当前位置:文档之家› 高中数学 选修2-1双曲线导学案加课后作业及参考答案

高中数学 选修2-1双曲线导学案加课后作业及参考答案

高中数学  选修2-1双曲线导学案加课后作业及参考答案
高中数学  选修2-1双曲线导学案加课后作业及参考答案

双曲线及其标准方程导学案

【学习要求】

1.了解双曲线的定义,几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程.

3.会利用双曲线的定义和标准方程解决简单的问题.

【学法指导】

本节课的学习要运用类比的方法,在与椭圆的联系与区别中建立双曲线的定义及标准方程.

【知识要点】

1.双曲线的定义

把平面内与两个定点F 1,F 2的距离的 等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做 , 叫做双曲线的焦距. 2

探究点一 双曲线的定义

问题1 取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F 1,F 2上,把笔尖放在点M 处,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件?

问题2 双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么?

问题3 双曲线的定义中,为什么要限制到两定点距离之差的绝对值为常数2a,2a <|F 1F 2|?

问题4 已知点P (x ,y )的坐标满足下列条件,试判断下列各条件下点P 的轨迹是什么图形? (1)

6)5()5(2222=+--++y x y x ;

(2)6)4()4(2

222=+--++y x y x

(3)方程x =3y 2

-1所表示的曲线是( )

A .双曲线

B .椭圆

C .双曲线的一部分

D .椭圆的一部分 探究点二 双曲线的标准方程

问题1 类比椭圆的标准方程推导过程,思考怎样求双曲线的标准方程?

问题2 两种形式的标准方程怎样进行区别?能否统一?

问题3 如图,类比椭圆中a ,b ,c 的意义,你能在y 轴上找一点B ,使|OB |=b 吗?

例1 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和????

94,5,求双曲线的标准方程; (2)求与双曲线x 216-y 2

4=1有公共焦点,且过点(32,2)的双曲线方程.

跟踪训练1 (1)过点(1,1)且b

a

=2的双曲线的标准方程是 ( )

A .12

122

=-y x B .y 212-x 2=1 C .x 2

-y 212=1

D .x 212-y 2=1或y 2

12

-x 2=1

(2)若双曲线以椭圆x 216+y 2

9=1的两个顶点为焦点,且经过椭圆的两个焦点,则双曲线的标准方程为_______

探究点三 与双曲线定义有关的应用问题

例2 已知双曲线的方程是x 216-y 2

8=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的

中点,求|ON |的大小(O 为坐标原点).

跟踪训练2 如图,从双曲线x 23-y 2

5=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P , T 为切

点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( )

A . 3

B . 5

C .5- 3

D .5+ 3

例3 已知A ,B 两地相距800 m ,在A 地听到炮弹爆炸声比在B 地晚2 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程.

跟踪训练3 2008年5月12日,四川汶川发生里氏8.0级地震,为了援救灾民,某部队在如图所示的P 处空降了一批救灾药品,今要把这批药品沿道路PA 、PB 送到矩形灾民区ABCD 中去,已知PA =100 km ,PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线?并求出其方程.

【当堂检测】

1.已知A (0,-5)、B (0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ( ) A .双曲线或一条直线 B .双曲线或两条直线 C .双曲线一支或一条直线 D .双曲线一支或一条射线

2.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是 ( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 3.双曲线x 216-y 2

9

=1上一点P 到点(5,0)的距离为15,那么该点到(-5,0)的距离为 ( )

A .7

B .23

C .5或25

D .7或23

4.已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,求动圆圆心的轨迹方程.

【课堂小结】

1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.

2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.

3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1 (mn <0)的形式求解.

【拓展提高】

1.已知方程12

52

2=---k y k x 的图形是双曲线,那么k 的取值范围是( )

A .k >5

B .k >5,或22<<-k

C .k >2,,或2-

D .22<<-k

2.===-

212

2211216

25,PF PF y x F F P ,则上一点,且为焦点的双曲线是以点( ) A .2 B .22 C .4或22 D .2或22

3.已知双曲线14

92

2=-y x ,B A 、为过左焦点1F 的直线与双曲线左支的两个交点,2,9F AB =为右焦点,则△B AF 2的周长为

4.是双曲线上的一点,且,点的两个焦点分别是已知双曲线P F F y x 2122

,13

=-

__________602121的面积等于,则PF F PF F ?=∠

5.根据下列条件,求双曲线的标准方程. (1)过点P )415,

3(,Q )5,3

16

(-且焦点在坐标轴上; (2)c =6,经过点(-5,2),焦点在x 轴上.

