自动重合闸
- 格式:doc
- 大小:1.34 MB
- 文档页数:18
自动重合闸过程
自动重合闸的触发条件是断路器因故障分闸,操作步骤包括继电保护动作、预定延时后自动合闸,预期结果是恢复线路供电。
当电力系统发生故障导致断路器跳闸切断电源时,如果该故障是暂时性的,自动重合闸装置会被激活。
首先,继电保护装置会检测到故障并发出信号使断路器跳闸。
随后,设备会有一个预定的延时(通常在0.5s到1.5s之间),待故障消除后,断路器会自动重新闭合,尝试恢复供电。
如果故障为永久性的,自动重合闸装置应保证只动作一次,避免重复冲击电网造成更大的损害。
自动重合闸在电力系统中起着至关重要的作用,它可以提高供电可靠性,对两侧电源线路而言,能提升系统并列运行的动态稳定性,进而增加传输容量。
对于瞬时性故障,例如雷击导致的绝缘子表面闪络或大风造成的碰线等,使用自动重合闸可以有效减少停电损失,并增强送电线路的容量。
此外,它还有助于纠正由于断路器机构或继电保护误动引起的误跳闸,从而确保电网的稳定运行。
关于不同类型的自动重合闸技术,主要有单相重合闸和三相重合闸两种方式。
单相重合闸主要应用在输电线路
上,可以在发生单相接地短路时仅断开故障相,减少对健全相的影响,提高系统的稳定性。
而三相重合闸则适用于故障为瞬时性且影响所有相的情况,它操作简单并且在大多数情况下足以解决问题。
还有一种是为多次重合闸,通常用于配电网中与分段器配合自动隔离故障区段。
在选择自动重合闸方式时,需要考虑到故障类型、线路的重要性以及系统的运行条件等因素。
安全自动装置之自动重合闸讲解一、自动重合闸的原理自动重合闸是在电力系统出现短路故障后,通过自动执行器将高压断路器的闭锁机构解开,达到重新合闸、恢复电力供应的目的。
其原理主要包括两个方面:故障检测和重合闸操作。
故障检测:通过电流、电压等传感器感知电力系统的工作状态,当检测到电力系统出现短路故障时,自动重合闸装置会向控制器发送故障信号。
重合闸操作:控制器接收到故障信号后,会发出命令控制自动执行器,将断路器的闭锁机构解开,实现断路器的合闸操作。
然后,控制器会检测电力系统是否恢复正常,如果正常,则保持断路器合闸;如果仍然存在故障,断路器会再次断开,以避免电力系统受到更大损坏。
二、自动重合闸的工作流程自动重合闸的工作流程主要包括以下几个步骤:检测故障、解锁闭锁机构、合闸操作和故障恢复判断。
1.检测故障:自动重合闸通过安装在电力系统中的传感器检测电流、电压等参数,当检测到电力系统出现故障时,会发出故障信号。
2.解锁闭锁机构:控制器接收到故障信号后,会发出命令控制自动执行器,将断路器的闭锁机构解开,使断路器能够合闸。
3.合闸操作:经过解锁闭锁机构后,自动执行器会控制断路器合闸,使电力系统重新供电。
4.故障恢复判断:控制器会监测电力系统的运行状态,如果检测到故障已经消除,电力系统恢复正常,则保持断路器合闸;如果仍然存在故障,断路器会再次断开。
三、自动重合闸的应用场景自动重合闸适用于各种电力系统,特别是对于较大容量的电力系统,自动重合闸可以快速恢复电力供应,减少停电时间,提高电力系统的可靠性。
以下是一些自动重合闸的应用场景。
1.供电可靠性要求高的场所:如医院、飞机场、铁路等场所,对电力系统的稳定供电要求较高,一旦出现故障需要快速恢复供电。
2.对停电时间要求较短的场所:有些生产流程、数据中心等场所,对停电时间的要求非常严格,自动重合闸可以帮助尽快恢复供电,减少生产线和数据的中断。
3.长距离输电线路:对于长距离输电线路,一旦发生短路故障,停电范围较大,自动重合闸可以帮助恢复供电,减少停电范围。
自动重合闸原理
