液相微萃取技术研究进展
- 格式:doc
- 大小:31.00 KB
- 文档页数:5
2012年 第15期 广 东 化 工 第39卷 总第239期 · 47 ·浅谈中空纤维膜液相微萃取装置的研究进展宝贵荣,李霞,萨仁图雅(呼和浩特职业学院 生物化学工程学院,内蒙古 呼和浩特 010051)[摘 要]中空纤维膜液相微萃取是近年发展起来的一种新型的样品前处理技术,具有装置简单、成本低廉、环境友好、无交叉感染、萃取和浓缩于一体而且易于分析仪器联用等优点。
研究者们开发了许多新型的中空纤维膜液相微萃取装置。
文章主要介绍中空纤维膜液相微萃取装置的研究发展,并展望研究前景。
[关键词]中空纤维膜;液相微萃取[中图分类号]O657.3 [文献标识码]A [文章编号]1007-1865(2012)15-0047-02Recent Developments in Hollow Fiber Liquid PhaseMicro-extraction TechniquesBao Guirong, Li Xia, Sarentuya(Biochemical Engineering College of Huhhot V ocational College, Huhhot 010051, China)Abstract: The recent development of hollow fiber micro-extraction techniques was a extremely simple, low cost, inexpensive, eliminating the possibility of carry-over in and more friendly sample preparation is an important issue in sample preparation. The researchers have developed a many new hollow fiber membrane liquid-phase micro-extraction device. And the paper mainly focused on the recent contributions in the field of novel liquid-phase micro-extraction device and developments.Keywords: liquid-phase microextraction ;hollow fiber液相微萃取[1](Liquid phase microextraction ,LPME)是1996年发展起来的一种新型样品处理技术。
低密度分散相液-液微萃取联用高效液相色谱法测定人血浆中的华法林摘要:采用的新一代分散液-液微萃取(DLLME)联用高效液相色谱法(HPLC)提取并测定一种广泛使用的抗凝药物-华法林在人血浆中的含量。
萃取过程是基于比水轻的萃取剂和一个特殊设计的萃取装置。
我们对一些重要参数进行了调查和优化,包括萃取溶剂种类和体积、分散剂、样品溶液的pH值,样品溶液盐浓度,萃取时间等。
优化条件为(150卩L正辛醇作为萃取液,150卩L甲醇作为分散剂,样品pH值为2.3,提取时间2分钟,,不添加盐),检测限(LOD)为5ng • mL-1和提取回收率91.0%; 校准曲线的线性范围为15 - 3000 mL-1,相关系数的(R2)为0.998。
基于五次提取及测定的重复性和再现性分别为 2.8%和6.5%。
该方法已成功应用在服用华法林患者血浆药物浓度的测定,,并具有灵敏、高效和方便的特点。
关键词:低密度溶剂;分散相液-液微萃取;法华林;HPLC ;样品前处理;血浆样品分析1.简介华法林是一种广泛使用于口服抗凝药物预防和治疗静脉、动脉血栓栓塞疾病的香豆素衍生物。
它能引起致命性出血,可作为杀鼠剂应用。
华法林通过减小维生素K的依赖性凝血因子的合成发挥抗凝血作用。
华法林的治疗窗很窄,超过了治疗窗会导致不必要的出血。
华法林的血浆浓度不但可以区分是否具有真正的抗凝血性能并且为临床决策、有效治疗严重中毒提供更加完善的参考价值。
因此,各种方法如高效液相色谱法(HPLC)和紫外检测器的液相色谱-串联质谱法(LC-MS / MS )胶束电动色谱-电喷雾电离质谱(ESI-MS法)和毛细管区带电泳(CZE)都已用于测定华法林在生物样品的浓度。
