第三章 随机过程
- 格式:pdf
- 大小:396.18 KB
- 文档页数:47
第三章随机过程第三章随机过程1.什么是宽平稳随机过程?什么是严平稳随机过程?它们之间有什么关系?答:宽平稳随机过程:若一个随机过程的数学期望与时间无关,而其相关函数仅与时间间隔相关称之为宽平稳随机过程。
严平稳随机过程:若一个随即过程任何的n维分布函数或概率密度函数与时间起点无关,则之为严平稳随机过程。
一个严平稳随机过程,只要他的均值有界则必然是宽平稳的;反之不然。
2.平稳随机过程的自然相关函数具有什么特点?答:平稳随机过程的自然相关函数与时间起点无关,只与时间间隔有关,而且是偶函数。
3.什么是高斯噪声?什么是白噪声?它们各有什么特点?答:高斯噪声:概率密度函数符合正态分布的噪声。
高斯噪声的特点:它的n维分布仅由各随机变量的数学期望、方差和两两之间的归一化协方差函数决定。
若高斯噪声是宽平稳,则也是严平稳的。
若随机变量之间互不相关,则也是统计独立的。
白噪声:功率谱密度在整个频域内均匀分布的噪声,属于一种理想宽带过程。
白噪声的特点:白噪声只在tao=0时才是相关的,而在其他任意时刻上的随机变量都不相关。
4.什么是窄带随机过程?它的频谱和时间波形有什么特点?答:如果随机过程的频谱密度分布在一个远离零频的很窄的频率范围内,则称其为窄带随即过程。
其频谱分布特点是带宽远小于中心频率,时间波形上的特点是呈现出包络和相位随机缓慢变化的正弦波。
5.什么是窄高斯噪声?他在波形上有什么特点?它的包络和相位各服从什么概率分布?答:窄带高斯噪声:若一个高斯噪声满足窄带条件,即其带宽远远小于中心频率,而且中心平率偏离零频很远,则称之为窄带高斯噪声。
其波形上的特点是包络和相位都像一个缓慢变化的正弦波。
其包络的一维分布服从瑞利分布,其相位的一维分布服从均匀分布。
6.何为高斯白噪声?它的概率密度函数、功率频谱密度如何表示?答:如果白噪声取值的概率密度分布服从高斯分布,则称之为高斯白噪声,其概率密度函数为高斯函数,其功率谱密度为常数。
第3章随机过程3.1 随机过程基本概念自然界中事物的变化过程可以大致分成为两类:(1) 确定性过程:其变化过程具有确定的形式,数学上可以用一个或几个时间t的确定函数来描述。
(2) 随机过程:没有确定的变化形式。
每次对它的测量结果没有一个确定的变化规律。
数学上,这类事物变化的过程不可能用一个或几个时间t的确定函数来描述。
随机信号和噪声统称为随机过程。
1. 随机过程的分布函数随机过程定义:设S k(k=1, 2, …)是随机试验。
每一次试验都有一条时间波形(称为样本函数),记作x i(t),所有可能出现的结果的总体{x1(t), x2(t),…, x n(t),…}构成一随机过程,记作ξ(t)。
无穷多个样本函数的总体叫做随机过程。
随机过程具有随机变量和时间函数的特点。
在进行观测前是无法预知是空间中哪一个样本。
在一个固定时刻t1,不同样本的取值x i(t1)是一个随机变量。
随机过程是处于不同时刻的随机变量的集合。
设ξ(t)表示一个随机过程,在任意给定的时刻t1其取值ξ(t1)是一个一维随机变量。
随机变量的统计特性可以用分布函数或概率密度函数来描述。
把随机变量ξ(t1)小于或等于某一数值x1的概率记为F1(x1, t1),即如果F1对x1的导数存在,即ξ (t)样本函数的总体(随机过程)11{()}P t xξ≤11111(,){()}F x t P t xξ=≤称为ξ(t)的一维概率密度函数。
同理,任给t 1, t 2, …, t n ∈T, 则ξ(t)的n 维分布函数被定义为为ξ(t)的n 维概率密度函数。
2. 随机过程的数字特征用数字特征来描述随机过程的统计特性,更简单直观。
数字特征是指均值、方差和相关系数。
是从随机变量的数字特征推广而来的。
(1) 数学期望(均值)表示随机过程的n 个样本函数曲线的摆动中心,即均值。
积分是对x 进行的,表示t 时刻各个样本的均值,不同时刻t 的均值构成摆动中心。