(3))的双曲线。,有公共焦点,且过点(求与双曲线12214

52

2=-y x

6.已知双曲线:C )0,0(122

22>>=-b a b

y a x 的两个焦点)0,2()0,2(21F F 、-,点)7,3(P 在双曲线C 上

(1)求双曲线C 的方程

(2)记O 为坐标原点,过点)2,0(Q 的直线l 与双曲线C 相交于不同的两点F E 、, 若△OEF 的面积为,22求直线l 的方程

双曲线的简单几何性质(一)导学案

【学习要求】

1.掌握双曲线的简单几何性质.

2.了解双曲线的渐近性及渐近线的概念. 3.能区别椭圆与双曲线的性质.

【学法指导】

利用双曲线的方程研究其图象和几何性质,在自主探究合作交流中通过类比椭圆的几何性质,分析双曲线的几何性质.

【知识要点】

1

2.等轴双曲线

实轴和虚轴 的双曲线叫等轴双曲线,它的渐近线是 .

【问题探究】

探究点一 双曲线的几何性质

问题1 类比椭圆的几何性质,结合图象,你能得到双曲线x 2a 2-y 2

b 2=1 (a >0,b >0)的哪些几何性质?

问题2 椭圆中,椭圆的离心率可以刻画椭圆的扁平程度,在双曲线中,双曲线的“张口”大小是图象的一个重要特征,怎样描述双曲线的“张口”大小呢?

例1 求双曲线9y 2-16x 2=144的半实轴长和半虚轴长、焦点坐标、离心率、渐近线方程.

跟踪训练1 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程.

探究点二 由双曲线的几何性质求标准方程

例2 求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程:

(1)双曲线过点(3,92),离心率e =

103

; (2)过点P (2,-1),渐近线方程是y =±3x . 跟踪训练2 求满足下列条件的双曲线方程: (1)以2x ±3y =0为渐近线,且经过点(1,2); (2)离心率为5

4

,半虚轴长为2;

(3)与椭圆x 2

+5y 2

=5共焦点且一条渐近线方程为y -3x =0.

探究点三 双曲线的离心率

例3 设双曲线x 2

a 2-y 2

b 2=1 (0

c ,直线l 过A (a,0),B (0,b )两点,且原点到直线l 的距离为

3

4c ,求双曲线的离心率.

跟踪训练3 (1)如图,F 1和F 2分别是双曲线x 2a 2-y 2

b 2=1 (a >0,b >0)的两个焦点,A 、B 是以O 为圆心、以

OF 1为半径的圆与该双曲线左支的两个交点,且△F 2AB 是等边三角形,则双曲线的离心率e =________. (2)设点P 在双曲线x 2a 2-y 2

b 2=1 (a >0,b >0)的右支上,双曲线两焦点为F 1、F 2,|PF 1|=4|PF 2|,则双曲线离

心率的取值范围为__________.

【当堂检测】

1.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( ) A .x 24-y 2

12

=1

B .x 212-y 24=1

C .x 210-y 2

6

=1

D .x 26-y 2

10

=1

2.双曲线的渐近线方程为y =±3

4x ,则双曲线的离心率是 ( )

A .54

B .2

C .54或5

3

D .

52或15

3

3.若在双曲线x 2a 2-y 2

b 2=1 (a >0,b >0)的右支上到原点O 和右焦点F 的距离相等的点有两个,则双曲线的离心

率的取值范围是 ( ) A .e > 2

B .1

C .e >2

D .1

4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线方程为y =±3

3x ,若顶点到渐近线的距离为1,则双曲线方

程为 _____________

【课堂小结】

1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2a 2-y 2

b 2=1 (a >0,b >0)右边的常数1换

为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ,再结合其他条件求得λ就可得双曲线方程.

2.准确画出几何图形是解决解析几何问题的第一突破口.对圆锥曲线来说,渐近线是双曲线特有的性质.利用双曲线的渐近线来画双曲线特别方便,而且较为精确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的

近似图形.

【拓展提高】

1.P 为双曲线

116

92

2=-y x 的右支上一点,N M 、分别是圆4)5(22=++y x 和1)5(22=+-y x 上的点,则PN PM -的最大值是( )

A .6

B .7

C .8

D .9

2.已知双曲线

14

122

2=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是

3.已知P 是双曲线

192

2

2=-y a

x 右支上的一点,双曲线的一条渐近线方程为03=-y x ,设21F F 、分别为双曲线的左、右焦点.若32=PF ,则1PF =

4.设21F F 、分别是双曲线19

2

2

=-y x 的左、右焦点。若点P 在双曲线上,且021=?PF

,

+=

5.已知双曲线的中心在原点,焦点21F F 、在坐标轴上,离心率为2,且过)10,4(-M (1)求双曲线的方程

(2)若点),3(m N 在双曲线上,求证:021=?NF NF

(3)求△21NF F 的面积

双曲线的简单几何性质(二)导学案

【学习要求】

1.了解直线与双曲线的位置关系及其判定方法.