自动重合闸是电力系统中的一种保护装置,用于自动恢复电力供应和减少停电时间。
它能够实现对电力系统中断电事故的快速切除和自动回复操作。
自动重合闸的工作原理如下:
1. 监测电力系统状态:自动重合闸装置通过接收与电力系统相关的信号,如电流、电压、频率等,监测电力系统的状态。
2. 检测异常情况:当系统发生故障或异常情况时,自动重合闸装置会检测到这些异常,并根据预设的保护参数进行判断。
3. 切除电力系统:当自动重合闸装置判断出电力系统发生故障或异常情况时,它会迅速切除电力系统,即打开断路器或切断电力供应,以避免故障扩大或造成更大的损失。
4. 分析故障原因:自动重合闸装置会通过对故障信号的分析,确定故障的位置和原因,为后续的维修工作提供参考。
5. 重启电力系统:在故障得到修复或自动重合闸装置判断故障消除后,它会恢复电力供应并重新闭合断路器,将电力系统重新连接起来。
自动重合闸装置的作用是保护电力系统的安全运行。
它能够快速切除故障电路,减少停电时间,提高电力供应的可靠性。
同
时,它还能够避免对电力系统的损坏,确保电力系统的稳定性和可用性。
自动重合闸开关操作方法
自动重合闸开关是一种常见的电力设备,可用于电路的开关控制。
它能够自动判断电流状态并进行合闸操作。
以下是一般的自动重合闸开关操作方法:
1. 保持开关处于打开状态:在操作之前,确保自动重合闸开关处于打开状态,这意味着电路是断开的。
2. 启动保护装置:在重合闸之前,需要启动电路保护装置,例如保护继电器或保护设备,这些装置可以检测电路中的异常状态。
3. 确定合闸条件:根据电路的情况和需要进行合闸操作的约束条件,确定合闸条件,例如电流大小、电压稳定程度等。
4. 手动或自动操作:自动重合闸开关通常有两种操作方式,一种是手动操作,一种是自动操作。
手动操作需要人工干预,而自动操作则可以根据设定的合闸条件自动进行。
5. 检测合闸条件:在进行自动合闸操作时,自动重合闸开关会自动检测合闸条件是否满足,例如电流、电压等是否符合设定的条件。
6. 合闸操作:如果检测到合闸条件满足,则自动重合闸开关将进行合闸操作,闭合电路。
7. 监控电路状态:在合闸之后,需要持续监控电路的状态,确保电路正常运行,避免再次出现异常情况。
需要注意的是,具体的操作方法可能会因为不同型号的自动重合闸开关而有所差异,因此在使用之前应仔细阅读使用说明书,按照说明进行操作。
自动重合闸原理自动重合闸是一种用于电力系统的保护装置,它的作用是在电路发生故障时,迅速切断故障部分,保护电力设备和人身安全。
那么,自动重合闸的原理是什么呢?本文将从自动重合闸的工作原理、结构组成和应用特点三个方面来详细介绍。
首先,我们来了解一下自动重合闸的工作原理。
自动重合闸的工作原理是利用电磁吸引力来实现的。
当电路发生故障时,电流会突然增大,这时会产生电磁场,使得电磁铁受到吸引力,触发机构被吸引,从而实现自动重合闸的动作。
在动作之后,自动重合闸会自动进行复位,为下一次的保护动作做好准备。
其次,自动重合闸的结构组成主要包括电磁铁、触发机构、复位机构和控制电路。
电磁铁是自动重合闸的核心部件,它能够产生强大的吸引力;触发机构是连接电磁铁和断路器的机构,它能够将电磁铁的动作传递给断路器;复位机构是用于自动复位的部件,它能够在动作之后将自动重合闸复位到初始位置;控制电路是用于监控电流和控制自动重合闸动作的电路,它能够实现自动重合闸的智能化控制。
最后,我们来看一下自动重合闸的应用特点。
自动重合闸具有动作速度快、可靠性高、使用方便等特点。
它能够在电路发生故障时,迅速切断故障部分,保护电力设备和人身安全;同时,它还能够实现自动复位,减少了维护成本和维护工作量。
