中空纤维液相微萃取
- 格式:ppt
- 大小:433.00 KB
- 文档页数:26
样品前处理技术复习题1.什么是样品的前处理?为什么要进行样品前处理?样品前处理技术在样品分析检测中的地位和作用如何?(1)指样品的制备和对样品中待测组分进行提取、净化、浓缩的过程。
(2)目的:测定前排除干扰成分;对样品进行浓缩。
将被测物转化为适合于测定的形态;被测组分从复杂体系中分离出来后测定;把对测定有干扰的组分分离除去;把微量或痕量的待测组分通过分离达到富集的目的。
(3)地位:样品的分离、纯化结果的好坏将直接影响最后的结果。
作用:消除基质干扰、保护仪器、提高方法的准确度、精密度、选择性和灵敏度。
2.传统的样品前处理技术有哪些?说出其中的液-液萃取法、索氏提取法的原理、及其优缺点。
传统的样品前处理方法有液-液萃取、索式提取、色谱分离、蒸馏、吸附、离心、过滤等几十种。
(1)一、消解法(适合于液态和固态样品)(一)湿式消解法(二)干灰化法或熔融法1. 硝酸消解法2. 硝酸-高氯酸消解法3. 硝酸-硫酸消解法4. 硫酸-磷酸消解法5. 硫酸-高锰酸钾消解法6. 多元消解法7. 碱分解法二、富集与分离(一) 气提、顶空和蒸馏法 (二) 萃取法1.气提法 1.溶剂萃取法2.顶空法 2.固相萃取法(SPE)3.蒸馏法(2)液液萃取法原理及优缺点液液萃取原理:利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。
经过反复多次萃取,将绝大部分的化合物提取出来。
优缺点:设备简单、操作简便;需人工操作、限制了萃取的量、工作量大,回收利率低,操作过程中有干扰、不精确,易造成环境污染。
(2)索氏提取原理及优缺点索氏提取原理:为从固体物质中萃取化合物的一种方法。
用溶剂将固体长期浸润而将所需要的物质浸出来,利用溶剂回流和虹吸原理,使固体物质每一次都能为纯的溶剂所萃取。
优缺点:选择性好,能耗低,设备简单、操作简便;花费时间长.溶剂用量大、效率不高。
3.掌握固相萃取的原理、操作步骤、每一步的目的和作用等。
膜萃取过程的原理特点及应用祁建超(河北工业大学化学工程研究所·天津)摘要本文以双膜理论为基本出发点,建立了包括膜阻在内的膜萃取的传质数学模型,再此模型的基础上研究了膜萃取的传质特性,并给出了膜萃取的实验研究方法,阐述了膜萃取的应用领域及前景,并归纳了膜萃取过程存在的问题。
关键词膜萃取数学模型双模理论AbstractIn this paper, two-film theory as the basic starting point,set up a membrane extraction and mass transfer mathematical model including Membrane resistance, on the basis of this model study the mass transfer characteristics and give the experimental methods for study of membrane extraction,elaborate the application of membrane extraction areas and prospects, Summed up the problems in the membrane extraction process.Keyword membrane extraction mathematical model two-film theory1. 引言萃取是分离和提纯物质的一种常用方法,传统的萃取方法由于费时,费力,效率低等缺点,近年来已不能满足发展的需要,因而先后出现了超临界流体萃取,微波萃取,加压溶剂萃取等新技术。
膜萃取技术以其独特的优势显示出了良好的发展前景和巨大的应用潜力[25]。
膜萃取,又称固定膜界面萃取,是基于非孔膜技术发展起来的一种样品前处理方法,是膜过程和液液萃取过程相结合的新的分离技术,其萃取过程与常规萃取过程中的传质、反萃取过程十分相似[1, 2]。
