当前位置:文档之家› “卡鲁金”顶燃式热风炉炉衬施工工法

“卡鲁金”顶燃式热风炉炉衬施工工法

“卡鲁金”顶燃式热风炉炉衬施工工法
“卡鲁金”顶燃式热风炉炉衬施工工法

“卡鲁金”顶燃式热风炉炉衬施工工法

中冶实久建设有限公司昆明分公司

郑辉彭强

1、前言

热风炉是高炉的主要附属设备。它是利用高炉煤气燃烧的热量,借助砖格子的热交换作用为高炉提供高温的热风。由俄罗斯

KALUGIN公司设计的称为“卡鲁金”顶燃式热风炉(见上页示意图)。与内燃式热风炉相比较,无燃烧室火井墙。空、煤气自热风炉顶部的空气支管及煤气支管进入预燃室混合均匀,在热风炉“顶部燃烧。卡鲁金”顶燃式热风炉具有蓄热面积大、气流分布均匀、高温、长寿的特点。有广阔的发展前景。由于热风炉在高温条件下工作,炉料砌筑施工质量要求较高。如:砌缝、泥浆的饱满度,膨胀缝的合理留设等。各种耐火材料之间衔接部位缝隙处理,特别是炉顶、热风口等区域的施工质量对保证炉衬的整体质量至关重要。因此,只有采用科学合理的施工方法,才能达到降低成本、缩短工期、确保质量和安全的目的。针对此类工程,我公司对多个不同施工条件的工程进行了多种技术的运用实践,其施工技术水平已达到国内先进水平。较成功的解决了砌体泥浆不饱满、炉顶砌筑尺寸不易保证的通病防治等技术难题,我们经总结形成本工法,其内容简述如下。

2、工法特点

2.1施工速度快,工序衔接合理。大墙砌筑与格子砖砌筑分班轮流作业。提前空气支管及沉煤气支管的砌筑,为拱顶连续施工创造条件。

2.2结构整体性好,便于过程监督、检查。管孔下半圆采用轮杆控制内径,上半圆采用“弹性支撑”的方式砌筑(详见第5.2.3条),可边砌边检查、控制每块砖的砌筑质量。

2.3格子砖平整、透孔率好。同一层采用同一公差格子砖砌筑,结合大、小公差格子砖调整高差。与蓄热室大墙之间膨胀缝采用木楔固定。

3、适用范围

该工法适用于俄罗斯“卡鲁金”顶燃式热风炉的施工。

4、工艺原理

4.1与传统大墙砌筑严格保证设计内径相比,根据炉内高温气体的流动及冲刷特点,砌筑重点保证炉墙厚度与密实,大墙砌筑时耐材紧贴炉壳。

4.2根据耐火砖自重下坠及圆形砌体之间相互挤紧的原理,拱顶采用金属卡钩挂砖砌筑法砌筑。

5、施工工艺流程和操作要点

5.1施工工艺流程

炉体及各孔洞检查→测量放线→炉体及管道喷涂→炉内墙体第一层砖预砌筑→炉篦子以下墙体及孔洞砌筑→炉篦子以上墙体、孔洞及格子砖砌筑→炉内格子砖上搭设脚手架→拱顶砌筑→预燃室通道及孔洞砌筑→球顶砌筑→拆除炉内脚手架→清扫检查→井架拆除。

炉衬施工流向如下:

5.1.1炉篦子以下墙体及孔洞砌筑(如图5.1.1-1):

5.1.2炉篦子至热风口炉墙及格子砖砌筑(如图5.1.2-1):

注:格子砖与墙体砖交替进行砌筑

5.1.3拱顶直段及热风口砌筑(如图5.1.3-1):

5.1.4 拱顶球形、圆锥部分及空、煤气支管砌筑(如图5.1.4-1):

注:空、煤气支管砌筑提前介入,与拱顶球形、圆锥部分同时砌筑。

5.1.5 拱顶支撑砖及预燃室砌筑流向(如图5.1.5-1):

5.1.6 球顶砌筑(如下图5.1.6-1)

5.2操作要点

5.2.1进料方法

1、炉外水平运输(如图5.2.1-1),搅拌站与热风炉上料井架之间搭设轻型运输轨道,利用小矿车将耐材推至井架内大提升罐笼。

2、炉内、外垂直运输(如图5.2.1-2),利用井架及提升罐笼将耐材从地坪提升至进料平台。从进料孔用人工传至炉内。

根据炉壳形状特征,进料平台搭设在炉壳直段处,进料平台往上500 mm沿开设进料孔(避开炉壳焊缝不小于150mm,开孔尺寸650*650mm)。待耐火砖砌至进料孔高度后封闭进料孔,焊缝为双面60°剖口焊。

