涡动力学研究最新进展及其未来发展的建议
- 格式:pdf
- 大小:225.12 KB
- 文档页数:8
湍流模型及其在物理学中的应用湍流是一个普遍存在于自然界和人类社会中的现象,具有复杂性、不可预知性和不稳定性等特点。
湍流现象包括气体、液体、等离子体、大气等许多领域,因此它的研究具有重要的理论和实际意义。
为了研究湍流现象,科学家们发展了许多不同的模型和方法,其中湍流模型是重要的研究工具之一。
本文将介绍湍流模型和它在物理学中的应用。
一、湍流模型概述湍流模型是对湍流现象进行数学描述的一种方法,它认为湍流现象是由一系列不同尺度的涡旋体产生的,涡旋体之间存在相互作用和相互影响。
目前常用的湍流模型包括:1. 线性模型:线性模型假设涡旋体是线性的、稳定的。
这种模型有简单、精确、易于解析等特点,但它并不能精确地描述实际湍流现象。
2. 非线性模型:非线性模型是近年来湍流研究的主要方向。
它认为涡旋体是非线性的、不稳定的,并且涡旋体之间存在复杂的相互作用和相互影响。
这种模型适用于对高度非线性湍流现象的研究,但通常需要进行复杂的计算。
3. 统计模型:统计模型是一种基于大量实验数据和经验规律的模型。
它主要通过统计分析来确定湍流现象的统计特性。
目前最常用的统计模型是雷诺平均 Navier-Stokes 方程(RANS),该方程将湍流速度分解为平均流和涡旋脉动流两部分。
这种模型适用于时间尺度大于湍流时间尺度的湍流现象。
通过使用不同的模型可以更好地描述和了解湍流现象,从而为湍流研究提供了重要的工具和技术。
二、湍流模型在物理学中的应用湍流研究既具有理论意义,又具有实际应用价值。
下面介绍湍流模型在物理学中的一些应用。
1. 大气湍流预测大气湍流预测是天气预报、气候变化预测等领域的重要研究方向之一。
湍流对气象学有着深远的影响,因此了解和预测大气湍流现象对准确预测天气和气候变化至关重要。
目前常用的预测方法包括数值模拟、机器学习等。
其中,湍流模型是数值模拟的重要组成部分,通过使用湍流模型可以更好地模拟大气湍流,并提高预测精度。
2. 涡旋动力学研究涡旋动力学是湍流研究的一个重要分支领域,它研究涡旋体之间的相互影响和相互作用,以及这些影响和作用所产生的复杂运动规律。
国外涡桨发动机控制技术的发展陈怀荣;王曦【摘要】Development situation of turboprop engine in western countries was overviewed, and several key technologies related with the control system of turboprop engine were analyzed, including working parameters, features, performance, propeller model, design method of control system, fault diagnosis technology of different types of turboprop engines and so on. The adaptive fuel control logic and implementation method of the hydro-mechanical control system of Garret early YT76 single spool turboprop engine were mainly analyzed. In addition, the development process of Pratt&Whitney Canada three-spool turboprop engine from the first generation of supervisory digital electronic control with mechanical back up system of PW120 engine to the dual channel full authority digital eletronic control system of PW150 engine was selective analyzed. These efforts are intended to provide a clear idea for the technological development of domestic turboprop engine control system.%概述了国外涡桨发动机的发展状况,分析了涡桨发动机控制系统相关的若干关键技术,包括不同类别涡桨发动机的工作参数、特点、性能、螺旋桨模型、控制系统设计方法、故障诊断技术等。
空气动力学崔尔杰*(中国航天科技集团第701研究所)本文简要回顾空气动力学发展的历史及其在航空航天飞行器研制中的作用,对现代空气动力学新的发展趋势和新一代航天飞行器研制中可能遇到的关键气动力问题进行探讨和分析,并对今后发展提出看法。
一、空气动力学与航空航天飞行器发展空气动力学是研究空气和其他气体的运动规律以及运动物体与空气相互作用的科学,它是航空航天最重要的科学技术基础之一。
1.空气动力学推动20世纪航空航天事业的发展1903年莱特兄弟研制成功世界上第一架带动力飞机,实现了人类向往已久的飞行梦想。
为了研制这架飞机,他们进行过多次滑翔试验,还为此建造了一座试验段为0.01m2的小型风洞。
正是这些努力,加上综合运用早期的空气动力学知识,最终获得了成功。
20世纪初,建立在理想流体基础上的环量和升力理论以及普朗特提出的边界层理论奠定了低速飞机设计基础,使重于空气的飞行器成为现实。
40年代中期至50年代,可压缩气体动力学理论的迅速发展,以及对超声速流中激波性质的理论研究,特别是跨音速面积积律的发现和后掠翼新概念的提出,帮助人们突破“音障”,实现了跨音速和超音速飞行。
50年代中期,美、苏等国研制成功性能优越的第一代喷气战斗机,如美国的F-86、F-100,苏联的米格-15、米格-19等。
50年代以后,进入超音速空气动力学发展的新时期,第二代性能更为先进的战斗机陆续投入使用,如美国的的F-4、F-104,苏联的米格-21、米格-23,法国的幻影-3等。
1957年苏联发射第一颗地球人造卫星和1961年第一艘载人飞船“东方号”升空,被认为是空间时代的开始。
美、苏两国在战略导弹和航天器发展方面的激烈角逐,促使超音速和高超音速空气动力学得到迅速发展。
两个超级大国都投入巨大力量,致力于发展地面模拟设备,开邻近高超出音速空气动力学和空气热力学的研究。
航天方面的研究重点放在如何克服由于高超音速飞行和再入大气层,严重气动加热所引起的“热障”问题上在钱学森先生倡导下诞生了一门新的学科,即物理力学,为航天器重返大气层奠定了科学基础。
深水钻井隔水管动力特性及涡激振动响应实验与理论汇报人:日期:•深水钻井隔水管概述•深水钻井隔水管的动力特性•涡激振动响应实验•理论模型及预测•深水钻井隔水管动力特性的优化设计建议目•参考文献录01深水钻井隔水管概述深水钻井隔水管的定义和重要性深水钻井隔水管是一种用于深水钻井的关键设备,其主要功能是隔离海水和淡水,为钻井提供稳定的工作环境,同时保护钻井设备和人员的安全。
在深水钻井过程中,隔水管能够承受高水压、抵抗外部扰动、保持结构稳定,是保障钻井作业顺利进行的关键因素。