由于低浓度的华法林基质较为复杂,不能直接使用以上方法。
这些方法一般使用液液萃取(LLE)或固相萃取(SPE)技术进行样品制备。
液液萃取有高重复性和高采样能力的优点,但它过程繁琐、耗时,易产生乳剂,需要大量有毒而昂贵的有机溶剂对其进行提取。
修改稿日期:2005203224;作者简介:李新利(1978-),女,硕研,助教,电邮nanjingli @1631com 。
萃取精馏分离醋酸/水溶液溶剂研究进展及机理分析3李新利,唐聪明(西华师范大学化学化工学院,南充 637002)摘要:介绍了萃取精馏法分离醋酸水溶液萃取剂的研究进展,在此基础上初步分析了萃取剂与原溶剂组分间的相互作用,醋酸提供质子给萃取剂,与萃取剂分子之间产生松弛的化学作用,从而改变了醋酸在液相中的活度系数,即改变了水对醋酸的相对挥发度。
针对几种分离效果较优的萃取剂,探讨了该萃取剂与醋酸发生质子化的可能位置。
本文分析结果表明,对于醋酸水溶液的分离,酰胺和砜类是可能合适的萃取精馏溶剂。
关键词:醋酸;水;萃取精馏;质子化中图分类号:TQ 42 文献标识码:A 文章编号:100129219(2005)062632040 前言萃取精馏是一种特殊精馏方法。
它是向共沸物或不易分离的混合物中加入一种萃取溶剂,使难分离组分间的相对挥发度增大,从而达到设计的分离要求。
醋酸水溶液是高度非理想物系,传统的普通精馏法不仅塔板数多,能耗大,而且难以分离彻底。
以萃取精馏法分离醋酸水溶液的研究已有不少的文献报道[1212],但是前人的工作主要集中于萃取剂的选择和萃取精馏塔条件实验等方面。
本文在对萃取剂进行综述的基础上,分析讨论了萃取剂与醋酸分子间质子化作用位置与形成的络合物结构。
1 萃取精馏法分离醋酸水溶液萃取剂的研究进展111 单一萃取剂的研究进展人们很早就知道叔胺类物质对酸与非酸溶液具有很好的分离效果。
因此,Von G arwin [2]提出用二甲基苯胺来分离醋酸水溶液。
但是二甲基苯胺与水形成最低共沸物。
Wolgang Muller [3]提出以1,22吗啉乙烷(熔点72℃,沸点20418℃[01013MPa ])为萃取剂,对醋酸含量50%(质量分数,下同)的酸水溶液进行减压萃取精馏,塔顶水含酸仅0101%;虽然1,22吗啉乙烷分离效果很好,但存在因熔沸点过高引起的需保温管路输送、溶剂回收塔减压操作等问题。
液相微萃取技术研究进展分析化学中的样品前处理非常重要。
传统的样品前处理方法通常存在步骤繁琐费时、萃取效率低、难实现自动化或联用、液态样品易乳化等诸多缺点。
近年来,随着绿色化学和环境化学的兴起和发展,大量有毒有机溶剂的使用引起了人们的广泛关注,高效、快速的无溶剂或少溶剂的样品制备与前处理方法的研究已成为现代分析化学研究的前沿课题之一[1]。
文章就对液相微萃取技术进行了相关研究,供大家参考。
标签:液相微萃取技术;研究;分析1 引言作为一个理想的样品制备与处理方法应具备以下条件:(1)选择性好;(2)操作简便;(3)成本低廉;(4)不用或少用对环境及人体有影响的溶剂;(5)应用范围广,适用于各种分析测试方法,甚至联机操作。
液相微萃取(LPME)是近年来发展起来的一种新型的样品前处理技术。
与传统的样品前处理技术相比,LPME具有如下优点:(1)该技术集采样、萃取和浓缩于一体,操作简单方便,快捷、低廉;(2)萃取效率高,富集效果好,有时富集效果甚至可达1000倍以上;(3)它消耗有机溶剂量非常少(几至几十μL),是一项环境友好的样品前处理新技术,且所需样品溶液的量较少(1~10mL左右),因此特别适合于环境样品中痕量、超痕量污染物和生物样品等复杂基质中低浓度药物的测定;(4)便于实现仪器联用化,现在已经实现了它和高效液相色谱(HPLC)、气相色谱(GC)、高效液相色谱-质谱联用(HPLC-MS)和毛细管电泳(CE)等的在线联用。
该技术克服了传统样品前处理技术的诸多不足,适应了绿色化学发展的要求,因此得到了迅速的发展,它与HPLC、GC、HPLC-MS 等联用技术在化学、药学、生物、临床医学和环境分析等领域有极为广泛的应用前景。
2 液相微萃取的原理液相微萃取的思想源于液-液萃取。
从与仪器的兼容性来看,目前LPME主要有两种萃取模式:两相LPME和三相LPME。