炉外卷扬塔采用4根L160*10角钢制作立柱,3米/段,M16螺

栓连接。沿炉壳方向@1500设置90°斜撑([16b槽钢焊接于炉壳)。(如图5.2.1-3),

进料平台采用φ48*5脚手架钢管搭设,上铺20mm木板。如图5.2.1-4

3、炉外至炉内进料方式:

炉篦子以下从烟气管、冷风管、人孔等孔洞传至炉内。炉篦子至

热风口高度从进料平台处开设的进料孔传至炉内。热风口以上利用热风炉上部人孔钢平台从上部人孔传至炉内。

球顶最后两环耐材利用炉顶平台用人工传至炉内。

5.2.2炉身大墙与格子砖砌筑:

根据炉体的安装中心,从炉顶法兰分中并将该中心利用线锤下放到炉底,与炉体安装结构中进行比较,在规范允许范围内对上下中进行比对调整后确定耐材筒体部分施工十字中心,在设计、施工、业主三方确认该中心线的前提下,定出十字中心线。在砌筑大墙和火井墙前需用泥浆进行找平。圆形大墙炉衬砌筑由炉壳向内,依次是轻质砖、耐火砖,一层一层砌筑,砌筑半径应拉十字中心线进行逐环检查和控制。

各孔口组合砖与墙体砖的砌筑同步,砌筑时需对号入座,与各组合砖相配合的墙体砖应根据现场情况进行加工,同时在距孔口组合砖10~20层砖时,应注意控制各层砖的标高值以及平整度。

格子砖的砌筑可在墙体砖砌筑到一定的高度后再施工,并与其交替进行砌筑,每层格子砖采用同一高度偏差级别的格子砖砌筑。在砌筑格子砖前,应在大墙砌体上按0°、90°、180°和270°四个方向弹出十字中心线。第一层格子砖应试砌,试砌时,应对准炉篦子中心格孔拉十字线进行。第一层砌完后,经检查确认格孔与炉篦格孔相吻合,表面平整度符合要求,方可进行第二层格子砖的砌筑。各层格子砖的砌筑必须从中心线开始,先砌十字砖列,再依次从四个角向炉墙砌筑。格子砖下面四层为独立砌筑,不加锁砌,尽量控制在第四层砖砌筑完毕后,上表面的格子砖高度差≤1mm,此后每层格子砖均采用同一级格砖砌筑,如果局部不平,用另一级别的砖进行调整。在砌筑过程中随时用插捧对格孔的错位进行检查及调整。

5.2.3组合砖及管孔砌筑

拱顶、热风口的组合砖在正式砌筑前应进行预砌筑。以生产厂家给出的砖型设计图及预组装图。按实际尺寸进行摆设,预组装时进行

干排,砖缝以相应设计厚度的黄板纸垫放。每层预组装合格后,应在每块砖的内外两端面标明编号,并注明调节、合门字样。组合砖砌筑时按砌筑顺序进料,不可混乱。按预组装标明的编号进行砌筑。

热风炉设有多个管(如:烟气管、空、煤气气管、人孔、热风口等),在砌筑过程中,下半圆采用轮杆控制内径(如图5.2.3-1)。

管孔上半圆采用“弹性支撑”的方式砌筑(如下图:5.2.3-3),砌筑前先按砖层内径加工好撑杆,撑杆采用弹性材料(如木棍或钢筋)。砌筑前先用砌筑泥浆粘贴好纤维毯等隔热材料。然后逐块砌筑耐火砖,每砌筑一块耐火砖用撑杆支撑固定,充分利用撑杆的弹力使耐火砖紧贴砌筑导面。先砌筑内层砖(管壁侧),内层砖锁口并检查完毕后砌筑外层砖(管道中心侧)。可边砌边检查、控制每块砖的砌筑质量。避免了传统用拱胎砌筑,因拱胎挡住视线易造成的三角缝、错台等质量通病。