由于深海环境的复杂性和不确定性,隔水管的性能和质量对于整个钻井作业的成败具有至关重要的影响。
深水钻井隔水管的背景和历史深水钻井技术是随着石油工业的发展而逐步发展起来的,隔水管作为其中的重要设备之一,也经历了从传统材料到高性能材料、从简单结构到复杂结构的演变过程。
在20世纪90年代以前,深水钻井隔水管主要由钢丝绳和水泥构成,具有结构简单、成本低廉的优点,但同时也存在重量大、易损坏、难以维修等缺点。
随着材料技术和结构设计的发展,新型的深水钻井隔水管不断涌现,如玻璃纤维增强塑料隔水管、碳纤维增强塑料隔水管等,这些新型隔水管具有轻便、抗腐蚀、易于安装等优点,逐渐取代了传统的钢丝绳水泥隔水管。
深水钻井隔水管的当前应用和发展趋势•目前,深水钻井隔水管已经成为了全球海洋石油工业中不可或缺的一部分,广泛应用于海洋油气资源的开发中。
•随着技术的不断进步和应用需求的不断提高,深水钻井隔水管也在不断地进行着更新换代。
未来,隔水管将更加注重轻量化、高强度、耐腐蚀、易于安装等方面的性能提升,以满足更加复杂的海洋环境和高效率的钻井作业需求。
同时,随着数字化和智能化技术的不断发展,深水钻井隔水管的智能化监测和控制系统也将成为未来发展的重要方向。
通过对隔水管运行状态的实时监测和调控,能够提高钻井作业的安全性和效率,降低事故发生的风险。
此外,随着环保意识的日益增强,绿色制造和可持续发展也成为了隔水管行业的重要发展趋势。
空气动力学的最新研究空气动力学是研究气体在物体表面流动时产生的各种力和流场特性的学科。
在现代工业和交通运输中,空气动力学的研究对于优化设计和提高效率至关重要。
近年来,空气动力学领域涌现出一些新的研究方向和发现,我们将在本文中对这些内容进行探讨。
一、生物启示生物启示是空气动力学的重要研究方向之一。
生物体适应复杂的环境要求,进化出许多高效的运动形式。
研究生物体的运动机制可以为飞行器、水下机器人等机器人设计提供新的思路。
目前,研究人员通过仿生方法成功实现了蝴蝶翅膀的水滴排斥功能。
通过利用3D打印技术制作出仿生蝴蝶翅膀的微结构,可以让水滴在表面上形成球形滚动,从而防止在飞行中积水,提高了空气动力学效率。
二、气体分子数密度气体分子数密度是衡量气体流动特性的一个重要参数。
近年来,研究人员发现,与大气压下相比,低压环境下的气体分子数密度变化显著,这种变化会对飞行器带来不稳定性。
研究人员通过实验发现,低压环境下,流动成分不仅仅是气体,还包含一定量的胶体颗粒,这些颗粒在气体中能够发挥作用。
因此,未来的空气动力学研究需要考虑气体分子数密度的变化和胶体颗粒在气体中产生的影响。
三、机翼尖涡流机翼尖涡流在空气动力学中被认为是一种不良流动。
研究人员发现,当飞机的机翼在高速飞行时,机翼尖涡流会使得机身上方空气速度降低,从而影响了发动机的工作效率,同时也降低了飞行器的稳定性。
为了解决机翼尖涡流的问题,研究人员提出了一种新的设计思路:在机翼上方加装一种称为“发散尖”的装置,该装置能够打破机翼的边缘效应,分散尖涡的能量,从而改善机翼的气动特性。
试验结果显示,这种设计能够减小尖涡的强度,并提高发动机的工作效率。
总之,空气动力学的最新研究涉及生物启示、气体分子数密度和机翼尖涡流等领域。
未来,人们将继续深入研究这些问题,以优化设计和提高效率为目标,推动空气动力学的发展。
空气动力学的理论基础及实用方法空气动力学是研究气体在流体力学背景下的运动和力学行为的学科。
他是现代航空、天空科学中发展最快、知识量最大的分支之一,伴随着人类勇攀高空和深空的追求,空气动力学的发展也变得格外重要。
本文将从空气动力学的理论基础和实用方法两方面进行探讨。
一、理论基础1. Reynold数海洋的浪花漫过了沙滩,空气在空中飘荡。
然而,对于运动的物体而言,无论它们是飞机或者是汽车,来自气流的阻力就会阻碍物体前进的速度。
对于能够调整它们的运动方式,减少阻力的机制而言,Reynold数就是理论基础中的重要参数。
Reynold数可以看作是“速度除以粘性系数的比值”,用来判断气体是否可以被视为一层不可压缩的物质。
具体而言,如果Reynold数小于2100,那么气流被视为层流;如果Reynold数大于4000,那么气流被视为湍流;如果在2100和4000之间,则转换区域并不稳定,需要使用难度更大的数学公式进行分析。
2. 化学反应在空气动力学中,化学反应同样是理论基础的重要组成部分。
一些创新的技术,如喷水等操作,都是基于控制化学反应过程来实现的。
例如,在涡流喷气发动机(turbofan)中,高压气流经过燃料喷嘴时,与燃料相互作用,产生高能量燃烧反应,从而提供大量的推力。
但是,要了解从燃料到推力的过程涉及到大量的化学和物理学知识,这些学科相互依存,彼此交错。
因此,在工程领域中实际应用这些基础理论时,必须进行准确和细致的计算和论证。
3. Navier-Stokes方程Navier-Stokes方程是描述气动力学现象的一组完整的方程式。
它是描述空气运动、热、质量传递和化学反应的主要背景,几乎出现在每个研究气动力学问题的工程师和科学家的笔记本上。
Navier-Stokes方程的组合与运动物体的物理性质相互交互,为研究气动力学现象打下了基础。
二、实用方法1. 试验试验是空气动力学研究的中心,通过对实际的研究对象进行测量和分析,来验证和完善理论预测。
空气动力学崔尔杰*(中国航天科技集团第701研究所)本文简要回顾空气动力学发展的历史及其在航空航天飞行器研制中的作用,对现代空气动力学新的发展趋势和新一代航天飞行器研制中可能遇到的关键气动力问题进行探讨和分析,并对今后发展提出看法。
一、空气动力学与航空航天飞行器发展空气动力学是研究空气和其他气体的运动规律以及运动物体与空气相互作用的科学,它是航空航天最重要的科学技术基础之一。
1.空气动力学推动20世纪航空航天事业的发展1903年莱特兄弟研制成功世界上第一架带动力飞机,实现了人类向往已久的飞行梦想。
为了研制这架飞机,他们进行过多次滑翔试验,还为此建造了一座试验段为0.01m2的小型风洞。
正是这些努力,加上综合运用早期的空气动力学知识,最终获得了成功。
20世纪初,建立在理想流体基础上的环量和升力理论以及普朗特提出的边界层理论奠定了低速飞机设计基础,使重于空气的飞行器成为现实。
40年代中期至50年代,可压缩气体动力学理论的迅速发展,以及对超声速流中激波性质的理论研究,特别是跨音速面积积律的发现和后掠翼新概念的提出,帮助人们突破“音障”,实现了跨音速和超音速飞行。
50年代中期,美、苏等国研制成功性能优越的第一代喷气战斗机,如美国的F-86、F-100,苏联的米格-15、米格-19等。
50年代以后,进入超音速空气动力学发展的新时期,第二代性能更为先进的战斗机陆续投入使用,如美国的的F-4、F-104,苏联的米格-21、米格-23,法国的幻影-3等。
1957年苏联发射第一颗地球人造卫星和1961年第一艘载人飞船“东方号”升空,被认为是空间时代的开始。
美、苏两国在战略导弹和航天器发展方面的激烈角逐,促使超音速和高超音速空气动力学得到迅速发展。
两个超级大国都投入巨大力量,致力于发展地面模拟设备,开邻近高超出音速空气动力学和空气热力学的研究。
航天方面的研究重点放在如何克服由于高超音速飞行和再入大气层,严重气动加热所引起的“热障”问题上在钱学森先生倡导下诞生了一门新的学科,即物理力学,为航天器重返大气层奠定了科学基础。