中空纤维离心超滤—HPLC法测定盐酸伊立替康脂质体的包封率 目的:建立测定盐酸伊立替康脂质体包封率的方法。方法:采用改进的中空纤维离心超滤法(HFCF-UF)分离脂质体和游离药物;采用高效液相色谱法测定脂质体中盐酸伊立替康的含量,色谱柱为Diamonsil C18,流动相为甲醇-乙腈-磷酸盐缓冲液(称取磷酸二氢钾6.8 g溶于800 mL水中,加入三乙胺10 mL,以磷酸调pH至4.0,加水定容至1 000 mL)(55 ∶ 5 ∶ 45,V/V/V),流速为1.0 mL/min,检测波长为254 nm,柱温为25 ℃,进样量为20 μL。结果:盐酸伊立替康检测质量浓度线性范围为2.55~40.8 μg/mL(r=0.999 2);定量限为0.64 μg/mL;中间精密度、稳定性、重复性试验的RSD均小于2%;超滤提取回收率为96.9%~100.2%(RSD=1.0%,n=9),空白加样回收率为95.5%~100.5%(RSD=1.7%,n=9)。包封率的平均值为94.85%(RSD=1.1%,n=3)。结论:该方法操作简便、准确,精密度、稳定性、重复性好,适用于盐酸伊立替康脂质体包封率的测定。
ABSTRACT OBJECTIVE: To develop a method for determining entrapped efficiency of Irinotecan hydrochloride liposomes. METHODS: The improved hollow fiber centrifugal ultrafiltration (HFCF-UF) method was employed to separate the liposomal drug and the free drug. The content of irinotecan hydrochloride was determined by HPLC. The determination was performed on Diamonsil C18 with mobile phase consisted of methanol-acetonitrile-phosphate buffer solution (monobasic potassium phosphate 6.8 g dissolved in 800 mL water, triethylamine 10 mL, pH adjusted to 4.0 with phosphoric acid, adding water to 1 000 mL) (55 ∶ 5 ∶ 45,V/V/V) at the flow rate of 1.0 mL/min. The detection wavelength was set at 254 nm, and column temperature was 25 ℃. The sample size was 20 μL. RESULTS: The linear range of irinotecan hydrochloride were 2.55-40.80 μg/mL (r=0.999 2). The limit of quantitation was 0.64 μg/mL. RSDs of intermediate precision, stability and reproducibility tests were all lower than 2%. The recovery rates of ultrafiltration were 96.9%-100.2% (RSD=1.0%,n=9), and the blank adding recovery rates ranged 95.5%-100.5%(RSD=1.7%,n=9). The average of entrapped efficiency was 94.85%(RSD=1.1%,n=3). CONCLUSIONS: The method is simple, accurate, precise, stable, reproducible and durable. It can be used for the determination of entrapped efficiency of Iriticonite hydrochloride liposomes.
