的分析。 ⑵豌豆是自花授粉植物,而且是闭花受粉。没有外来花粉的干扰。 ⑶豌豆豆荚成熟后子粒都留在豆荚中,便于各种类型子粒的准确记数。 ⑷豌豆容易培养。 ⑸豌豆的显隐性完全。 ⑹廉价且便于购买。 分离比3:1成立的条件: ⑴子一代个体形成的两种配子的数目是相等的,他们的生活力相同。 ⑵子一代的两种配子的结合机会是相等的。 ⑶3种基因型个体的存活率到观察时为止是相等的。 ⑷显性是完全的。 孟德尔分离定律的内容: 单因子杂交实验的结果是,亲组合和重组合的比例是3:1。在配子形成时,成对的等位基因彼此分离,并独立地分配到不同的性细胞中,因此每个配子只得到一个等位基因。 孟德尔自由组合规律的内容: 双因子杂交实验的结果是,亲组合:几种半亲组半重组:重组合,9:3:3:1。任何一个基因的等位基因与其他基因的等位基因独立分离。这来源于双因子杂交的数据4个等位基因彼此独立作用,因此四种不同种类配子以相同数目出现。 比较不完全显性与共显性的区别: 不完全显性能被观察出性状上的数量差异,而杂合体性状处在纯合体性状的中间或过度状态,就像粉红色是白色和红色的中间状态。 共显性能被观察出的明显特征在杂和体中都能表现出来,而且没有中间状态,如AB血型中IA、IB都被表达时中间没有过渡状态。

数量遗传学(作物遗传育种专业)

数量遗传学:一门研究生物数量性状变异的遗传规律的学科。数量遗传学运用统计分析方法,将表现型分解为遗传效应和环境效应分量(components),并进一步剖析遗传变异中的基因效应。 Multiple Gene Hypothesis: ?数量性状受微效多基因控制 ?多基因间不存在显隐关系 ?多基因的效应相等,具有累加作用 ?多基因对外界环境变化比较敏感 ?存在主基因与修饰基因 群体:具有性繁殖且经常异交的生物个体的集团,或者是一群可繁殖后代的生物个体的集团(孟德尔群体)。 群体的遗传组成:体基因型的数目或各种基因的频率以及由之形成的基因型数量分布。 基因型频率(genotype frequency):特定基因型在群体内出现的概率. 基因频率(gene frequency):特定位点上一种等位基因占该位点全部等位基因的比率,或 该等位基因在群体内出现的概率。 Hardy-Weinberg Law:在理想状态下,各等位基因的频率和等位基因的基因型频率在遗传中是稳定不变的,即保持着基因平衡。?理想群体?个体随机交配?没有选择压?基因型比例逐代保持不变?基因频率与基因型频率存在简单关系。 某种基因的基因频率=某种基因的纯合体频率+1/2杂合体频率

平衡群体的基因型频率取决于群体的基因频率,而与起始群体的基因型频率无关。 连锁不平衡:两个以上位点间基因型频率的不平衡状态,似乎由位点间连锁关系引起的。连锁平衡:对于那些重组后位点或者基因型的频率等于预期的群体。 影响群体基因频率的因素: ?非随机交配(non-random mating) –近亲交配 –聚类交配(assortative mating) (e.g. human) –反聚类交配(disassortative mating)(e.g.self-sterility system) ?系统性过程(systematic process) –基因频率定向变化:Migration, Mutation, Selection –基因频率随机变化:Random drift in small population 适应度:基因型能成活繁殖后代的相对能力。 选择系数:在选择作用下某基因型的后代数目比最适基因型减少的比例。 遗传漂变:于有限群体中抽样误差而产生的基因频率的非定向改变。 回交方式比自交获得重组(交换)的概率更高 平均效应:指一群均携带该基因的配子和来源于群体中的配子随机交配所产生的基因型,其平均值与群体的平均离差。 基因效应:一群体中,以群体平均数为原点,基因型值与原点的离均差值,或基因的替代效

相关主题
文本预览
相关文档 最新文档