航空发动机滚动轴承及其双转子系统共振问题研究综述作者:李轩来源:《科技风》2022年第11期摘要:针对航空燃气涡轮发动机滚动轴承及其双转子系统存在的复杂振动问题,综述了近年来国内外该领域的主要研究成果。
首先,概述了双转子系统动力学建模与分析的研究成果。
其次,综述了双转子系统动力学响应分析研究的现状与主要进展。
最后对现有研究工作进行了展望,对该领域的发展趋势进行了说明。
关键词:转子动力学;双转子系统;共振;非线性;滚动轴承滚动轴承及其双转子系统作为航空燃气涡轮发动机的主要结构,存在着大量复杂振动现象,能够引发系统复杂故障甚至灾难性的事故,其产生机理十分复杂。
所以人们针对相关系统进行了大量研究,从不同角度研究并阐述了多种复杂共振现象的触发机制,对进一步改善航空燃气涡轮发动机等相关滚动轴承—双转子系统机械的安全性、稳定性、可靠性具有重要的理论与实际工程意义。
为了缓解航空燃气涡轮发动机滚动轴承及其双转子系统运行时的高频小幅度不规则运动,防止系统在特定运行条件下产生有害共振,并仍能保持良好的动力学性能。
学者们需要深入研究航空发动机滚动轴承—双转子系统的运动学与造成其运动的力学特点,从而分析解决实际系统存在的各种共振问题。
为此,研究创建适合于剖析滚动轴承—双转子系统动力学特性的模型很有必要。
本文对航空发动机滚动轴承—双转子系统动力学建模以及双转子系统的动力学响应特性的研究现状进行了归纳,并对滚动轴承及其双转子系统共振研究的发展趋势进行了预测。
1 航空发动机双转子系统的动力学建模与分析实际双转子航空燃气涡轮发动机工况十分复杂,为了准确研究航空燃气涡轮发动机滚动轴承—双转子系统运行中的动力学行为,航空燃气涡轮发动机双转子系统的动力学建模问题被学者们广泛研究。
路振勇等[1]依据某真实航空发动机的双转子系统,创建了较为复杂的非连续化动力学模型。
并在对该模型进行了降维后,计算了系统发生共振的对应转速,发现依据复杂非连续化动力学模型计算得到的结果与采用传统方法计算得到的结果相比差异极小,证明了降维模型能很好反映双转子系统的实际共振特性。
湍流流体力学的发展与应用展望1. 引言湍流流体力学是研究流体中的湍流现象及其动力学行为的学科领域。
湍流是一种非线性、非稳定的复杂现象,存在于自然界中的各种流动过程中,如海洋流、大气环流、河流、汽车行驶中的空气流动等。
湍流的研究对于增进对自然界和工程实践中流体运动的理解具有重要意义。
本文将探讨湍流流体力学的发展历程以及对工程领域的应用,并展望未来的发展方向。
2. 湍流流体力学的发展史湍流流体力学的研究始于19世纪末的流体动力学研究。
最早的湍流研究是基于实验观察和经验公式的。
然而,由于湍流的复杂性和不可预测性,这种经验研究方法很快遇到了困难。
随着计算机技术的发展,数值模拟成为湍流研究的重要手段。
20世纪后期,湍流模型的发展和大规模计算能力的提高加速了湍流流体力学的进展。
3. 湍流流体力学的基本理论湍流流体力学的基本理论主要包括雷诺平均Navier-Stokes方程(RANS)及其湍流模型、直接数值模拟(DNS)以及大涡模拟(LES)等。
3.1 雷诺平均Navier-Stokes方程及湍流模型雷诺平均Navier-Stokes方程是湍流流体力学研究的基础方程之一。
雷诺平均是指对流场进行时间平均处理。
湍流模型用于模拟流场中的湍流运动,其中最经典的是k-$\\varepsilon$模型和$k-\\omega$模型。
这些模型基于统计和实验数据,对湍流的运动和传输进行建模,从而实现对湍流运动的计算。
3.2 直接数值模拟直接数值模拟是通过求解Navier-Stokes方程组来模拟湍流流动。
在直接数值模拟中,湍流的小尺度结构和湍流涡旋被完全模拟,可以获得精确的流场解。
然而,直接数值模拟计算量巨大,只适用于小规模问题,限制了其在工程领域的应用。
3.3 大涡模拟大涡模拟是介于雷诺平均和直接数值模拟之间的一种模拟方法。
在大涡模拟中,通过将流场分解成大尺度涡旋和小尺度湍流结构,对大尺度涡旋进行模拟,而对小尺度湍流结构进行参数化处理。
合成射流技术及其在流动控制中应用的进展一、本文概述合成射流技术,作为一种创新的流动控制技术,近年来在流体动力学领域引起了广泛关注。
该技术利用特定装置产生高速射流,通过射流与周围流体的相互作用,实现对主流场的主动控制。
本文旨在综述合成射流技术的最新研究进展,特别关注其在流动控制领域的应用。
文章将首先介绍合成射流的基本原理和产生方法,然后重点分析合成射流在流动控制中的具体应用案例,包括提高升力、减阻、控制涡流等方面。
本文将讨论合成射流技术的未来发展趋势和可能面临的挑战,为相关领域的研究人员提供参考和借鉴。
二、合成射流技术的理论基础合成射流技术的理论基础源于射流理论和流体动力学。
射流是一种通过喷嘴或孔口喷出的流体,它在周围环境中形成特定的流动模式。
合成射流则是通过特定的机械或电磁装置产生周期性或非周期性的射流,以此来实现对流动的控制。
合成射流的基本原理是通过周期性地改变射流的方向或强度,使得流体在特定的区域内产生扰动,从而改变流场的动力学特性。
这种扰动可以产生多种效应,包括动量传递、涡流生成和湍流增强等,这些效应对于控制流动具有重要意义。
合成射流技术的核心在于其产生的射流具有高度的可控性。
通过调整射流的频率、振幅和相位等参数,可以精确地控制流场中的动力学特性,从而实现对流体的有效操纵。
这种可控性使得合成射流技术在许多领域具有广泛的应用前景。
合成射流技术的理论基础还包括流体动力学的相关知识。
流体动力学是研究流体运动规律的学科,它涉及到流体的运动方程、边界条件、湍流模型等多个方面。
合成射流技术在实际应用中需要考虑这些因素,以确保其能够有效地控制流动。
合成射流技术的理论基础涵盖了射流理论、流体动力学等多个方面。
通过深入研究和理解这些理论,我们可以更好地掌握合成射流技术的核心原理和应用方法,从而推动其在流动控制领域的发展。
三、合成射流在流动控制中的应用合成射流技术作为一种新兴的流动控制手段,近年来在多个领域得到了广泛应用。
第21卷第6期2023年6月动力学与控制学报J O U R N A L O FD Y N AM I C SA N DC O N T R O LV o l .21N o .6J u n .2023文章编号:1672G6553G2023G21(6)G018G013D O I :10.6052/1672G6553G2023G076㊀2023G03G22收到第1稿,2023G05G06收到修改稿.∗国家自然科学基金资助项目(11902001,12072221,12132010),N a t i o n a lN a t u r a lS c i e n c eF o u n d a t i o no fC h i n a (11902001,12072221,12132010).†通信作者E Gm a i l :y a n gt i a n z h i @m e .n e u .e d u .c n 输流管道动力学与控制的最新进展∗唐冶1,2㊀高传康2㊀丁千1㊀杨天智3†(1.天津大学力学系,天津㊀300350)(2.安徽工程大学机械工程学院,芜湖㊀241000)(3.东北大学机械工程与自动化学院,沈阳㊀110819)摘要㊀管道系统在航空航天㊁石油输送㊁深海探测㊁核能工程等工程领域发挥着输送流体的作用.