生物工程下游技术期末作业青霉素的分离提纯方法的发展与比较摘要:本文主要介绍了青霉素的分离提纯方法的发展以及比较,包括传统的方法,如吸附法,沉淀法,溶剂萃取法等,也包括现代发展的高新技术,如反胶团萃取法,乳状液膜法,中空纤维更新液膜法以及其它的高效提取方法。
Abstract:This paper describes the development of penicillin G and the comparison of methods of separation and purification , including traditional methods, such as adsorption, precipitation, solvent extraction, but also includes modern high-tech development, such as reverse micelles extraction, emulsion liquid membrane hollow fiber renewal liquid membrane extraction and other efficient methods.正文:1、青霉素简介1、1基本性质:青霉素(Benzylpenicillin / Penicillin)又被称为青霉素G、peillin G、盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。
青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。
青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。
分子式为:1、2发展历程:早在唐朝时,长安城的裁缝会把长有绿毛的糨糊涂在被剪刀划破的手指上来帮助伤口愈合,就是因为绿毛产生的物质(青霉素素菌)有杀菌的作用,也就是人们最早使用青霉素。
环境中孔雀石绿的研究进展陶雁斌;杨绍贵【摘要】孔雀石绿(Malachite green,MG)因其对水产品疾病防治的高效性和低廉的价格而被广泛用于水产养殖,但也带来了水产品食用的健康风险,并且污染水体环境.本文综述了孔雀石绿在不同环境介质(水体、水产品和底泥)中的检测方法和前处理技术研究进展,自然降解情况以及降解孔雀石绿的方法研究现状,旨在对环境中孔雀石绿的残留检测新方法的建立与选择以及孔雀石绿的污染治理提供参考.【期刊名称】《四川环境》【年(卷),期】2015(034)005【总页数】7页(P123-129)【关键词】孔雀石绿;自然降解;检测方法;降解方法【作者】陶雁斌;杨绍贵【作者单位】污染控制与资源化研究国家重点实验室,南京大学环境学院,南京210023;污染控制与资源化研究国家重点实验室,南京大学环境学院,南京210023【正文语种】中文【中图分类】X8351 引言孔雀石绿 (Malachite green,MG)是一种三苯甲烷类染料和药物,母体及其代谢产物无色孔雀石绿 (Leucomalachite green,LMG)有高毒性、高残留的性质,可产生致畸、致癌、致突变等副作用[1],已被包括中国在内的大部分国家列为禁药。
孔雀石绿对公众暴露途径主要是通过食用含有孔雀石绿的鱼、虾等水产品,可怕的是低浓度水平下,孔雀石绿就对有孕生命有敏感毒害性[2]。
由于没有更为廉价而有效的替代药物,孔雀石绿仍被频繁使用,在环境中被频频检出。
从2005年英国《星期日泰晤士报》报道了在英国一家知名超市出售的鲑鱼体内发现孔雀石绿后,我国加大了对孔雀石绿污染的重视,之后分别在全国多个省市的水产养殖场、鱼药商店和某些鱼类食品中检测到孔雀石绿,严重威胁生态环境和人类健康。
如何有效快速地检测孔雀石绿在环境中的污染水平?孔雀石绿在自然条件下能否降解?目前已有哪些高效而无害的降解方法?本文对这几个方面进行了一个总结,最后提出了孔雀石绿检测方法和降解方法的研究方向和趋势。