随机过程第三章泊松过程泊松过程是随机过程中的一类重要过程,在许多领域都有广泛应用,如排队论、可靠性分析、金融工程等。
泊松过程的概念由法国数学家泊松提出,它具有无记忆性、独立增量和平稳增量等重要特征。
在本文中,我们将介绍泊松过程的定义、性质以及一些实际应用。
泊松过程的定义:设N(t)是在区间[0,t]内发生的事件个数,若满足以下三个条件,则称N(t)是具有独立增量和平稳增量的泊松过程:1.N(0)=0,表示在时间0之前没有事件发生;2.对于任意的s<t,N(t)-N(s)的分布只与时间间隔t-s有关,与s时刻之前的事件个数无关,这表明泊松过程具有无记忆性;3.对于任意的s<t,N(t)-N(s)的分布是一个参数为λ(t-s)的泊松分布,其中λ是过程的强度参数。
泊松过程具有很多重要的性质。
首先,泊松过程的均值和方差等于其强度参数λ。
其次,泊松过程的增量独立,即在非重叠区间上的增量相互独立。
此外,泊松过程的时间间隔也是独立同分布的指数分布。
泊松过程具有广泛的应用。
在排队论中,泊松过程可用于描述到达队列的顾客数量。
在可靠性分析领域,泊松过程可用于描述设备的故障次数。
在金融工程中,泊松过程可用于模拟股票价格的变动和交易的发生。
在实际应用中,对于给定的泊松过程,我们通常感兴趣的是估计其强度参数λ。
常用的估计方法有最大似然估计和矩估计。
最大似然估计通过最大化观测到的事件发生次数和估计的事件发生率之间的似然函数,来估计λ的值。
矩估计则是通过将观测到的事件个数的平均值等于λ的估计值,来确定λ的值。
此外,在泊松过程的应用中,我们还可能遇到泊松过程的两个重要扩展:非齐次泊松过程和二维泊松过程。
非齐次泊松过程是指强度参数λ是时间的一个函数,而不是常数。
二维泊松过程是指同时考虑两个独立的泊松过程,其事件发生次数可能影响到对方的发生次数。
综上所述,泊松过程是一种重要的随机过程,具有无记忆性、独立增量和平稳增量等特征。
周荫清《随机过程理论》第3章随机过程的线性变换随机过程的线性变换是随机过程理论中的重要概念,它在对随机过程进行分析和应用时起到了重要的作用。
本文将对周荫清《随机过程理论》第3章的内容进行详细介绍和解析。
随机过程的线性变换是指将一个随机过程通过线性变换得到另一个随机过程的过程。
具体而言,设X(t)是一个随机过程,A是一个常数矩阵,b是一个常向量,定义随机过程Y(t)=AX(t)+b,则Y(t)是X(t)的线性变换。
首先,本章介绍了随机过程的线性变换的性质。
线性变换保持了从一个状态到另一个状态的概率转移,即P{X(t2)∈B,X(t1)∈A}=P{Y(t2)∈B,Y(t1)∈A},其中B和A是任意集合。
这个性质保证了线性变换后的随机过程依然具有一些重要的性质,如马尔可夫性和平稳性。
接着,本章介绍了线性变换对随机过程的均值和自协方差函数的影响。
对于均值,线性变换后的随机过程的均值等于线性变换前随机过程的均值乘以线性变换矩阵的转置,即E[Y(t)]=AE[X(t)]+b。
对于自协方差函数,线性变换后的随机过程的自协方差函数等于线性变换前随机过程的自协方差函数乘以线性变换矩阵的转置,即R_Y(t1,t2)=AR_X(t1,t2)A^T。
然后,本章介绍了随机过程的线性滤波。
线性滤波是将一个随机过程通过滤波器的作用得到另一个随机过程的过程。
具体而言,设X(t)为一个随机过程,h(t)为一个给定的函数,则线性滤波得到的随机过程Y(t)定义为Y(t) = ∫h(t-s)X(s)ds。
本章介绍了线性滤波的定义和性质,包括线性滤波的线性性质和稳定性。
最后,本章介绍了随机过程的线性变换和线性滤波的应用。
线性变换和线性滤波方法常被用于模拟和预测随机过程以及信号处理等领域。
本章通过实例和应用案例,详细介绍了如何使用线性变换和线性滤波方法进行随机过程的分析和应用,如求解线性滤波器的响应和输出等。
总之,周荫清《随机过程理论》第3章详细介绍了随机过程的线性变换的概念、性质、影响以及应用。