2.会求直线与双曲线相交所得的弦长、弦中点等问题.

【学法指导】

在与椭圆的性质类比中获得双曲线的性质,进一步体会数形结合的思想,掌握利用方程研究曲线性质的基本方法,培养分析、归纳、推理等能力.

【知识要点】

1.直线与双曲线的位置关系及判定

直线:Ax +By +C =0,双曲线:x 2a 2-y 2

b 2=1(a >0,b >0),

2

2.弦长公式

设斜率为k 的直线l 与双曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则:|AB |= ,或|AB |=

【问题探究】

题型一 直线与双曲线的位置关系

例1 已知直线y =kx -1与双曲线x 2-y 2=1有且仅有一个公共点,k 为何值?

跟踪训练1 (1)已知双曲线C :x 2-y 2=1,F 是其右焦点,过F 的直线l 只与双曲线的右支有唯一的交点,则直线l 的斜率等于________

(2)已知直线y =kx 与双曲线4x 2-y 2=16.当k 为何值时,直线与双曲线: ①有两个公共点;②有一个公共点;③没有公共点.

题型二 双曲线中的相交弦问题

例2 已知曲线C :x 2-y 2=1和直线l :y =kx -1.

(1)若l 与C 有两个不同的交点,求实数k 的取值范围;

(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.

跟踪训练2 设双曲线的顶点是椭圆x 23+y 2

4=1的焦点,该双曲线又与直线15x -3y +6=0交于A ,B 两点,

且OA ⊥OB (O 为坐标原点). (1)求此双曲线的方程; (2)求|AB |.

题型三 直线与双曲线位置关系的综合应用

例3 设双曲线C :x

2

a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B .

(1)求双曲线C 的离心率e 的取值范围; (2)设直线l 与y 轴的交点为P ,且12

5

=

,求a 的值. 跟踪训练3 设A 、B 分别是双曲线x 2a 2-y 2

b 2=1(a ,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离

为 3.

(1)求此双曲线的方程; (2)已知直线y =

3

3

x -2与双曲线的右支交于D 、E 两点,且在双曲线的右支上存在点C ,使得m =+,求m 的值及点C 的坐标.

【当堂检测】

1.已知双曲线x 2a 2-y 2

9=1(a >0)的一条渐近线方程为3x -4y =0,则以右焦点为圆心,虚轴长为半径的圆的方

程为( )

A .(x -5)2+y 2=36

B .(x +5)2+y 2=36

C .(x -5)2+y 2=9

D .(x +5)2+y 2=9

2.已知双曲线x 2a 2-y 2

b 2=1 (a >0,b >0)的左、右焦点分别为F 1、F 2,过F 2的直线交双曲线右支于A ,B 两点.

若△ABF 1是以B 为顶点的等腰三角形,且△AF 1F 2,△BF 1F 2的面积之比S △AF 1F 2∶S △BF 1F 2=2∶1,则双曲线的离心率为________.

3.已知双曲线x 2a 2-y 2

b

2=1(a >0,b >0)的离心率为3,且过点 (2,2).

(1)求双曲线C 的方程.

(2)已知直线x -y +m =0与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.

4.过点)1,3(-M 且被点M 平分的双曲线14

22

=-y x 的弦所在直线方程

【课堂小结】

直线与双曲线相交的问题,常有两种思路:

(1)若问题涉及相交弦的中点坐标,常联立直线与双曲线的方程,消去一个参数,化成关于x (或y )的一元二次方程,然后根据根与系数的关系,把已知条件化为两根和与两根积的形式,从而整体解题.

(2)若问题涉及相交弦的斜率等,需设出两交点坐标,将两交点坐标代入双曲线方程,然后两式相减,得到关于斜率的等式.。上述两种思路都是设而不求,该方法在求解直线与圆锥曲线相交问题时经常使用,应重点掌握.