由复杂结构功能设计㊁支承条件㊁内部流体和外部环境等因素引起输流管道中的流体和管道发生强烈地耦合,导致的动力学问题严重限制了输流管道在各种领域中的工程应用.因此,输流管道的复杂动力学行为引起了工程和科学领域学者们的广泛关注,本文综述和讨论了最新的输流管道振动控制的研究和进展.关键词㊀输流管道,㊀动力学,㊀振动控制,㊀最新进展中图分类号:O 324;O 322文献标志码:AR e v i e wo nD y n a m i c a n dC o n t r o l o fP i p e sC o n v e y i n g Fl u i d a n ∗T a n g Y e 1,2㊀G a oC h u a n k a n g 2㊀D i n g Q i a n 1㊀Y a n g Ti a n z h i 3†(1.D e p a r t m e n t o fM e c h a n i c s ,T i a n j i nU n i v e r s i t y ,T i a n ji n ㊀300350,C h i n a )(2.S c h o o l o fM e c h a n i c a l E n g i n e e r i n g ,A n h u i P o l y t e c h n i cU n i v e r s i t y,W u h u ㊀241000,C h i n a )(3.S c h o o l o fM e c h a n i c a l E n g i n e e r i n g a n dA u t o m a t i o n ,N o r t h e a s t e r nU n i v e r s i t y ,S h e n y a n g㊀110819,C h i n a )A b s t r a c t ㊀P i p e l i n e s a r eu s e d t oc o n v e y f l u i d i nt h ee n g i n e e r i n g f i e l d s s u c ha s a e r o s p a c e ,o i l t r a n s po r t a Gt i o n ,d e e p Gs e a e x p l o r a t i o n ,n u c l e a r p o w e r e n g i n e e r i n g a n d s o o n .T h e s t r o n g c o u p l i n g b e t w e e n t h e p i p e s a n d f l u i d i s i n d u c e db y t h e c o m p l e xs t r u c t u r a l a n d f u n c t i o n a l d e s i g n ,s u p p o r t c o n d i t i o n s ,i n t e r n a l f l u i d a n d e x t e r n a l e n v i r o n m e n t ,r e s u l t i n g i nd y n a m i c p r o b l e m sw h i c hs e v e r e l y l i m i t t h ee n g i n e e r i n g a p pl i c a Gt i o no f t h e p i p e s c o n v e y i n g f l u i d i n v a r i o u s f i e l d s .T h e r e f o r e ,t h e c o m p l e x d y n a m i c b e h a v i o r o f p i p e s c o n Gv e y i n g f l u i dh a s b e e na t t r a c t e dw i d e a t t e n t i o no f s c h o l a r s i ne n g i n e e r i n g an d s c i e n c e .T h e l a t e s t r e s e a r c h a n d p r o g r e s s i nv i b r a t i o na n d c o n t r o l o f p i p e c o n v e y i n g f l u i d a r e r e v i e w e d a n dd i s c u s s e d i n t h i s p a p e r .K e y wo r d s ㊀p i p e s c o n v e y i n g f l u i d ,㊀d y n a m i c ,㊀v i b r a t i o n c o n t r o l ,㊀r e c e n t d e v e l o p m e n t 引言输流管道通常是指输送流体的管状结构,作为各种工程系统中的一种重要的基本单元,被广泛地应用于航空航天㊁机械㊁土木㊁海洋㊁生物㊁核能㊁石油能源和动力水能等工程领域,如大型水利工程的压力管道,石油工程中的输油和输气管道,飞机和液体火箭中的输送推进剂管道,海洋钻探中的输油管道,以及核电工业的热交换管道等.由于内部流体和外部环境的作用,管道在传输流体过程中不可避免地出现许多动力学和稳定性问题.在工程中,失稳㊁大幅振动和混沌等复杂行为往往会使输流管Copyright ©博看网. All Rights Reserved.第6期唐冶等:输流管道动力学与控制的最新进展结构破坏㊁精度下降和寿命降低.随着科学技术的发展和进步,各种工程结构㊁机械和传输设备对振动环境㊁稳定性和抗振能力的要求越来越高.因此,研究输流管道振动及其控制问题具有重要的工程意义.输流管系统的振动问题研究可以追溯到十九世纪末,M a r v e lB r i l l o u i n在观察给草坪浇水的橡皮管时,发现流体高速流动引起管道自由端产生一些奇怪的运动,这一现象引起了他的学生B o u r r iér e的兴趣[1],并在1939年建立了输流管道的线性方程.但是,二次世界大战使相关研究工作遭遇停滞.直到1950年,A s h l e y和H a v i l a n d[2]分析了横跨阿拉伯工程管道的弯曲振动问题.随后,众多学者开始关注输流管系统的固有频率㊁振动波传播㊁稳定性和响应振幅等动力学行为[3G5].1987年, P aïd o u s s i s[6]精辟地阐述了输流直管的线性振动问题,指出了当流速超过临界值时,悬臂输流管会发生颤振失稳,两端支承管道更容易屈曲失稳.