药物分析中的生物样品前处理概况张亚琛;黄火强;杜丽洁【摘要】生物样品包括血浆、组织、尿液及细胞等,具有成分复杂、干扰物质多等特点,对生物样品前处理技术极大的影响了实验的灵敏度与准确性.文章主要对生物样品处理常用技术的特点、方法以及在药物研究方面的应用等进行了综述,并对未来技术的发展进行展望.【期刊名称】《中国民族民间医药》【年(卷),期】2017(026)019【总页数】4页(P42-45)【关键词】生物样品;蛋白质沉淀;液-液萃取;固相萃取【作者】张亚琛;黄火强;杜丽洁【作者单位】中央民族大学中国少数民族传统医学研究院,北京100081;中央民族大学中国少数民族传统医学研究院,北京100081;中央民族大学中国少数民族传统医学研究院,北京100081【正文语种】中文【中图分类】R917生物样品的前处理是生物分析的一个重要环节。
正常情况下,药物、代谢物以及生物标志物存在于复杂的生物基质中,主要包括盐、酸、碱、蛋白质和许多外源性或内源性小分子,比如脂类和脂蛋白。
而生物样品的前处理就是采取适当的技术,最大程度消除基质对分析物的影响,为药物及其代谢产物的测定创造条件。
有效的预处理是确保得到准确的生物分析结果的基础,且占用了80%的生物分析时间[1],因此样品的制备被视为决定分析的步骤[2]。
生物样品主要包括血浆、血清、全血、尿液、唾液以及组织,其中最常用的是血浆或血清,可较好地体现药物浓度和治疗效果之间的关系。
当药物或其快速型代谢物大量排泄到尿中时,也采用尿液样品检测血样中不易检出的药物。
笔者主要对常用的生物样品的预处理方法进行阐述。
在处理生物样品时,首先要进行的就是去除蛋白质。
去除蛋白质有助于药物从血浆蛋白中分离出来,便于测定药物浓度;也可预防提取过程中蛋白质发泡,减少乳化的形成,增加样品的检测灵敏度。
常用的去除蛋白质的方法有溶剂解法、盐析法、加入强酸或沉淀剂以及超滤法。
水溶性溶剂能使蛋白质脱水,溶液的介电常数下降,蛋白质分子间的静电引力增大,从而使蛋白质凝聚和沉淀。
青霉素几种分离纯化方法比较生物工程下游技术期末作业青霉素的分离提纯方法的发展与比较摘要:本文主要介绍了青霉素的分离提纯方法的发展以及比较,包括传统的方法,如吸附法,沉淀法,溶剂萃取法等,也包括现代发展的高新技术,如反胶团萃取法,乳状液膜法,中空纤维更新液膜法以及其它的高效提取方法。
Abstract:This paper describes the development of penicillin G and the comparison of methods of separation and purification , including traditional methods, such as adsorption, precipitation, solvent extraction, but also includes modern high-tech development, such as reverse micelles extraction, emulsion liquid membrane hollow fiber renewal liquid membrane extraction and other efficient methods.正文:1、青霉素简介1、1基本性质:青霉素(Benzylpenicillin / Penicillin)又被称为青霉素G、peillin G、盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。
青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。
青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。
分子式为:1、2发展历程:早在唐朝时,长安城的裁缝会把长有绿毛的糨糊涂在被剪刀划破的手指上来帮助伤口愈合,就是因为绿毛产生的物质(青霉素素菌)有杀菌的作用,也就是人们最早使用青霉素。