因此,自动重合闸在电力系统中得到了广泛的应用,成为了电力系统中不可或缺的重要装置。
总之,自动重合闸是一种用于电力系统的重要保护装置,它的工作原理是利用电磁吸引力,结构组成包括电磁铁、触发机构、复位机构和控制电路,应用特点是动作速度快、可靠性高、使用方便。
通过本文的介绍,相信读者对自动重合闸的原理有了更深入的了解,对于电力系统的保护装置有了更全面的认识。
自动重合闸电气符号摘要:一、自动重合闸的定义与作用二、自动重合闸电气符号的分类1.单极自动重合闸电气符号2.双极自动重合闸电气符号3.三极自动重合闸电气符号三、自动重合闸电气符号的图形符号与含义四、自动重合闸电气符号的应用场景五、自动重合闸电气符号的绘制规范六、总结与展望正文:自动重合闸是一种用于电力系统中控制开关装置,能在电路故障时自动切断电源,并在故障排除后自动合闸,恢复供电。
它具有提高系统可靠性、减少停电时间和提高电力设备利用率等作用。
在电气工程中,自动重合闸电气符号是用来表示自动重合闸设备的一种图形符号,具有可读性和实用性。
自动重合闸电气符号主要分为以下三类:1.单极自动重合闸电气符号:表示单极自动重合闸设备,由一个垂直线和一个水平线组成,垂直线表示开关本体,水平线表示动触头。
2.双极自动重合闸电气符号:表示双极自动重合闸设备,由两个相互垂直的线组成,分别表示两个动触头。
3.三极自动重合闸电气符号:表示三极自动重合闸设备,由三个相互垂直的线组成,分别表示三个动触头。
在自动重合闸电气符号中,图形符号直观地表达了自动重合闸设备的基本结构和工作原理。
其中,垂直线表示开关本体,水平线表示动触头,斜线或箭头表示动触头的移动方向。
这些符号有助于电气工程师、技术人员和操作人员快速了解自动重合闸设备的功能和特性。
自动重合闸电气符号应用于电力系统设计、施工图审查、设备操作和维护等场景。
在实际应用中,自动重合闸电气符号的绘制需遵循一定的规范,以确保符号的一致性、可读性和实用性。
总之,自动重合闸电气符号在电力系统中具有重要应用价值。
了解和掌握自动重合闸电气符号的分类、含义和规范,对于电气工程师和相关专业人员来说,具有重要的实际意义。
自动重合闸基本概念概述在电力系统运行中,由于各种原因可能发生电力故障,为保障电力系统的可靠供电,需要采取控制措施。
自动重合闸是电力故障自动控制的一种常用技术手段。
它通过检测故障信号并执行控制指令,自动完成开断、合上电路的操作,从而快速恢复电力供应。
自动重合闸的作用自动重合闸系统是一种能够自主检测电力故障并能自动进行开关控制的电力装置。
当电路发生故障时,自动重合闸系统依据预先设定的参数自动进行开断操作,对故障进行隔离,避免电力故障对整个电网造成更大的影响。
故障消失后,自动重合闸系统会自动完成合闸操作,恢复电力供应,从而保证了电力系统的可靠性和稳定性。
自动重合闸的组成自动重合闸系统主要由以下组成部分:1. 故障检测模块自动重合闸系统的关键模块是故障检测模块,该模块通过复杂的算法检测电路发生的故障类型和位置,并控制重合闸操作,从而实现故障隔离和恢复电力供应的过程。
2. 动作控制器动作控制器是自动重合闸系统的另一个重要组成部分,它能够执行故障检测模块发来的指令,并控制重合闸执行器的动作。
3. 重合闸执行器重合闸执行器是开合闸器的核心部件,它能够执行动作控制器的指令,对电路进行开断和合闸操作。
4. 监控系统自动重合闸系统还要配备一套监控系统,用于监测电力系统的运行状态。
通过监控系统能够实时获取系统的参数和状态数据,对系统进行稳定性分析和运行预测,从而提高系统的可靠性和稳定性。
监控系统还可以对系统故障进行记录和分析,为故障排除提供重要依据。