随着研究的不断深入,学者们对输流管道动力学的研究考虑更为一般的三维模型,探索更为复杂的非线性现象.H o l m e s[7]在P aïd o u s s i s的输流管线性振动模型中引入了几何非线性,从而建立了系统的非线性运动方程,开启了非线性动力学的研究热潮.M e n g等[8]基于K a n e方程和R i t z方法,建立了输流管系统全局运动的三维非线性动力学模型,并利用增量谐波平衡方法研究了系统的非线性时域响应.G h a y e s h等[9]提出了悬臂输流管的非线性平面运动模型,应用伪弧长和直接积分方法构造系统的分岔图㊁时间历程图和相图,并指出了随着流速的增加,系统经历超临界的H o p f分岔后而进入颤振失稳.C h a n g和M o d a r r e sGS a d e g h i[10]利用有限差分方法讨论了悬臂输流管在基础激励下二维㊁三维概周期运动和混沌运动的流速条件.Lü等[11]应用G a l e r k i n截断和数值技术研究了具有非线性弹簧耦合的两输流管系统的分岔和同步振动.Z h a n g 等[12]数值地分析了在一般边界条件下具有附加质量弹簧约束输流管道的三维动力学,并通过分岔图㊁相图㊁功率谱密度图和庞加莱映射图等手段考察了系统分岔和混沌等复杂动力学行为.由于管道内液体流动的特殊性以及控制方程引入非线性后,系统固有频率之间可能存在一定的比例关系,这时模态的相互影响不容忽视,出现了内共振现象[13].同济大学的徐鉴教授[14,15]采用多尺度方法研究悬臂输流管的内共振,分别推导了3ʒ1㊁2ʒ1和1ʒ1内共振的条件,并用数值方法模拟了3ʒ1内共振下系统的非线性动力学行为.上海大学的陈立群教授[16]考虑管内流速处于超临界区域,进一步研究了输流管的主共振和2ʒ1内共振,并解释了在稳态响应中发生双跳跃现象的机理.M a o等[17]关注了超临界输流管在3ʒ1内共振情况下的强迫振动响应,研究发现了跳跃㊁饱和与滞后等现象,并通过数值方法检验了曲线平衡附近的局部分岔行为.管道所载流体经常由泵等装置提供动力,流体流速不可避免地带有脉动.当这种脉动频率和输流管系统的固有频率满足一定关系时,即使是小的脉动激励,也可能引起大的系统响应.因此,脉动流速所引起的参数振动是输流管系统的另一个重要的动力学问题.P a n d a和K a r[18,19]采用多尺度方法分析了3ʒ1内共振条件下脉动输流管系统的主㊁组合参数共振,并发现了鞍结分岔及H o p f分岔.北京工业大学的杨晓东教授[20]讨论了脉动输流黏弹性管道在次谐波共振和组合谐波共振条件下的稳定性.华中科技大学的王琳教授课题组[21]提出了一种脉动输流管的涡激动力学模型,并采用直接多尺度方法讨论了锁频条件下脉动参数共振对输流管系统涡激振动的影响,研究结果表明,只有锁频效应和脉动参数共振发生在同一阶模态上时,脉动参数共振才会对响应幅值产生明显的影响.北京工业大学的张伟教授课题组[22]考察了超临界脉动输流管在1ʒ2内共振条件下的超谐波全局动力学,并通过辨别相空间中的多脉冲跳跃轨道说明发生混沌运动的条件.目前,随着解析方法[23]㊁数值仿真[24,25]和实验手段[26]的不断成熟,学者们更加关注工程实际情形下的输流管道振动问题,如海洋石油天然气钻井系统㊁盐矿卤水输送管路系统.为了满足不同的工程应用,不同形状,复杂约束,输送多相流体的,恶劣的工作环境下的管道动力学行为被大量地研究.同时,引进复合材料如功能梯度材料构造管道调控输流管道振动特性来增强输流管道的强度和提高系统的可靠性,也是另外一个重要的研究方向.此外,虽然振动抑制在工程应用中的需求越来越大,但是,关于输流管道振动控制的研究还是相对较91Copyright©博看网. All Rights Reserved.动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2023年第21卷少.本文从一般输流直管/曲管㊁不同外形输流管道㊁复杂支承和约束输流管道㊁运动输流管道㊁内流和外流作用下输流管道㊁多相流输流管道㊁复合材料输流管道动力学特性及输流管道的振动控制等方面进行综述,全面地给出输流管道动力学与控制的最新研究进展.1㊀一般输流直管/曲管普通直曲输流管道的研究较为简单,计算工作量小,这种研究模型通常从工程实际中合理假设而得到的.在输流管道系统设计初始阶段,对精度要求不高的动特性预估是可行的.对于普通输流管道,边界条件通常被假设为两端支承和悬臂.T a n等[27]考虑了T i m o s h e n k o模型,建立了纵横扭耦合振动模型,利用有限差分法和离散傅立叶变换方法,研究了初始幅值㊁外激振力和流速对系统的非线性频率和强迫响应特性的影响.并讨论了T i m o s h e n k o输流管道模型的优势.S a z e s h和S h a m s[28]研究了高斯白噪声随机激励下悬臂输流管道的动力学,通过随机时间历程和概密度函数探索管道在颤振点附近的随机行为.G i a c o b b i等[29]针对输流管道应用于海洋平台砖井开采甲烷晶体的工程问题,考虑管道传输高速的气体和沿管长方向变化的热环境,研究了轴向变密度输流管道的动力学,得出管道入口和出口的密度差对系统稳定性影响较大.H i g u c h i等[30]提出识别悬臂输流管道自激振动的复模态实验技术,构造了输流管道系统发生颤振时的特征模态.L i等[31]利用谱不变流形方法,对悬臂输流管道的非线性动力学模型进行降维,通过比较降维前后的系统自由振动㊁强迫振动响应㊁周期和概周期分岔以及同宿和异宿轨道等复杂的动力学行为,说明所提出的不变流形降维方法的有效性.Z h a n g和C h e n[32]利用G a l e r k i n截断和多尺度方法,结合规范性理论和能量相方法,研究了悬臂输流管道在脉动流和外激励作用下的多脉冲跳跃轨道和混沌动力学.当管道内流体增加到临界值的,两端支承输流管道发生屈曲,由原来的绕直线平衡位置运动过渡到绕曲线平衡位置进行运动.目前,传播高速流下管道振动越来越普遍,也成为研究重点之一.T a n 等[33,34]针对高速流管道常常产生严重的振动问题,讨论了T i m o s h e n k o输流管道在超临界情况下的主共振㊁超谐波共振和参数振动行为,发现超临界情况下管道动力学行为比亚临界情况下更加复杂.L u等[35]研究了输流管道在超临界流体作用下发生3ʒ1内共振和应力分布情况,并揭示了抑制内共振提高管道的疲劳生命的机理.Z h u等[36]考虑黏弹性输流管道的面内和面外耦合作用和欧拉梁理论,利用频响图㊁力幅图㊁吸引盆㊁时间历程图和相图,研究了输流管道在亚临界和超临界情况下三维耦合动力学,说明了当出现2ʒ1内共振时,系统展现典型的跳跃㊁滞后并出现双峰响应.为适应工程操作和适应环境变化的安装,曲率比较大输流曲管在工程中应用比较广泛而被研究者重视,以便实现更加灵活性设计.O y e l a d e和O y e d i r a n[37]考虑两端简支㊁两端固支和一端固支一端简支边界条件以及轻微弯曲输流曲管的纵横耦合特性,分析了系统在热载荷作用下的非线性动力学.Z h o u等[38]利用绝对节点坐标方法,建立了悬臂轻微输流曲管的非线性控制方法,经过研究发现即使初始几何形变较小,管道流体引起的静态变形也是非常大的,系统的颤振失稳临界流速依赖于静态平衡构造,同时,关注了后屈曲非线性行为.C zGe r w i n s k i和Łu c z k o[39]引入轴向力的非线性成分,利用理论和实验方法分析了系统时间历程图㊁相图㊁运动轨迹㊁振动模态和分岔演化规律.