氨基甲酸酯类农药的毒理学及分析检测方法综述农药作为农业生产的重要投入物质,对农业发展和人类粮食供给作出了重大贡献.有资料表明,世界范围内农药所避免和挽回的农业病、虫、草害损失占粮食产量的1/3[1].我国拥有世界7%的土地,养育着世界上22%的人口,农药的作用不容忽视[2].但同时由于使用方法不当和过量使用,导致环境中残留的农药超过了环境的自净能力,残留在环境中的农药给人和动植物带来了极大风险,尤其是在我国农村,现象更为严重,我国目前农村人口为5.7亿人[3],农药的不当使用给农村人口的健康造成了很大的威胁.因此研究农药的环境毒理学及其检测技术是十分必要的.1.氨基甲酸酯类农药概述1.1.发展历程在很久以前,人们就发现自然界中存在一种蔓生豆科植物毒扁豆,生长在西非地区,这种扁豆的种子中存在一种剧毒物质.19世纪八十年代,研究人员分离得到毒扁豆碱,20世纪20年代确定了其化学结构,30年代完成了毒扁豆碱的人工合成.毒扁豆碱就是首次发现的天然存在的氨基甲酸酯类化合物.研究发现,氨基甲酸酯类的衍生物对蚜虫和螨虫具有触杀活性.到了1951年第一个生产氨基甲酸酯衍生物用以除虫剂的公司成立[4].这种除虫剂凭借其独特的优势迅速发展了起来,在20世纪末,在全世界范围内,销售额居第三位,而且产量仅次于有机磷类杀虫剂[5].现如今,氨基甲酸酯类农药更是已经成为了农业上重要的除虫剂.1.2.理化性质氨基甲酸酯农药是一类具有N-取代基的氨基甲酸酯化合物,属于尿素的衍生物,其基本结构式为:式中R1和R2为烷基或芳基,目前,含N-烷基的氨基甲酸酯农药多为杀虫剂,具有N-芳基的多为除草剂.氨基甲酸酯类农药一般多为白色或者淡黄色晶体,无特殊气味,味道苦且有冰冷的感觉,无腐蚀性.有的溶于水,比如呋喃丹、异索威[6],有的微溶于水,比如西维因,有的不溶于水,比如叶蝉散,而这些氨基甲酸酯类农药基本都可以溶于有机溶剂[7].熔点较高,在酸性条件下稳定,遇到碱性物质则会分解失效,暴露在空气和阳光下容易衰减,在土壤和河流中的半衰期为数天或者数周.2.分类根据氨基甲酸酯类所带的R基的不同,这类农药主要分为五大类:a.萘基氨基甲酸酯类,如甲萘威,比如西维因;b.苯基氨基甲酸酯类,如异丙威(灭扑散、叶蝉散);c.氨基甲酸肟酯类,如涕灭威(铁灭克);d.杂环甲基氨基甲酸酯类,如克百威、卡巴呋喃;e.杂环二甲基氨基甲酸酯类,如异索威等.这五大类是目前较为常用的除虫剂,其中是剧毒物质,比如异索威,是国家严格要求的.3.毒性作用长时间接触氨基甲酸酯类农药就会产生中毒表现,氨基甲酸酯类农药的中毒表现与有机磷农药中毒时的表现十分相似,但是与有机磷农药中毒最大的不同是有机磷农药中毒后,中毒表现出的症状时间相对较长,但是氨基甲酸酯类农药中毒表现十分迅速,并且反应强烈,中毒情况也比较严重.如果是急性中毒,那么症状表现十分明显,主要有流涎、流泪、瞳孔缩小和肌肉颤动等表现.但是经过及时治疗,短时间内就能恢复正常.所以说,氨基甲酸酯类农药与有机磷农药相比,独行还是较低的.氨基甲酸酯农药中毒的原理与有机磷农药是相同的,都是抑制胆碱酯酶的活性,使其活性降低,从而使神经系统受到强烈的刺激,发生一系列临床中毒表现[7].实验表明,氨基甲酸酯类农药经口对实验动物进行急性染毒后,在很短的时间内,染毒动物会出现与有机磷农药中毒相似的症状,比如:大小便失禁、肌肉震颤、瞳孔缩小、流涎等症状.与此同时,胆碱酯酶活性降低,导致乙酰胆碱蓄积.如果实验动物发生重度中毒,实验动物多数于1h内死亡,并表现出强烈的抽搐现象,24h内未死亡者,次日中毒现象就会减轻,机体也会逐渐恢复正常[8].目前,各学者研究较多的就是氨基甲酸酯类农药的“三致作用”,即致癌、致畸、致突变,以及氨基甲酸酯类农药的蓄积作用.对于蓄积性作用,由于氨基甲酸酯类农药与胆碱酯酶的结合使可逆的,而且在体内能够被水解,所以氨基甲酸酯类农药的蓄积作用不强.但事无绝对,现在有研究表明在动物的肝脏、肾脏、心、肾上腺、大脑、生殖腺中,氨基甲酸酯类农药中的二硫代类会发生蓄积性作用,并且在此代谢过程中会产生比母体活性要强的物质,比如乙烯硫脲、乙烯硫单硫化合物等,会对机体产生毒性作用[9].