【拓展提高】

1.已知双曲线方程为14

2

2

=-y x ,过)0,1(P 的直线L 与双曲线只有一个公共点,则L 的条数共有( )

A .4条

B .3条

C .2条

D .1条

2.设双曲线12222=-b y a x 与)0,0(122

22>>=+-b a b

y a x 的离心率分别为21e e 、,则当b a 、在变化时,

2

221e e +的最小值是( )

A .2

B .42

C .22

D .4

3.已知双曲线

)0(122

2

2>=-b b y x 的左、右焦点分别为21,F F ,其一条渐近线方程为x y =,点),3(0y P 在该双曲线上,则12PF PF ?等于

4.已知双曲线12

2

2

=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M

是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。

5.已知直线1+=ax y 与双曲线1322=-y x 交于B A ,两点 (1)若以AB 为直径的圆过坐标原点,求实数a 的值 (2)是否存在这样的实数a ,使B A ,两点关于直线x y 2

1

=对称?若存在,请求出a 的值;若不存在,请说明理由

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -Q 在双曲线上 ∴(2 2 33 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

高中数学选修2-2导学案

高二数学导学案 §1.1.1 函数的平均变化率导学案 【学习要求】 1.理解并掌握平均变化率的概念. 2.会求函数在指定区间上的平均变化率. 3.能利用平均变化率解决或说明生活中的一些实际问题. 【学法指导】 从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义. 【知识要点】 1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = ,Δy =y 1-y 0=f (x 1)-f (x 0)= ,则当Δx ≠0时,商x x f x x f ?-?+) ()(00=____叫做函数y =f (x )在x 0到x 0+Δx 之间 的 . 2.函数y =f (x )的平均变化率的几何意义:Δy Δx =__________ 表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 . 【问题探究】 在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究 这个问题. 探究点一 函数的平均变化率 问题1 如何用数学反映曲线的“陡峭”程度? 问题2 什么是平均变化率,平均变化率有何作用? 例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率. 问题3 平均变化率有什么几何意义? 跟踪训练1 如图是函数y =f (x )的图象,则: (1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 探究点二 求函数的平均变化率 例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001]. 跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )

高中数学-双曲线例题

高中数学-双曲线典型例题 一、根据方程的特点判断圆锥曲线的类型。 例1 讨论19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 解:(1)当9-k ,09>-k ,所给方程表示椭圆,此时k a -=252,k b -=92, 16222=-=b a c ,这些椭圆有共同的焦点(-4,0) ,(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时,k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为:()16014162 2<<=+--λλ λy x ∵双曲线过点()223,,∴1441618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=-y x 三、求与双曲线有关的角度问题。 例3 已知双曲线116 92 2=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小. 解:∵点P 在双曲线的左支上 ∴621=-PF PF ∴362212221=-+PF PF PF PF ∴10022 21=+PF PF ∵()100441222221=+==b a c F F ∴ο9021=∠PF F (2)题目的“点P 在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点P 在双曲线上”结论如何改变呢?请读者试探索. 四、求与双曲线有关的三角形的面积问题。 例 4 已知1F 、2F 是双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足ο9021=∠PF F ,求21PF F ?的面积. 分析:利用双曲线的定义及21PF F ?中的勾股定理可求21PF F ?的面积. 解:∵P 为双曲线14 22 =-y x 上的一个点且1F 、2F 为焦点. ∴4221==-a PF PF ,52221==c F F ∵ο9021=∠PF F ∴在21F PF Rt ?中,202 2122 21==+F F PF PF

高中数学双曲线经典例题

高中数学双曲线经典例题 一、双曲线定义及标准方程 1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是() A.x=0 B. C.D. 2、求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为. 3、与双曲线有相同的焦点,且过点的双曲线的标准方程是

4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为. 二、离心率 1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为. 2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为. 3、双曲线的焦距为2c,直线l过点(a,0) 和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l 的距离之和.则双曲线的离心率e的取值范围是() A. B.C.D. 3、焦点三角形

1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为. 2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 4、直线与双曲线的位置关系 已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____ 5、综合题型

(新教材)人教A版高中数学必修第二册学案 统计导学案含答案

9.1随机抽样 考点学习目标核心素养 抽样调查 理解全面调查、抽样调查、总体、个体、 样本、样本量、样本数据等概念 数学抽象 简单随机抽样 理解简单随机抽样的概念,掌握简单随机 抽 样的两种方法:抽签法和随机数法 数学抽象、逻辑推理分层随机抽样 理解分层随机抽样的概念,并会解决相关 问题 数学抽象、逻辑推理 问题导学 预习教材P173-P187的内容,思考以下问题: 1.全面调查、抽样调查、总体、个体、样本、样本量、样本数据的概念是什么? 2.什么叫简单随机抽样? 3.最常用的简单随机抽样方法有哪两种? 4.抽签法是如何操作的? 5.随机数法是如何操作的? 6.什么叫分层随机抽样? 7.分层随机抽样适用于什么情况? 8.分层随机抽样时,每个个体被抽到的机会是相等的吗? 9.获取数据的途径有哪些? 1.全面调查与抽样调查 (1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W. (2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W. (3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况