研究了脉动流频率和幅值对输流曲管的各种参数振动影响.C h e n等[40]以柔性机器人和生物医学为背景,利用绝对节点坐标方法,对具有任意初始构型的柔性输流曲管进行了几何精确性建模,预估了输流曲管的静态变形及稳定性和非线性振动等大变形行为.X u 等[41]研究了轻微输流曲管涡激振动,他们发现了在稳定流情况下,系统存在针对绕流一三阶模态振动的锁频区域,其振动幅值随着外流体速度增加而增大;在脉动流作用下,系统展现出更加复杂的动力学行为.Y a n等[42]研究了两端固支输流曲管的静态平衡构型的分岔和稳定性行为,分析了外力㊁流速和弧角对系统非线性响应的影响.2㊀复杂支承和约束管道在工程中,学者们在输流管道系统中增加复杂支承和约束,试图改善系统的动力学环境.Y aGm a s h i t a等[43]研究了具有弹性支承和端部质量的02Copyright©博看网. All Rights Reserved.第6期唐冶等:输流管道动力学与控制的最新进展输流管道动力学,通过理论结合试验的方法关注了H o p f-H o p f耦合和两不稳定模态幅值的演化,在一定的参数区间,存在由H o p f-H o p f耦合而产生的混合模态自激振动.G u o等[44]运用传递矩阵方法和实验技术,研究了并行输流管道系统在局部位置受到外激励干扰时振动传递问题,并分析了约束㊁流速和压力对振动传递特性的影响.P e n g等[45]应用哈密顿变分原理,建立了含有运动约束倾斜输流管道的三维非线性运动微分方程,通过数值技术获取系统的相图和振动轨线说明运动规律.E l N a j j a r 和D a n e s h m a n d[46]关注了沿着管长方向增加质量和弹簧提高横向和纵向管道的临界流速的可能行.A s k a r i a n等[47]讨论了端部线性弹簧和扭转弹簧约束性输流管道在分数阶黏弹性地基支承情况下的稳定性.K h e i r i[48]分析了两端强非线性横向和扭转弹簧约束下输流管道的非线性动力学,与悬臂输流管道相比,复杂约束输流管道展现更低的H o p f分岔流速,更高的振动位移幅值.在高流速下,存在概周期和混沌运动.M a o等[49]利用模态校正结合投影方法,提出了处理具有非线性和非均匀边界的输流管道振动的近似解析方法,该方法利用谐波平衡法将边界非线性和非均匀项进行描述,通过更多谐波判别响应解的收敛性.与多尺度方法的解对比,说明提出的方法有效性.Z h o u等[50]考虑几何大变形和弹性边界条件,计算了复合材料输流管道失稳临界流速和非线性频率,结果表明平移弹簧的变化对临界流速具有轻微影响,旋转弹簧能提高系统的稳定性.Z h o u等[51]提出了具有局部刚化的悬臂输流直管和曲管的非线性模型,探索了局部刚段位置和长度对系统非线性静平衡构造和动力学特性的影响.结果表明局部刚段的出现影响两种管道的振动模态,曲管中出现周期1和周期2的运动,而直管中仅出现周期1的运动.P e n g等[52]研究脉动流输流管道在运动约束作用下的横纵耦合非线性振动,通过相平面图㊁庞加莱映射图和功率谱密度图展现如概周期和混沌运动等复杂的运动规律.L i u 等[53]提出了悬臂输流管道在松散约束下的涡激振动模型,通过分岔图和A r g a n d图及振型图说明了锁频现象及复杂动力学行为.3㊀运动有大运动叠加的输流管道学者们从工程领域中简化出三种运动管道模型:沿着管道轴线平动抽吸输流管道㊁绕管道轴线旋转的输流管道㊁绕管道径向旋转的输流管道.Y a n 等[54]建立了沿轴向时变滑动输流管道的非线性动力学模型,研究了系统动力学稳定性和非线性行为,结果表明当流速超过临界值时,颤振幅值随着时间变化而改变,随着滑动率的增加,管道系统更容易失稳,而质量比和重力的增加能提高系统的稳定性.L i a n g等[55]考虑旋转速度和流速脉动情形,提出了绕管道轴线旋转的输流管道非线性参数振动模型,利用多尺度方法分析了系统稳定性,通过数值方法模拟了系统非线性响应和空间振动形态.L i a n g等[56]研究了绕管道轴线旋转的多跨功能梯度输流管道的动力学,结果表明引入中间支承可提高系统的稳定性,不同跨度的模态特征能确定管道振动幅值位置.E b r a h i m i和Z i a e iGR a d[57]提出了绕管道轴线旋转的悬臂压电输流管道振动模型,考察了流速㊁电阻㊁旋转速度和压电层覆盖角对系统的动力学轨线和稳定性影响.L i a n g等[58]研究了绕管道轴线旋转的两端支承输流管道在内外流共同作用下的三维动力学.A b d o l l a h i等[59]进行了绕管道径向旋转的输流管道在环流液体媒介中的稳定性分析,考虑双陀螺力的影响,通过解析和半解析解获取稳定性解.4㊀内流和外流作用下输流管道在工业领域,涉及输流管道同时受到内外流共同影响的系统也是非常常见的,例如,热交换器㊁钻井作业的钻柱和石油勘探,以及在 盐井洞穴 中提取碳氢化合物等.P aïd o u s s i s等[60]综述了悬臂输流管道在内和反向外流作用下动力学问题.A b d e l b aGk i等[61]提出了悬臂输流管系在内外轴向流作用下的全局非线性模型,利用伪弧长延拓方法结合直接数值积分方法计算系统的运动微分方程,预估了不稳定性引起的颤振㊁超临界下的极限环振动和频率受外流的限制程度㊁重力㊁质量比等参数的影响.Z h o u等[62,63]利用能量方法推导了悬臂输流管道在轴向激励下的非线性三维控制方程,通过非线性数值方法预测了系统的非线性响应,流速在亚临界条件下,轴向激励能够产生共振响应,超临界情况下,轴向激励在某些特定区间能使系统稳定,非平面周期自激振动演化成平面概周期或周期运动.J i a n g 等[64]研究了两端支承输流管道在轴向内外流作用12Copyright©博看网. All Rights Reserved.动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2023年第21卷下的稳定性和三维非线性动力学,揭示了一些有趣动力学现象如周期㊁概周期和混沌运动等.A b d e lGb a k i等[65]提出了悬臂输流管系在部分限制外流作用下的非线性理论模型,探索了环向区域的参数对动力学行为影响,通过实验验证了提出模型的有效性.M i n a s和P aïd o u s s i s等[66]搭建了悬臂管系在内外流作用下实验平台,上部环绕部分由一个同心圆的刚性圆柱形管组成,并安装在一个装满水的水箱中.水从管道上部流入,在其自由端排入水箱,理论和实验预测了环状流强烈地影响管系失稳.B u t t 等[67]提出了悬挂吸水管道系统在内外流作用下线性模型,研究了一定内外流速比下的系统复模态,结果表明在足够高外流速下,系统失稳主要由一阶颤振引起.C h e h r e g h a n i[68]利用实验方法研究了悬臂输流管道在反向环流作用下动力学问题,当外内流速比较低时,系统失稳由二阶模态颤振引起;当外内流速比较高时,管道经历静变形,伴随着高速内流引起的周期和混沌等复杂动力学行为.D a n eGs h m a n d等[69]执行了部分限制悬臂管道在内和反向外流作用下的耦合双向流固耦合分析.Z h o u 等[70]建立了端部锥形悬臂输流管道在内外轴向流作用下的动力学模型,研究了系统失稳边界和模态及非线性振动幅值和形态.5㊀多相流输流管道在石油和天然气开采领域,存在石油和天然气混合油气井,为降低成本,通常采用油气混合输送模式,这是典型的气液两相流.较普通的单相流㊁多相流造成许多缺点,如承载能力的降低㊁流体物理性质的变化㊁流体流动的中断和系统效率的降低等[71].这些缺陷为动力学设计带来相应的挑战,如空间密度变化引起流速的暂态变化,进而引起参数振动等.