已有研究表明,二硫代氨基甲酸酯类农药具有胚胎毒性和生殖毒性,并且有对实验动物呈现出胚胎毒性和性机能毒,并有“三致作用”,其中致畸作用表现明显,这类毒物以代森锰为代表,其次为福美锌和代森锌.对于“三致作用”,有研究表明,用西维因对实验动物染毒后,大鼠和小鼠会发生癌变现象;对狗、猪等大型哺乳动物染毒后,胚胎会发生致畸作用;西维因进入人体胃部后,在酸性条件下,西维因会保持活性,可以与食物中的硝酸盐生成N-亚硝基化合物,具有致癌作用[10].虽然大量的实验都表明了氨基甲酸酯类农药具有“三致作用”,但是目前没有报告表明此类农药会引起癌症的流行病.除了蓄积性作用和“三致作用”外,目前也发现少数氨基甲酸酯类农药会引起机体的迟发性神经作用.4.毒作用机制国内外的学者关于氨基甲酸酯类农药的致毒机制已经取得很多效果.学术上主要有两种学说.一种是说胆碱酯酶的阴离子部位和酯解部位发生了争夺氨基甲酸酯分子的可逆性竞争抑制[11],就是说氨基甲酸酯全部的分子与胆碱酯酶形成了一种中间物,该物质在机体内适宜的条件下,可以进行分解,分解产物是胆碱酯酶和氨基甲酸酯,在这个过程中,胆碱酯酶并没有发生结构上的变化,也就是化学性质没有改变,氨基甲酸酯也是如此.另一种学说是受到了有机磷农药的毒作用机理的启发,认为氨基甲酸酯类农药的致毒机制与有机磷农药的致毒机制是一样的[12],胆碱酯酶与氨基甲酸酯的结合是不可逆性的竞争抑制.即氨基甲酸酯与胆碱酯酶发生了不可逆性的化学反应,胆碱酯酶的化学结构发生了改变,失去原来的性质,形成了氨基甲酰化的胆碱酯酶[13].在上述两种致毒机制中,第一种致毒机制得到大多数学者的认可,即氨基甲酸酯类农药与胆碱酯酶的结合是可逆性的.氨基甲酸酯类农药的化学结构与机体内的乙酰胆碱的化学结构相似,因此,氨基甲酸酯类农药进入机体后会与胆碱酯酶相结合,主要结合部位是胆碱酯酶活性中心的丝氨酸,形成氨基甲酰化ChE,结果使胆碱酯酶失去原来的活性,不能够在与乙酰胆碱结合.可以说氨基甲酸酯类农药是一种抑制剂,抑制胆碱酯酶,而不会根本性的改变胆碱酯酶的化学性质.这一点和有机磷农药的致毒机制是不一样的.而且,氨基甲酸酯在机体中不需要经过代谢活化,与胆碱酯酶的结合是直接的,整个分子与胆碱酯酶结合,然后形成一种疏松的络合物,不是真的化学键合,因此在水解酶的作用下,络合物会快速水解,从而使胆碱酯酶不在受到抑制,自动复活.从这一点可以知道,氨基甲酸酯类农药属于急性毒药,潜伏期相比较有机磷农药较短,症状较轻,如果接触的不多,机体可以自动恢复原有机能.5.氨基甲酸酯类农药对环境和人的影响5.1.环境中的迁移转化氨基甲酸酯类杀虫剂虽然具有高效、残留期短的优点,但是它依然是一种高毒性的物质,可以通过大气、水、土壤、植物、动物等进行迁移转化,通过食物链还会给人类健康造成损害,而且接触污染空气.接触污染水源,也会造成人体暴露[14].因此,研究氨基甲酸酯类农药在环境中的迁移转化也是不容忽视的.5.2.大气氨基甲酸酯类农药可以依靠空气中的空气中的尘埃和其他小颗粒的物质进行附着或者进行反应,有的氨基甲酸酯类农药还会被小颗粒物质吸收,产生新的物质,使其不易沉降,从而在风的动力下,扩散到其他地区.当然,在空气中,氨基甲酸酯类农药会受到温度、光照、湿度和颗粒物的影响.比如在日光的照射下,氨基甲酸酯类农药还会分解出独特的结构,或者产生较毒的副产物,对环境造成二次危害.5.3.水除了部分氨基甲酸酯类农药不溶或者难溶于水外,其余氨基甲酸酯类农药具有一定的水溶性.而且氨基甲酸酯类农药的利用率不高,在喷洒农药的过程中,大概只有10%的农药得到了有效利用,其余60%多基本都落在土壤中.在雨水的冲刷下,氨基甲酸酯类农药会随雨水下渗到地下水中,或者汇入河流、湖泊和海洋中.从而污染了地下水,进入河流和海洋的会影响水生动植物的生存,抑制水生植物的光合作用,使其死亡,使得鱼虾及贝类等水生动物发生病变,降低生殖能力,导致海洋生态失调[15].5.4.土壤因为喷洒的氨基甲酸酯类农药大部分都落入土壤,所以土壤是氨基甲酸酯类农药的一个重要富集区.土壤中生存着大量的微生物,几乎所有土壤微生物均可参与对氨基甲酸酯的代谢过程,其中包括真菌和细菌.