自动重合闸的优势自动重合闸系统具有以下优势:1. 故障处理速度快自动重合闸系统能够在极短的时间内检测故障、隔离故障、恢复电力供应,从而及时保障电力系统的可靠供电。
2. 操作可靠性高自动重合闸系统采用数字化技术,操作可靠性高,在复杂的电力系统中能够稳定地工作,并对整个系统的稳定性产生积极的影响。
3. 适用范围广自动重合闸系统适用于各种电力故障的处理,具有广泛的适用范围,在电力系统运行中得到广泛的应用。
DH-3型三相一次自动重合闸装置实验一、实验目的1、熟悉三相一次重合闸装置的电气结构和工作原理。
2、理解三相一次重合闸装置内部器件的功能和特性,掌握其实验操作及调整方法。
二、预习与思考1、电容式重合闸装置主要组成元件是什么?各起什么作用?2、电容式的重合闸装置为什么只能重合一次?3、重合闸装置ZJ两个触点为什么串联使用?4、重合闸装置中充电电阻能否任意更换?为什么?5、重合闸装置不动作的内部原因是什么?6、电秒表使用时应注意什么?三、原理说明DH-3型三相一次重合闸装置用于输电线路上实现三相一次自动重合闸,它是重要的保护设备。
重合闸装置内部结线见图18-1。
装置由一只DS-22时间继电器(作为时间元件)、一只电码继电器(作为中间元件)及一些电阻、电容元件组成。
装置内部的元件及其主要功用如下:1、时间元件SJ:该元件由DS-22时间继电器构成,其延时调整范围为1.2-5S,用以调整从重合闸装置起动到接通断路器合闸线圈实现断路器重合的延时,时间元件有一对延时常开触点和一对延时滑动触点及两对瞬时切换触点。
2、中间元件ZJ:该元件由电码继电器构成,是装置的出口元件,用以接通断路器的合闸线圈。
继电器线圈由两个绕组组成:电压绕组ZJ(V),用于中间元件的起动;电流绕组ZJ(I),用于在中间元件起动后使衔铁继续保持在合闸位置。
3、电容器C:用于保证装置只动作一次。
4、充电电阻4R:用于限制电容器的充电速度。
5、附加电阻5R:用于保证时间元件SJ的线圈热稳定性。
6、放电电阻6R:在需要实现分闸,但不允许重合闸动作(禁止重合闸)7、信号灯XD:在装置的接、线中,监视中间元件的触点ZJ1、和控制按钮的辅助触点是ZJ2否正常。
故障发生时信号灯应熄灭,当直流电源发生中断时,信号灯也应熄灭。
8、附加电阻17R:用于降低信号灯XD上的电压。
在输电线路正常工作的情况下,重合闸装置中的电容器C经电阻4R已经充足电,整个装置处于准备动作状态。
当断路器由于保护动作或其它原因而跳闸时,断图18-1 自动重合闸装置内部接线图路器的辅助接点起动重合闸装置的时间元件SJ,经过延时后触点SJ闭合,2电容器C 通过SJ 2对ZJ (V )放电,ZJ (V )起动后接通了ZJ (I )回路并自保持到断路器完成合闸。
如果线路上发生的是暂时性故障,则合闸成功后,电容器自行充电,装置重新处于准备动作的状态。
如线路上存在永久性故障,此时重合闸不成功,断路器第二次跳闸,但这一段时间远远小于电容器充电到使ZJ (V )起动所必须时间(15~25S ),因而保证装置只动作一次。
图18-2 DH-3型重合闸装置试验接线图+-四、实验设备五、实验步骤和操作方法1、DH-3型自动重合闸装置实验接线见图18-2,按图接线完毕后首先进行自检,然后请指导教师检查,确定无误后,接入直流操作电源进行调试。
2、时间继电器动作电压、返回电压的测定(1)合上开关S1,调节R1使直流电压调至装置的额定值,检查各元件有无异常现象,投入后15~25秒指示灯应发光。
(2)合上S1、S2,调节R1逐步提高输入电压,读取SJ铁芯可靠吸合的最小动作电压。
(3)上述SJ动作后,向反方向调节R1,逐步降低输入电压,读取SJ 返回的最高电压。