因此,研究多相流输流管道的振动特性具有重要的设计意义.E b r a h i m iGM a m a g h a n i等[72]提出了立管传输气液两相流的数学模型,应用G a l e rGk i n截断和特征值分析得到了如气体体积分数㊁流速㊁结构阻尼和重力参数对系统稳定性的影响.G u o 等[73]研究了管中管系统在热环境和二相流作用下的动力学特性和稳定性,通过A r g a n d图㊁稳定图㊁时间历程图说明了在超临界流作用下,不同于单相流,二相流系统展现了二管道耦合颤振失稳.M a和S r i n i l[74]数值研究了传递气液两相流倾斜弯曲输流管道的平面动力学.L i u等[75]采用绝对节点坐标方法,建立了海洋立管在内部二相流作用下的非线性数学模型.通过时域和频域的变化,说明了提出建模方法的有效性.O y e l a d e和O y e d i r a n[76]利用哈密顿变分原理,建立了传递二相流水平管道的非线性控制方程,分析了初始变形㊁体积分数和质量比对系统的频率㊁临界流速㊁响应位移分岔和混沌的影响.Z h o u等[77]研究了传递气液两相流倾斜输流管道的自由振动和稳定性,结果表明,倾斜引起的重力对系统振动特性具有重要的影响,随着倾斜角度加大,系统临界气体速度和振动频率降低,系统更容易失稳;对于给定倾斜角,系统对表面气体/液体速度的动态响应与质量比直接相关.E b r a h i m iGM a m a g h a n i等[78]通过特征值求解,研究了两端支承输送二相流管道系统的稳定性,同时给出了非线性振动频率闭式解,结果表明系统稳定性随着液相密度的降低而提高,提高气体分数和流体混合速度可增大系统非线性振动频率.C h a n g等[79]研究了含气液两相流输流管道在洋流作用下的涡激锁频特性,利用哈密顿变分原理,建立了管道系统平面运动微分方程,范德波尔振动模型模拟洋流的涡激力,N e w m a r kGβ和四阶龙哥库塔法求解系统动力学响应.得到了锁频区间随着液相速度㊁纤维方向角的增大而向右移动,而轴向张力增大使锁频区域向左移动.X i e等[80]针对多相流引起的流体变密度,研究了输流管道经历涡激振动情况下的非线性参数振动行为,结果表明,当内部流体密度在不同系统固有频率附近波动时,管道的振动会变得不均匀或非周期性,位移量会增加或减少.随着内部流体波动幅度的增大,密度较大时,这些现象就会变得更加明显.随后,X i e等[81]将变密度输流管道扩展到系统经历c r o s sGf l o w和i nGl i n e耦合涡激振动的动力学响应分析,给出了在不同参数共振下的管道系统不同模态被激励的动力学特性.6㊀复合材料输流管道动力学特性复合材料是由两种或两种以上的材料复合而成的新材料,从而能改善材料的力学性能.比较典型的功能梯度材料由体积含量在空间位置上可连续变化的两组分材料组成.在制造这种材料时,通过改变组分的体积指数率而使该材料具有物理属性分布沿着某一方向连续梯度变化的性质.与传统22Copyright©博看网. All Rights Reserved.第6期唐冶等:输流管道动力学与控制的最新进展材料相比,功能梯度材料拥有很多优点,例如,缓解或消除材料的应力集中,提高结构连接强度和增强结构抗热腐蚀性能等[82].因此,在工程领域中制造重要部件广泛采用这样的材料.最近,学者们为了优化动力学特性而将功能梯度材料引入输流管系统.R e d d y等[83]提出应用功能梯度材料构造管道来提高传递热流体的稳定性,采用谐波平衡法和龙格库塔法获取系统时域和频域响应.在前屈曲构造,一阶和二阶主参数振动不稳定区域发生偏差;在后屈曲状态下,通过间歇过渡路径㊁循环折叠分岔㊁周加倍分岔和亚临界分岔而产生混沌运动.L u等[84]分析了内共振和轴向功能梯度材料对输流管道疲劳寿命的影响,应用G a l e r k i n截断和直接多尺度方法得到主共振和3ʒ1内共振情况下的可解性条件,研究结果表现内共振缩短轴向功能梯度管道的疲劳寿命,降低功能梯度分布系数有利于降低系统共振响应和最大应力.Z h u等[85G87]研究了多孔功能梯度输流管道在初始变形下后屈曲静态和动态特性,在弹性地基下的非线性自由和强迫振动,以及三维非线性动力学.G u o等[88]提出了随机轴向功能梯度材料构造输流管道系统的有效统计性固有频率分析方法.L i u和L i[89]考虑高阶圆柱梁模型和几何非线性,建立了功能梯度输流管道在弹性地基下的非线性控制方法和边界条件,采用微分求积方法确定系统的非线性频率和幅频响应,并揭示了几何和物理参数对系统动力学行为影响.C h a n g等[90]预估了具有初始变形下弹性地基功能梯度输流管道静态屈曲和后屈曲动力学特性.除此之外,B a b a e i[91]利用二步扰动法,研究了功能梯度碳纳米管增强输流管道的热前屈曲和后屈曲的频率响应受几何特性㊁地基刚度㊁碳纳米管增强分布形式和体积分数的影响.G h a d i r i a n等[92]基于T i m o s h e n k o梁模型,研究了功能梯度碳纳米管增强输流管道的非线性自由振动和稳定性.R e n等[93]针对工程中飞机中输流管道存在内流和外载荷联合作用下流固耦合振动,研究了功能梯度石墨烯增强输流管道在前屈曲和后屈曲情况下碰撞动力学和突跳行为受流速㊁碰撞速度㊁结构材料和几何因子的影响.结果表明,随着碰撞能量提高,流体促使后屈曲管道展现对称的双稳态特征,结构阻尼对响应影响较大.L i和L i u[94]考虑高阶剪切变形梁模态,建立了各项异性复合材料输流管道在弹性地基下的非线性振动模型,利用微分求积方法和迭代算法确定了非线性频率和幅频响应.G u o等[95]关注了悬臂弹性连接双复合材料输流管道系统的流固耦合失稳和分岔特性,通过A r g a n d图分析了颤振失稳,利用分岔图㊁时间历程和相图等非线性动力学分析手段,研究了系统在后屈曲情况下的周期和概周期等复杂现象,并发现了二管道的纤维排布方法能打破系统对称稳定性区间和分岔行为.G u o等[96,97]研究了具有时变张力复合材料输流管道在亚临界和超临界下的非线性动力学,以及在热环境下的屈曲和后屈曲行为.7㊀输流管道的振动控制输流管道动力学分析的最终目的是振动控制,减少管道振动幅值,改善其工作的动力学环境,提高机械系统运转的可靠性.目前,对于输流管道的振动控制研究主要分为优化设计结构的控制㊁被动控制和主动控制.工程中应用的输流管道,安装和设计是固定的,因此外激励频率的变化范围也是一定的.通过理论分析和实验方法,调谐管道参数㊁支承位置㊁材料和结构布置方式等,可实现系统固有频率和模态的避免共振的调控,实现管道的振动控制.S h o a i b 等[98]通过对带隙的实验分析,利用周期性惯性放大机构来减弱输流管道的振动.通过考虑轴向运动和旋转运动,L i a n g等[99]提出了一种新的输送流体声子晶体(P C)管模型,并发现了耦合区域的振动自抑制行为.L y u等[100]根据带隙产生的机理提出了一种超薄压电晶格来抑制输流管道的振动.在旋转局部共振输流管道的基础上,L i a n g等[101]人提出了一种新的动态超材料结构.结果表明,局部谐振管更容易形成低频带隙,有利于振动抑制.以往的研究主要集中在通过系统本身的优化设计来抑制输流管道的振动.通过引入特定的阻尼力,提出被动控制,以达到更好的减振效果.被动控制方法由于结构设计简单,不需要外部能源,能有效地减小结构在高频段的振动,已被广泛应用于结构振动的抑制.K h a z a e e等[102]提出了一种由两个线性弹簧㊁一个轻质量块和一个线性阻尼器组成的被动非线性吸振器,它以接地和非接地的形式与管道连接,以实现对输流管道的振动抑制.D i n g 等[103]使用由三个线性弹簧组成的准零刚度系统作32Copyright©博看网. All Rights Reserved.。