作出估计和推断的调查方法,称为抽样调查W. (4)把从总体中抽取的那部分个体称为样本W. (5)样本中包含的个体数称为样本量W. (6)调查样本获得的变量值称为样本的观测数据,简称样本数据. 2.简单随机抽样 (1)有放回简单随机抽样 一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n

高中数学双曲线函数的图像与性质及应用

一个十分重要的函数的图象与性质应用 新课标高一数学在“基本不等式 ab b a ≥+2”一节课中已经隐含了函数x x y 1 +=的图象、性质与重要的应用,是高考要求范围内的一个重要的基础知识.那么在高三第一轮复习 课中,对于重点中学或基础比较好一点学校的同学而言,我们务必要系统介绍学习 x b ax y + =(ab ≠0)的图象、性质与应用. 2.1 定理:函数x b ax y +=(ab ≠0)表示的图象是以y=ax 和x=0(y 轴) 的直线为渐近线的双曲线. 首先,我们根据渐近线的意义可以理解:ax 的值与x b 的值比较,当x 很大很大的时候, x b 的值几乎可以忽略不计,起决定作用的是ax 的值;当x 的值很小很小,几乎为0的时候,ax 的值几乎可以忽略不计,起决定作用的是x b 的值.从而,函数x b ax y +=(ab ≠0)表示 的图象是以y=ax 和x=0(y 轴)的直线为渐近线的曲线.另外我们可以发现这个函数是奇 函数,它的图象应该关于原点成中心对称. 由于函数形式比较抽象,系数都是字母,因此要证明曲线是双曲线是很麻烦的,我们通过一个例题来说明这一结论. 例1.若函数x x y 3 233+= 是双曲线,求实半轴a ,虚半轴b ,半焦距c ,渐近线及其焦点,并验证双曲 线的定义. 分析:画图,曲线如右所示;由此可知它的渐近线应该是x y 3 3 = 和x=0两条直线;由此,两条渐近线的夹角的平分线y=3x 就是实轴了,得出顶点为A (3,3),A 1(-3,-3); ∴ a=OA =32, 由渐近线与实轴的夹角是30o,则有a b =tan30o, 得b=2 , c=22b a +=4, ∴ F 1(2,32)F 2(-2,-32).为了验证函数的图象是双曲线,在曲线上任意取一点P (x, x x 3 233+)满足3421=-PF PF 即可;

高中数学《双曲线》典型例题12例(含标准答案)

《双曲线》典型例题12例 典型例题一 例1 讨论 19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9-k ,09>-k , 所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时, k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴所求双曲线方程为19 162 2=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c , ∴设所求双曲线方程为:162 2 =-- λ λy x (其中60<<λ) ∵双曲线经过点(-5,2),∴164 25 =-- λ λ ∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为: ()16014162 2<<=+--λλλy x ∵双曲线过点() 223, ,∴144 1618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=- y x 说明:(1)注意到了与双曲线 14 162 2=-y x 有公共焦点的双曲线系方程为14162 2=+--λ λy x 后,便有了以上巧妙的设法. (2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面. 典型例题三 例3 已知双曲线116 92 2=- y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小.

高中数学双曲线导学案及答案

高三理科数学 导学案 平面解析几何 编制: 审阅: 第二讲 双曲线(2课时) 班级 姓名 【考试说明】1.了双曲线的定义、几何图形和标准方程,知道其简单几何性质(范围、对称性、顶点、离心率、)2. 理解数形结合的思想. 3.了解双曲线的简单应用. 【知识聚焦】(必须清楚、必须牢记) 1.双曲线定义 平面内与两个定点F 1,F 2的____________等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做_____________,两焦点间的距离叫做_______________.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.(1)当______________时,P 点的轨迹是双曲线;(2)当_____________时,P 点的轨迹是两条射线; (3)当_____________时,P 点不存在. 2.双曲线的标准方程和几何性质 3实轴和_________相等的双曲线叫做等轴双曲线.离心率e =2是双曲线为等轴双曲线的充要条件,且等轴双曲线两条渐近线互相垂直.一般可设其方程为x 2-y 2=λ(λ≠0). 4.巧设双曲线方程 (1)与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2 b 2=t (t ≠0). (2)过已知两个点的双曲线方程可设为x 2m +y 2 n =1 (mn <0).