两相LPME是一个基于分析物在样品及小体积的有机溶剂两相之间平衡分配的过程[2]。
通常通过调节样品溶液的pH值或萃取用溶剂的极性或者酸碱性,使目标物以非离子态存在,根据相似相溶原理,分子形式存在的目标物被萃取进有机萃取剂中,从而实现目标物的选择性萃取。
该技术要求目标物具有一定的脂溶性,常用来萃取环境样品和生物样品中的某些成分,可以和GC、GC-MS在线联用。
三相LPME是由两个水层间夹一个有机层组成的“三明治”型的萃取系统。
一般来说,可通过调节料液相的pH值或萃取用溶剂的极性或者酸碱性,使待萃取物在料液相中以分子形式存在而进入有机相中,通过采用合适的接受相溶液,分子形式的待萃取物在有机相与接受相的界面上再次离子化,从而被萃取进接受相。
一般来说,要实现萃取,目标物在有机相中的溶解度要大于在料液相中的溶解度,但又要小于在接受相中的溶解度。
因此,通常三相LPME也要求目标物有一定的亲脂性,才能实现其从料液相进入有机相的萃取过程,它常适用于分析较脏样品中的酸、碱等离子性化合物,已经实现了和GC、HPLC﹑HPLC-MS和CE等的在线联用。
富集因子(EF)是不同条件下评价萃取效率的指标。
它表示萃取过程中目标分析物的浓度增加的倍数,其定义式为:(1)式中Ca,final和Cd,initial分别代表萃取结束后被分析物在接受相中的浓度和萃取开始前分析物在料液相的初始浓度。
方法的回收率(Recovery,R)可以通过下式计算得出:(2)式中Cd,determine和Ca,initial分别代表利用LPME-HPLC方法测得的被分析物在料液相中的浓度与被分析物在料液相真实浓度的比值。
3 液相微萃取的发展与应用3.1 两相液相微萃取1996年Cantwell和Jeannot首次提出静态微萃取法(如图1a所示),利用悬挂在Teflon棒端的有机溶剂对溶液中的分析物直接进行萃取,萃取完成后取出探头,从Teflon顶端抽取有机溶剂进样到气相色谱体系分析。
1997年Jeannot小组和He小组对静态液相微萃取进行了进一步简化,有机液滴直接悬挂在色谱微量进样器针头上对物质进行萃取。
这种LPME方式主要适合于挥发和半挥发且较为洁净的液体或气体样品,重复性较好,但富集倍数较小,且萃取时间长。
a b图1 静态微萃取和动态微萃取装置图Lee等进一步发展了该技术,提出了一种动态的微滴萃取(如图1b所示),即在数秒内将样品溶液吸入含有微升级有机溶剂的微量进样器中停置数秒,再将其推出,反复进行,从而实现微滴溶剂的动态萃取。
与静态微萃取相比,动态微萃取所需时间短,富集倍数大,但精密度相对较差,目前有关这种动态微滴萃取的报道较少。
Liu和Lee在2000年提出了连续流动微萃取,它也是一种动态微萃取,未采用搅拌装置,而是让样品在不断流动的过程中被萃取,10分钟内富集倍数达260-1600倍。
该法装置简单,易操作,精密度高,富集倍数大,是一种较理想的萃取方法。
图2 顶空液相微萃取装置图顶空液相微萃取法是把有机溶剂悬于待测样品的上部空间进行萃取的方法(如图2所示)。
由于挥发性化合物在液上空间的传质速度非常快,对于挥发性有机物,顶空液相微萃取法比直接液相微萃取法更快捷,另外,相对于直接液相微萃取法来说,顶空液相微萃取大大缩短了到达平衡所需的时间,同时还可以消除样品基质的干扰,因此,这种方法常用来萃取环境样品中挥发性或半挥发性的有机化合物。
由于基于悬挂液滴形式的微滴液相微萃取存在操作困难,且重现性较差等缺点,H.K. Lee等人发展了中空纤维两相液相微萃取。
它采用一根疏水性聚丙烯中空多孔纤维,纤维先用有机溶剂饱和,然后腔内盛有相同的有机溶剂作为接受液,萃取完成后,取有机溶剂直接进GC进行分析。
该方法操作简单、方便,重现性好,纤维一次性使用,防止了交叉污染,且大分子、杂质等进不了纤维孔,净化功能突出,因此这一方法自提出后得到了迅速发展,在环境和生物等方面得到了广泛应用。
在上述两相液相微萃取中,有机液滴作为接受相,能够直接进样到气相色谱系统分析,因此LPME/GC联用技术已被成功地应用于环境水中微量持久性有机污染物和生物流体中低浓度药物的浓缩与富集。
但是该技术在与HPLC和CE联用时存在有机液滴和流动相的兼容性问题,使得它的应用受到限制。
Lee 和Vandecasteele曾提出先将有机溶剂用氮气吹干,再用甲醇或流动相将分析物溶解,然后用HPLC分析。