3、中间元件的自保持电流测试(1)合上S1后,调节R1使电压等于装置的额定电压,用手按中间元件ZJ的衔铁,使常开接点闭合,调整R2,使流过ZJ线圈的电流略低于0.9倍的额定电流时,然后将手松开,ZJ应能自保持。
断开S1,使ZJ复归。
(2)再合上S1,待电容充电15~25秒后,投入S2,使SJ线圈励磁,经过某一整定延时时间,ZJ动作并自保,此时断开S2,ZJ不应返回。
(3)重复上述步骤,调整R2测出中间元件ZJ的最小保持电流。
4、中间元件电压线圈的动作电压测定在重合闸继电器接线端子○5与○17之间连接一导线,合上S1,调节R1,从零伏逐渐升高电压,测出使中间元件衔铁能被可靠吸住的最小动作电压。
一般对于额定电压为220伏的中间元件ZJ动作电压为50伏左右,本项测定完毕应拆除连接导线。
5、充电时间的测定仍按图18-2接线,在额定电压下合上S1对C充电,经15~25秒后再投入S2,中间元件ZJ应能可靠地动作并自保持。
这时电秒表1所记录的时间即为充电时间。
重复测定充电时间时,应先断开S1,后断开S2,以保证电容器的放电状态。
并将电秒表1回零,再重复以上操作,进行第二次试验。
如充电时间不符合要求,应检查充电电阻、电容器是否良好,是否参数变值,若变值需更换C或4R使之达到所需的充电时间。
调整完毕,应再次测量中间元件的动作电压和自保持电流。
6、保证只动作一次测定在额定电压下合上S1,充电60秒后,瞬间短接○3○15两端子,使电容器放电,然后合上S2,此时中间元件不应动作。
7、重合闸装置动作时间整定试验见图18-2先将S1合上,观察电秒表1,当给电容器C充电25秒后,再合上S2,此时电秒表2所记录的就是重合闸装置的动作时间。
这一接线方式的特点是:当合上S2,起动重合闸装置的同时起动了电秒表2,停止了电秒表1,并以中间元件ZJ常开接点的闭合停止电秒表2计时,所以电秒表2可测得重合闸继电器起动到实现断路器重合的时间。
电秒表1记录了电容器C的充电时间。
重合闸装置动作时间的整定可以通过改变时间元件的整定时间来实现。
六、技术数据1、额定工作电压直流220V。
2、中间元件电流绕组ZJ(I)的额定保持电流为直流0.25A。
3、在额定电压下,当环境温度为20±5℃,相对湿度不大于70%时,电容器充电到中间元件动作电压的时间(装置准备下一动作时间)在15~25S 范围内。
4、在70%额定电压下,环境温度为20±5℃,相对湿度不大于70%时,装置应保证可靠动作,此时电容器充电到使中间元件动作的时间,允许增加到2S。
5、当中间元件电压绕组去掉电压,在电流绕组流过额定电流时,衔铁应保持在吸合位置。
6、中间元件的电流绕组ZJ(I)允许流过3倍的额定电流历时1S。
7、中间元件的触点ZJ1、ZJ2串联后,在额定电压下能接通8A的电流,历时5S。
8、在额定电流下,中间元件电流绕组ZJ(I)的功率消耗应不大于1.35W。
9、时间元件的延时调整范围为1.2~5S。
10、时间元件的线圈串联附加电阻后,能长期经受110%的额定电压。
七、注意事项在操作试验前必须熟悉实验电路,认真按照操作规程的要求,正确接线,细心操作,特别要注意在电流保持回路中,不能误接入电压信号,变阻器R2串入保持回路的阻值必须从最大位置慢慢减小,同时注意观察毫安表的指示,不应大于装置的额定保持电流。
每个操作试验环节要确保其正确性和安全性。
八、实验报告对重合闸继电器的动作特性,起动条件,实验操作进行总结,结合上述思考题写出实验实验报告。
表18-1附1、自动重合闸前加速保护实验一、实验目的1、熟悉自动重合闸前加速保护的原理接线。
2、理解自动重合闸前加速保护的组成型式,技术特性,掌握其实验操作方法。