【链接教材】(打好基础,奠基成长) 1.(教材改编)若双曲线x 2a 2-y 2 b 2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2 2.(2015·安徽)下列双曲线中,渐近线方程为y =±2x 的是( ) A .x 2 -y 24=1 B.x 24-y 2=1 C .x 2 -y 2 2 =1 D.x 22 -y 2 =1 高三理科数学 导学案 平面解析几何 编制: 审阅: 3.(2014·广东)若实数k 满足00)的一个焦点,则点F 到C 的一条渐近线的距离为________. 5.(教材改编)经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为_______. 6. 设双曲线x 2a 2-y 2 9 =1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( ) A.4 B.3 C.2 D.1 7 (2013·湖北)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2 sin 2θtan 2θ =1的( ) A.实轴长相等 B .虚轴长相等 C.焦距相等 D.离心率相等 8. 已知曲线方程x 2λ+2-y 2 λ+1 =1,若方程表示双曲线,则λ的取值范围是________________. 【课堂考点探究】 探究点一 双曲线定义的应用 例1 1.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 2. 设P 是双曲线2 2 11620 y x -=上的一点,F1F2 分别是双曲线的左右焦点,若为 1 29PF PF ==则( ) A.1 B.17 C.1或17 D.以上答案均不对 [总结反思] 探究点二 双曲线的标准方程的求法 例2 1.根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为5 4 ;(2)经过两点P (-3,27)和Q (-62,-7). 2 .(2014·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 2 25=1 [总结反思] 变式题 (1)(2015·课标全国Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±1 2x ,则该双曲线的标准方程为

高中数学必修2全册导学案精编

高中数学必修二复习全册导学案

必修2 第一章 §2-1 柱、锥、台体性质及表面积、体积计 算 【课前预习】阅读教材P1-7,23-28完成下面填空1.棱柱、棱锥、棱台的本质特征 ⑴棱柱:①有两个互相平行的面(即底面),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都). ⑵棱锥:①有一个面(即底面)是,②其余各面(即侧面)是 . ⑶棱台:①每条侧棱延长后交于同一点, ②两底面是平行且相似的多边形。 2.圆柱、圆锥、圆台、球的本质特征 ⑴圆柱: . ⑵圆锥: . ⑶圆台:①平行于底面的截面都是圆, ②过轴的截面都是全等的等腰梯形, ③母线长都相等,每条母线延长后都与轴交于同一点. (4)球: . 3.棱柱、棱锥、棱台的展开图与表面积和体积的计算公式 (1)直棱柱、正棱锥、正棱台的侧面展开图分别是 ①若干个小矩形拼成的一个, ②若干个, ③若干个 . (2)表面积及体积公式: 4.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式 5.球的表面积和体积的计算公式【课初5分钟】课前完成下列练习,课前5分钟回答下列问题 1.下列命题正确的是() (A).有两个面平行,其余各面都是四边形的几何体叫棱柱。 (B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱。 (C) 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。 (D)用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。 2.根据下列对于几何体结构特征的描述,说出几何体的名称: (1)由8个面围成,其中两个面是互相平行且全等的六边形,其他面都是全等的矩形。 (2)一个等腰三角形绕着底边上的高所在的直线旋转180°形成的封闭曲面所围成的图形。 3.五棱台的上下底面均是正五边形,边长分别是6cm和16cm,侧面是全等的等腰梯形,侧棱长是13cm,求它的侧面面积。 4.一个气球的半径扩大a倍,它的体积扩大到原来的几倍? 强调(笔记): 【课中35分钟】边听边练边落实 5.如图:右边长方体由左边的平面图形围成的是()(图在教材P8 T1 (3))

(完整)江苏省高中数学公式

高 中 数 学 公 式 (苏教版) 使用说明:本资料需要有经验老师讲解每一个公式,然后根据公式出一个题来运用、理解公式,天天坚持直到高考。这样效果极佳;另外术业教育每天出一份高考数学挑战题卡(上传到学优高考网),保证你的学生数学成绩能够从20分迅速提高到100分,这项成果经过我们十几年的教学实践总结,效果绝对好。 一、集合 1. 集合的运算符号:交集“I ”,并集“Y ”补集“C ”子集“?” 2. 非空集合的子集个数:n 2(n 是指该集合元素的个数) 3. 空集的符号为? 二、函数 1. 定义域(整式型:R x ∈;分式型:分母0≠;零次幂型:底数0≠;对数型:真数0>;根式型:被开方数0≥) 2. 偶函数:)()(x f x f -= 奇函数:0)()(=-+x f x f 在计算时:偶函数常用:)1()1(-=f f 奇函数常用:0)0(=f 或0)1()1(=-+f f 3. 单调增函数:当在x 递增,y 也递增;当x 在递减,y 也递减 单调减函数:与增函数相反 4. 指数函数计算:n m n m a a a +=?;n m n m a a a -=÷;n m n m a a ?=)(;m n m n a a =;10=a 指数函数的性质:x a y =;当1>a 时,x a y =为增函数; 当10<a 时,x a y log =为增函数