但是对萃取后的液滴进行挥发和溶解的过程比较麻烦而费时,且在这一过程中很容易造成样品的损失。
最近,出现了用离子液体代替有机溶剂进行两相微萃取,然后直接进高效液相色谱检测,如刘景富等人就利用离子液体来萃取环境水中的苯系物,取得了满意的效果。
但是,在选择和合成合适的离子液方面存在很大难度。
后来Lee又提出了用水溶液代替有机溶剂的顶空两相微萃取技术,直接与毛细管电泳联用。
但是,该技术仅限于萃取挥发和半挥发的离子化合物。
3.2 三相液-液-液微萃取为了解决液相微萃取与高效液相色谱和毛细管电泳的兼容性问题,1999年,Pedersen-Bjergaard和Rasmussen在两相微萃取的基础上提出了疏水性聚丙烯中空多孔纤维液-液-液微萃取(LLLME)(如图3b所示)方法,中空纤维先用有机溶剂饱和,然后供方溶液在纤维外流动,受方溶液在纤维内流动,分析物先从供方溶液萃取到纤维中的有机相中,再被反萃取到受方溶液。
Ma和Cantwell也提出了悬挂液滴的三相微萃取技术,Lee研究小组将其命名为液相微萃取/后萃取(LPME-BE)(如图3a所示),即液-液-液微萃取方法(LLLME),整个萃取过程为:样品中的分析物首先以中性分子形式被萃取到有机溶剂中,接着又被后萃取到接受相里。
这种方式一般适用于在有机溶剂中富集效率不是很高的分析物,需要通过后萃取来进一步提高富集倍数。
三相微萃取中,由于接受相为水溶液,因此可以直接用HPLC和CE检测。
大量研究成功地报导了LLLME与HPLC和CE联用技术用于生物基体中低浓度药物和环境水样中微量持久性有机污染物的检测。
基于中空纤维的液-液-液微萃取中接受相的体积约为25?滋L,而液滴液-液-液微萃取的接受相体积仅为1-3?滋L,因此与中空纤维三相液-液-液微萃取相比,液滴液-液-液微萃取的料液相与接受相间的体积比相对较高,因而用此技术处理样品,目标分析物有望获得更高的萃取效率。
a b图3 液-液-液微萃取与中空纤维膜微萃取装置图值得一提的是,上述微萃取方法通常都要求目标物具有一定的脂溶性,而对于一些强极性或强亲水性的化合物,仅依靠它们在料液相和有机相中分配性能的差异,很难获得满意的萃取效率。
为此,有人提出了通过在料液相或接受相中加入流动载体来提高LPME对亲水性药物的萃取能力的方法,例如Ho及其研究小组通过在料液中加入离子对试剂与离子化的目标物形成亲脂性较强的配合物而提高了目标物在有机相的分配比,实现了对生物体液中亲水性药物的提取。
Liu 等报道了采用离子液为接受相对多环芳香烃的萃取,Yazdi等也报道了通过在接受相中加入冠醚实现了对芳香胺的萃取。
由于这些方法操作简单、选择性好且比较稳定,从而很好地拓展了液相微萃取技术在样品前处理方面的应用范围。
4 液相微萃取的影响因素4.1 萃取溶剂萃取溶剂的选择至关重要,其选择的基本原则是“相似相溶原理”,即溶剂对分析物必须有较强的萃取富集能力。
对三相微萃取来说,它必须符合三个条件。
首先,中性的目标物分子在萃取溶剂中的溶解度要比在料液相中的溶解度大,但当目标物以离子形式存在时,它在有机溶剂中的溶解度又要比它在接受相中的溶解度小;其次,为了防止在萃取过程中溶剂蒸发,要求溶剂有较低的挥发性。
第三,为了保证在快速搅拌和较长的萃取时间内有机溶剂能稳定的铺在料液相上面,还要求有机溶剂的密度比水小。
4.2 pH液相微萃取中,样品溶液的pH值对萃取过程中的传质起着至关重要的作用。
通过控制溶液的pH值能够改变分析物在溶液中的存在形式。
通常来说,萃取生物碱等碱性化合物时,需调节料液相的pH值至碱性,从而使目标化合物去离子化以降低其在料液相中的溶解度。
但在萃取酸性化合物如酚类化合物时,情况刚好相反。
4.3 搅拌速率搅拌速率是影响萃取效率的一个重要因素。
通常提高搅拌速率可以减少扩散层的厚度,增加对流-扩散传质速度,促进传质过程,从而提高萃取效率。
但是,如果搅拌速率增加到一定程度时,在微滴液相微萃取中,接受相微滴会变得很不稳定,有机溶剂在样品溶液中溶解度也会增大,因此,实验中有必要寻找最佳的搅拌速率。
4.4 萃取时间液相微萃取是一个样品的富集平衡过程。
萃取达到平衡之前,萃取时间越长,萃入液滴的分析物越多,富集因子也越大,所以萃取时间是LPME中一个非常重要的影响因素。
但进一步延长萃取时间,会使接受相液滴由于乳化、扩散等因素的影响而使体积减小。