二、预习和思考1、图19-2中各个继电器的功用是什么?2、在重合闸动作前是由哪几个继电器及其触点共同作用,实现前加速保护。
3、重合于永久性故障,保护再次起动,此时由哪几个继电器及其触点共同作用,恢复有选择性地再次切除故障的?4、为什么加速继电器要具有延时返回的特点?5、在前加速保护电路中,重合闸装置动作后,为什么JSJ继电器要通过1LJ的常开触点、JSJ自身延时返回的常开触点进行自保持?6、在输电线路重合闸电路中,采用前加速时,JSJ是由什么触点起动的?7、请分析自动重合闸前加速保护的优缺点。
三、原理说明重合闸前加速保护是当线路上发生故障时,靠近电源侧的保护首先无选择性地瞬时动作使断路器跳闸,而后再借助自动重合闸来纠正这种非选择性动作。
重合闸前加速保护的动作原理可由图19-1说明,线路X-1上装有无选择性的电流速断保护1和过流保护2,线路X-2上装有过流保护4,ZCH仅装在靠近电源的线路X-1上。
无选择性电流速断保护1的动作电流,按线路末端短路时的短路电流来整定,动作不带延时。
过流保护2、4的动作时限按阶梯原则整定,即t2>t4。
图 19-1 自动重合闸前加速保护原理说明图当任何线路、母线(I除外)或变压器高压侧发生故障时,装在变电所I 的无选择性电流速断保护1总是首先动作,不带延时地将1QF跳开,而后ZCH 动作再将1QF重合,若所发生的故障是暂时性的,则重合成功,恢复供电;若故障为永久性的,由于电流速断已由ZCH的动作退出工作,因此,此时只有各过流保护再次起动,有选择性地切除故障。
图19-2示出了ZCH前加速保护的原理接线图。
其中1LJ是电流速断,2LJ 是过流保护。
从该图可以清楚地看出,线路X-1故障时,首先速断保护的1LJ 动作,其接点闭合,经JSJ的常闭接点不带时限地动作于断路器使其跳闸,随后断路器辅助触点起动重合闸继电器,将断路器重合。
重合闸动作的同时,起动加速继电器JSJ,其常闭接点打开,若此时线路故障还存在,但因JSJ的常闭接点已打开,只能由过流保护继电器2LJ及SJ带时限有选择性地动作于断路器跳闸,再次切除故障。
自动重合闸前加速保护有利于迅速消除故障,从而提高了重合闸的成功率,另外还具有只需装一套ZCH的优点。
其缺点是增加了1QF的动作次数,一旦1QF或ZCH拒绝动作将会扩大停电范围。
图 19-2 自动重合闸前加速保护原理接线图四、实验设备五、实验步骤和操作方法1、根据过电流保护的要求整定2LJ的动作电流值,和SJ的动作时限(例:取2LJ动作电流为1A,SJ为1.5S)。
2、根据速断保护的要求整定1LJ的动作电流(例:取1LJ动作电流为3A)。
3、根据时间继电器、加速继电器、保护出口继电器的技术参数选择相应的操作电源。
4、按图19-2自动重合闸前加速保护原理接线图分别绘制展开图和安装图,然后进行安装接线。
5、检查“前加速保护”接线的正确性,确定无误后,接入相应直流操作电源。
6、此时重合闸装置未启动,加速继电器JSJ未动作。
调节交流电流回路,给电流继电器输入一个大于整定值的电流,模拟线路XL-1故障,观察前加速闭合模拟ZCH出口动作情况,加速跳闸后重合闸启动,图19-3中用开关S1接点ZJ的闭合来起动JSJ,JSJ常闭触点打开。
37、模拟故障继续存在,但由于JSJ常闭触点已经打开,所以只能由过电流保护2LJ和SJ带时限有选择性地进行跳闸,切除故障。
六、注意事项在操作试验前必须理解自动重合闸前加速保护的电路原理,在操作过程中要集中思想进行正确接线,严格按照操作规程的要求,加入试验电流,进行动作试验,要确保实验中每一环节的正确性和安全性。
七、实验报告分析前加速保护动作特性,结合上述思考题写出报告。