高中数学双曲线抛物线知识点总结

双曲线 平面到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22 2 21x y a b -=共渐近线的方程可设为2222(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 233 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

高中数学《函数的表示法》导学案

1.2.2函数的表示法 第1课时函数的表示法 1.函数的表示法 (1)解析法:□1用数学表达式表示两个变量之间的对应关系. (2)图象法:□2用图象表示两个变量之间的对应关系. (3)列表法:□3列出表格来表示两个变量之间的对应关系. 2.对三种表示法的说明 (1)解析法:利用解析式表示函数的前提是变量间的对应关系明确,且利用解析法表示函数时要注意注明其定义域. (2)图象法:图象既可以是连续的曲线,也可以是离散的点. (3)列表法:采用列表法的前提是函数值对应清楚,选取的自变量要有代表性. 1.判一判(正确的打“√”,错误的打“×”) (1)任何一个函数都可以用列表法表示.() (2)任何一个函数都可以用解析法表示.() (3)函数的图象一定是定义区间上一条连续不断的曲线.() 答案(1)×(2)×(3)× 2.做一做 (1)函数f(x)是一次函数,若f(1)=1,f(2)=2,则函数f(x)的解析式是________. (2)某教师将其1周课时节次列表如下: X(星期)12345

Y (节次) 2 4 5 3 1 从这个表中看出这个函数的定义域是________,值域是________. (3)(教材改编P 23T 3)画出函数y =|x +2|的图象. 答案 (1)f (x )=x (2){1,2,3,4,5} {2,4,5,3,1} (3) 探究1 作函数的图象 例1 作出下列函数的图象并求出其值域. (1)y =2 x ,x ∈[2,+∞); (2)y =x 2+2x ,x ∈[-2,2]. 解 (1)列表: x 2 3 4 5 … y 1 23 12 25 … 画图象,当x ∈[2,+∞)时,图象是反比例函数y =2 x 的一部分(图1),观察图象可知其值域为(0,1].

高中数学双曲线抛物线知识点的总结

双曲线 平面内到两个定点, 的距离之差的绝对值是常数2a(2a< )的点的轨迹。 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为22 22(0)x y m n λλ-=≠,与双曲线 2222 1x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,A -。

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= ( 3,A -在双曲线上 ∴(2 2 3 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离 1d = , 同理得到点(-1,0)到直线l 的距离 2d =

高中数学导学案 等差数列

2.2 等差数列 (一)教学目标 1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。 2. 过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。 3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。 (二)教学重、难点 重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。 难点:概括通项公式推导过程中体现出的数学思想方法。 (三)学法与教学用具 学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。 教学用具:投影仪 (四)教学设想 [创设情景] 上节课我们学习了数列。在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。 [探索研究] 由学生观察分析并得出答案: (放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,…… 2012年,在伦敦举行的奥运会上,女子举重项目共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。 水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×寸期).例如,按活期

高中数学公式双曲线

双曲线 Ⅰ、定义与推论: 1.定义1的认知 设M为双曲线上任意一点,分别为双曲线两焦点,分别为双曲线实轴端点,则有: (1)明朗的等量关系: (解决双焦点半径问题的首选公式) (2)隐蔽的不等关系:,(寻求某些基本量的取值范围时建立不等式的依据) 2.定义2的推论 设为双曲线上任意上点,分别为双曲线左、右焦点,则有 ,其中,为焦点到相应准线l i的距离 推论:焦点半径公式当点M在双曲线右支上时,; 当点M在双曲线左支上时,。 Ⅱ、标准方程与几何性质 3.双曲线的标准方程 中心在原点,焦点在x轴上的双曲线标准方程为① 中心在原点,焦点在y轴上的双曲线标准方程为② (1)标准方程①、②中的a、b、c具有相同的意义与相同的联系: (2)标准方程①、②的统一形式:或 (3)椭圆与双曲线标准方程的统一形式: 4.双曲线的几何性质 (1)范围: (2)对称性:关于x轴、y轴及原点对称(两轴一中心) (3)顶点与轴长:顶点 (由此赋予a,b名称与几何意义) (4)离心率: (5)准线:左焦点对应的左准线;右焦点对应的右准线 (6)双曲线共性:准线垂直于实轴;两准线间距离为; 中心到准线的距离为;焦点到相应准线的距离为 (7)渐近线:双曲线的渐近线方程:

Ⅲ、挖掘与延伸 1.具有特殊联系的双曲线的方程 对于双曲线 (a) (1)当λ+μ为定值时,(a)为共焦点的双曲线(系)方程:c 2 =λ+μ; (2)当 为定值时,(※)为共离心率亦为共淅近线的双曲线(系)方程: ; (3)以直线 为渐近线的双曲线(系)方程为: 特别:与双曲线 共渐近线的双曲线的方程为: (左边相同,区别仅在于右边的常数) 2.弦长公式 设斜率为k 的直线l 与双曲线交于不同两点 则 1、双曲线标准方程的两种形式是:12222=-b y a x 和122 22=-b x a y )00(>>b a ,。 2、双曲线12222=-b y a x 的焦点坐标是)0(,c ±,准线方程是c a x 2± =,离心率是a c e =,通径的长是a b 22,渐近线方程是02222=-b y a x 。其中2 22b a c +=。 3、与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222b y a x )0(≠λ,即共渐近线为x a b y ±=; 与双曲线12222=-b y a x 共焦点的双曲线系方程是122 2 2=--+k b y k a x 。 4、双曲线焦半径公式:设P(x 0,y 0)为双曲线22 221-=x y a b (a>0,b>0)上任一点,焦点为F 1(-c,0),F 2(c,0),则: (1)当P 点在右支上时,1020,=+=-+PF a ex PF a ex ; (2)当P 点在左支上时,1020,=--=-PF a ex PF a ex ;(e 为离心率); 另:双曲线12222=-b y a x (a>0,b>0)的渐进线方程为02222 =-b y a x ; 5、双曲线1222 2=-b y a x 的通径(最短弦)为a b 2 2,焦准距为2=b p c ,焦点到渐进线的距离为b; 6、处理双曲线的弦中点问题常用代点相减法,设A(x 1,y 1)、B(x 2,y 2)为双曲线1222 2 =-b y a x (a>0,b>0)上不同的两点,M(x 0,y 0)是AB 的中点,则K AB .K OM =22a b 。

双曲线习题及标准答案

圆锥曲线习题——双曲线 1. 如果双曲线2 42 2y x - =1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( ) (A) 3 64 (B) 3 6 2 (C)62 (D)32 2. 已知双曲线C ∶22 221(x y a a b -=>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的 圆的半径是 (A )a (B)b (C)ab (D)22b a + 3. 以双曲线 221916 x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A .2 2 1090x y x +-+= B .22 10160x y x +-+= C .2 2 10160x y x +++= D .2 2 1090x y x +++= 4. 以双曲线2 2 2x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( ) A.2 2 430x y x +--= B.22 430x y x +-+= C.2 2 450x y x ++-= D.2 2 450x y x +++= 5. 若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它到左准 线的距离,则双曲线离心率的取值范围是( ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 6. 若双曲线122 22=-b y a x 的两个焦点到一条准线的距离之比为3:2那么则双曲线的离心 率是( ) (A )3 (B )5 (C )3 (D )5 7. 过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的 两条渐近线的交点分别为,B C .若1 2 AB BC = ,则双曲线的离心率是 ( )

高中数学双曲线题型归纳

高中数学双曲线题型归纳 类型一 双曲线的定义 【例1】已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________. 1-1设P 是双曲线120 162 2=- y x 上一点,F 1,F 2分别是双曲线左、右焦点,若|PF 1|=9,则|PF 2|=( ) A .1 B .17 C .1或17 D .以上答案均不对 1-2已知F 是双曲线112 42 2=- y x 的左焦点,A (1,4),P 是双曲线右支上的动点, 则|PF |+|P A |的最小值为( ) A .5 B .5+43 C .7 D .9 1-3已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________. 类型二 几何性质 【例2】设F 1,F 2分别为双曲线122 22=-b y a x (a >0,b >0)的左、右焦点.若在双曲线右 支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A .3x ±4y =0 B .3x ±5y =0 C .4x ±3y =0 D .5x +4y =0

2-1若双曲线()01322 2>=-b b y x 的一个焦点到一条渐近线的距离等于焦距的4 1,则该双 曲线的虚轴长是( ) A .2 B .1 C . 5 5 D . 5 5 2 2-2设直线x -3y +m =0(m ≠0)与双曲线122 22=-b y a x (a >0, b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________. 2-3中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2, 且F 1F 2=213,椭圆的半长轴长与双曲线半实轴长之差为4,离心率之比为3∶7. (1)求这两曲线方程; (2)若P 为这两曲线的一个交点,求△F 1PF 2的面积.

相关主题
文本预览
相关文档 最新文档