在微生物的分解作用下,氨基甲酸酯类农药会迅速被分解,生成无毒的二氧化碳、氮气和水等.但是分解速率受到土壤温度、湿度及氨基甲酸酯类农药化学结构的影响.不同条件下会产生不同物质.一般来说湿润土壤中的分解速率要大于干燥土壤.有些氨基甲酸酯类农药稳定性较高,在土壤不易分解,比如涕灭威,对昆虫、水生生物、水生植物和哺乳动物均有毒性,在土壤中的代谢产物也有较高的毒性,且水解缓慢,这类农药在使用中要十分注意使用量[16].5.5.氨基甲酸酯类农药对人的影响目前有研究表明部分氨基甲酸酯类农药,比如涕灭威、呋喃丹等高毒性农药会对人类的神经系统、内分泌系统、生殖系统和免疫系统造成不利的影响,尤其是对生殖系统的影响,更是受到研究人员和普通人的关注,因为这与我们的后代息息相关[17].根据资料表明,男性如果长时间暴露于氨基甲酸酯类农药下,男性的生殖功能会有所损害.夏彦恺曾做过相关实验,当男性工人的精子接触到西维因时,镜子中出现了异常情况,X和Y染色体的数目是不正常的,而且精子会产生畸形,染色体畸变率也有所变大[18].对于女性来说,氨基甲酸酯类农药也会影响女性的生殖功能,而且影响危害要大于男性,因为女性受到影响后会流产率会增加.李燕南在排除其他实验干扰的情况下,发现生产西维因的女性工人的流产率要大于在行政办公的女性[19].氨基甲酸酯类农药对生殖功能的影响主要是氨基甲酸酯类农药进入人体后,会生成大量的活性氧,活性氧会消耗体内的酶类物质,使得机体出现氧化应激,最终破坏了精子的细胞膜和损害女性卵巢的机能,最终影响了男性和女性的生殖功能.6.氨基甲酸酯类农药的分析检测方法氨基甲酸酯类农药的检测分为前处理和仪器分析两个步骤.氨基甲酸酯类农药由于在环境中停留时间短,因此通常残留浓度不高,而且会携带副产物,会对分析检测造成干扰,需要对待处理样品进行提纯、净化浓缩等预处理.预处理是分析检测中最重要的环节,该步骤出现问题将会导致整个检测的失败.目前用来进行氨基甲酸酯类农药的与处理方法已经比较成熟,比如液-液萃取、微波辅助萃取、固相萃取、固相微萃取、超临界萃取、中空纤维液相微萃取、凝胶渗透色谱等[20].其中液-液萃取和微波辅助萃取是对简单的样品进行萃取,也可以用作复杂样品的第一次萃取.有些样品含有较多的脂肪和蛋白质,只萃取一次是达不到检测的标准的,而且会污染色谱分析系统,甚至造成堵塞.因此需要对初步提取液做净化处理,此时就要用到中空纤维液相微萃取和凝胶渗透色谱这两种提纯方法,因为这两种方法可以去除脂肪、蛋白质等大分子,提高色谱分析的准确性.在实际操作用,要根据待测样品的组成,选择合适的提纯净化方法,才能使检测事半功倍.目前常用仪器分析法检测分析氨基甲酸酯类农药在环境中的残留含量.氨基甲酸酯类农药在国家标准中采用的是气相色谱法检测蔬菜中残留的氨基甲酸酯类农药的含量.除了气相色谱外,比较常见的仪器分析法主要有高效液相色谱法(HPLC)、气相色谱-质谱法(GC-MC)、液相色谱-质谱法(HPLC-MS)等.此外还有分光光度计法,但是分光光度计法测量范围有限,测量样品的类型也较为单一,所以实际应用中不多.目前在检测氨基甲酸酯类农药的仪器分析法中,最常用的是高效液相色谱法.对于含有未知氨基甲酸酯类农药化合物的样品,通常采用色谱-质谱联用法,该方法准确性高而且分析迅速,所以也适合突发环境污染事件的检测.7.氨基甲酸酯类化合物的其他用途万事万物都是具有两面性的,氨基甲酸酯类化合物虽然被人们主要应用到农药领域,而且因为它的毒性,让人们谈之色变,但是,氨基甲酸酯类化合物的用途不单是农药领域,还可以应用到其他领域,比如,医药领域,氨基甲酸酯类化合物被用作镇静剂;氨基甲酸酯类化合物可以用作水泥添加剂, 生产低收缩水泥;氨基甲酸酯类化合物用于丝织品,使得织物抗皱性能好.可见氨基甲酸酯类化合物并不是人们想象中的那么可怕.我们要用辩证的思维对待它.8.结语氨基甲酸酯类农药是我国目前广泛使用的除草剂和除虫剂,由于不规范的使用,造成了农药污染.本文通过综述氨基甲酸酯类农药的毒性作用、致毒机制、环境效应、对人的影响、环境中迁移转化规律和分析检测方法等方面,对氨基甲酸酯类农药的毒理学做了简单的分析,最后提出对于氨基甲酸酯类农药,我们要用辩证的眼光去对待.。