飞行器空气动力学研究进展随着技术的不断进步,飞行器空气动力学的研究也越来越深入。
本文将介绍飞行器空气动力学研究的进展,从基础理论到实际应用方面进行阐述。
一、流体力学基础流体力学是飞行器空气动力学中不可或缺的基础理论。
它是研究流体的力学性质,包括运动、变形、流动等方面的知识。
在飞行器空气动力学中,流体力学理论为飞机翼面的设计提供了理论基础。
经过多年研究,目前已经基本掌握了流体力学的基本理论,利用计算机技术也可以进行复杂流体的数值模拟。
这使得飞行器空气动力学的研究更加准确和深入。
二、翼型设计进展翼面的设计是飞行器空气动力学研究的重要方向。
它直接关系到飞机的飞行性能,如升力和阻力等。
翼型的设计需要考虑翼型的截面形状,翼型参数以及气动力的计算。
近年来,随着计算机技术和数值模拟的发展,翼型设计也逐渐向着自动化、智能化的方向发展。
同时,利用先进的制造技术,如3D打印技术,也可以制造出复杂的翼型。
三、空气动力学实验技术空气动力学实验技术是飞行器空气动力学研究的重要手段。
利用实验技术可以直接观测和测量气动力学量,如升阻比、失速等。
同时,实验技术还可以用于验证数值模拟结果的正确性。
目前,空气动力学实验技术已经基本成熟,可以进行各种复杂的气动力学实验,如气动力测量、流场可视化等。
同时,利用实验技术还可以进行新型飞行器空气动力学性能评估。
四、飞行器空气动力学应用飞行器空气动力学研究的最终目的是在实际应用中发挥作用。
在飞行器设计中,飞行器空气动力学研究可以为设计和改进飞机提供理论指导。
在飞行器工程应用中,以减少气动阻力、提高飞行速度、改善飞行品质、加强空气动力稳定性等角度,研究人员可以针对具体问题进行探索和改进。
结论总之,飞行器空气动力学研究已经成为现代飞行器研究不可或缺的一部分。
基于流体力学的基本理论,翼型设计、空气动力学实验技术等方面的研究为将来飞行器的设计和应用提供了很好的理论基础。
在人类飞行历程中,飞行器空气动力学研究也发挥了重要的推动作用。
物理信息动力学模态分解(dmd) 该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
物理信息动力学模态分解(dmd)该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注。
文档下载说明Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 物理信息动力学模态分解(dmd)can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to knowdifferent data formats and writing methods, please pay attention!物理信息动力学模态分解(DMD)是一种广泛应用于研究多学科领域的技术,包括流体力学、气候模拟、生物医学工程等等。
固液两相流的研究现状及进展摘要:本文主要写了固液两相流泵在国内的研究现状以及分别从内特性、外特性两方面对国内固液两相流泵的研究进展进行分析。
文中还给出了对固液两相流动中的最佳流动模式进行了探讨及固液两相流泵常用研究方法的分析。
关键词:固液两相流泵数学模型流动模式牛顿流体1.固液两相流泵在国内的研究背景我国对液固两相流泵的研究则始于20世纪70年代末80年代初,直到80年代中期以后按两相流理论设计的泵才逐步得到应用。
经过几十年的努力,我国两相流泵技术也得到了长足的发展, 国内许多学者应用两相流理论对固液泵进行了水力设计和试验研究, 积累了许多很有价值的经验和数据, 为我国对液固两相流泵的研究开辟了广阔的道路。
2.国内固液两相流泵的研究现状固液两相流泵的基本概念通常分为两类①杂质泵,包括泥浆泵、砂泵、挖泥泵等,主要用于冶金、矿山开采、电力、煤炭、水泥等行业抽送尾矿、精矿、灰渣、煤泥、水泥等,也可用于江、河、湖、海的挖泥和疏浚。
离心式泵约占杂质泵总量的70% 左右,这类泵主要应考虑磨损问题。
市场调查发现: 上海主流泵生产企业生产的离心式的固液两相流泵主要是渣浆泵。
②无堵塞泵,包括旋流泵、单流道泵、多流道泵、螺旋离心泵和开式或半开式离心泵等,主要用于抽送污水、纸浆、纤维等,这类泵主要考虑的是堵塞问题。
由于固液两相流动的复杂性和特殊性,所以固液两相流泵在性能、噪声、寿命等方面存在着较大的缺陷。
为了克服上述缺点,国内外学者先后通过理论分析,实验研究和数值模拟等方法深入研究固液两相流泵的流动机理,优化泵的设计来提高其效率和寿命,降低噪音。
3.固液两相流泵的研究理论3.1外特性研究20 世纪30 ~ 60 年代,国外学者研究固液相的性质与外特性关系得出的主要结论是: ①泵的扬程随着浓度的增加而下降; ②泵的功率随着浓度的增大而增大; ③泵的效率随着浓度的增加而下降;④泵的最高效率点向着小流量区偏移。
固液混合物的性质( 浓度、比重、粒径) 对离心泵性能方面的影响。
《水平对置式撞击流反应器流场涡特性的大涡模拟》一、引言水平对置式撞击流反应器是一种重要的流体处理设备,在化工、环保、能源等领域具有广泛的应用。
流场涡特性作为反应器内部流体运动的重要表现,对于反应器的性能和效率具有重要影响。
本文采用大涡模拟方法,对水平对置式撞击流反应器流场涡特性进行研究,以期为反应器的优化设计和运行提供理论支持。
二、研究方法大涡模拟是一种计算流体动力学方法,能够有效地模拟湍流运动中的大尺度涡旋,从而获得流体运动的详细信息。
本研究中,我们利用大涡模拟方法对水平对置式撞击流反应器进行数值模拟,分析其流场涡特性。
在模拟过程中,我们首先建立了反应器的三维模型,并设置了合理的边界条件和初始条件。
然后,通过求解大涡模拟方程,获得了反应器内部流体的速度、压力等物理量分布。
最后,通过对这些物理量分布的分析,研究流场涡特性。
三、流场涡特性分析通过对大涡模拟结果的分析,我们发现在水平对置式撞击流反应器中,流场呈现出复杂的涡旋结构。
这些涡旋主要由撞击流、二次流和湍流等运动形式产生,相互交织、相互影响,形成了复杂的流场结构。
在撞击区域,由于两股流体的高速撞击,产生了强烈的涡旋运动。
这些涡旋在撞击区域内部相互交织,形成了一个复杂的涡旋系统。
随着流体的运动,这些涡旋逐渐向四周扩散,形成了二次流和湍流等运动形式。
这些运动形式在反应器内部相互影响,使得整个流场呈现出复杂的涡旋结构。
四、结论通过大涡模拟方法对水平对置式撞击流反应器的研究,我们得到了其内部流场的详细信息,分析了流场涡特性。
结果表明,反应器内部存在着复杂的涡旋结构,这些涡旋主要由撞击流、二次流和湍流等运动形式产生。
这些涡旋的运动和相互影响对于反应器的性能和效率具有重要影响。
本研究的成果为水平对置式撞击流反应器的优化设计和运行提供了理论支持。
在未来工作中,我们将进一步深入研究反应器内部流体运动的规律和机制,为提高反应器的性能和效率提供更加有力的理论支持。