照片5.2.3-3 管孔上半圆“弹性支撑”砌筑实例

5.2.4炉顶砌筑

蓄热室格子砖施工完成后。即用包装袋及胶垫将格子砖顶面铺满,防止炉顶砌筑是碎砖或活泥堵塞砖格孔。然后铺上模板,搭设炉顶砌筑脚手架及砌筑平台。热风炉拱顶砌筑的过程中需控制好砖层内径及砖层标高,允许偏差为±0.1%,但保证的砖层厚度是第一位,严禁改变砖层厚度。

拱顶撂底前,应根据平台上的中心、砖的厚度公差情况确定托板上抹灰找平层的顶面标高。砌筑时,应严格控制砖层的高度和砌筑的半径。拱顶采用金属卡钩进行砌筑,上层砖借助卡钩的长臂固定在下层砖上,开始时,每砌4-5块砖就需用一个卡钩,往上随着斜度的增大,增加卡钩数量。到最后几环砖时,每砌一块砖就需用一个卡钩。并且每环砖的卡钩应在合门后才能拆掉。拱顶挂砖如下图5.2.4-1

5.2.5炉底砌筑

“卡鲁金”顶燃式热风炉炉底为活底(如下图5.2.5-1),即先砌炉墙后砌炉底。炉墙砌至热风口高度、格子砖砌筑完并采用胶皮覆盖保

护后即可开始砌筑炉底。炉底砌砖前,先用水平仪将炉底标高提高100mm标注在炉篦子支柱及炉墙上,并在炉墙上标出热风炉中心线。以水平标高控制炉底浓泥浆找平层。第一层耐火砖砌筑时从热风炉中心线往两边砌筑,上下两层纵向中心线交错为30°~60°角。炉底铺底砖与大墙间隙及与炉篦子支柱相接处,不得咬边砌筑,与支柱间间隙充填泥浆密实。

5.2.6喷涂

1、喷涂机试运转前的检查

首先,对主机各部件进行检查。如:供料钵、振动筛、密封环和磨擦片进行拆卸检查。如发现其磨损超过允许范围,则应及时更换,随后恢复安装时,仍应进行加油润滑。

上述工作完成后还应检查各部位联接和管路接头是否拧紧。

其次,应进行通风检查:通知空压机操作者送风,同时打开主控制阀,以检查全部风管、出料弯头及风包上压力表接头等是否漏风。调节磨擦片压板螺丝,使磨擦片与磨擦盘之间不漏风为止。

主机各部件检查和通风检查完成,确认机械完好后,再对喷涂作业线的全部机械组织联运试车。运转合格后开始试喷。

2、喷枪操作要领

1)、作业前对所有准备工作进行检查,包括对作业地点的安全工作情况和使用机具的情况,确认就绪后,与喷涂机操作工取得联系,开始送料、送水。

2)、正式喷涂前,先将喷枪进行试喷,调整料与水的比例,混合均匀的程度,达到喷涂面上不出现干料或流淌。

3)、喷涂作业应自上而下进行,喷涂方向应垂直于受喷面,喷嘴与受喷面的距离宜为1m左右。操作时,喷嘴应不断地进行螺旋式移动,使粗细颗粒分布均匀。

4)、喷涂应分段进行,一次喷到设计厚度。附着在底部的回弹料应及时清除。

5.2.7浇注料施工

按设计规定和浇注料供货厂家提供的技术说明书及方案中有关施工顺序、施工方法、施工工艺要求执行。

1、不定形耐火材料的内衬的允许尺寸误差,参照耐火砖内衬

的要求确定。

2、浇注料搅拌用强制式搅拌机,变更用料牌号时,搅拌及

上料,称量容器等应清洗干净,浇注料的搅拌应30分钟以内施工完毕。

3、搅拌的次序应分为两次,先加入骨料,粉料和结合剂进行

干混,然后加入需用水量的二分之一,均匀搅拌一分钟,最后再加入剩余的水,搅拌时间以五分钟为宜,加水量应按配比严格进

行计量控制。

4、耐火浇注料的浇注采用插入式振动器振捣。

5、耐火浇注料应连续进行浇注,在前一层浇注料初凝之前,

应将下一层浇注料浇注完毕,如施工间隙超过其初凝期时,应按施工缝要求进行处理,施工缝宜留在同一排锚固砖的中心线上。

6、浇注料的养护,应按新用牌号规定的方法进行,浇注料养

护期间,不得受外力振动。

5.3劳动力组织

表5.3 劳动力组织

注根据施工项目不同,采用不同班制。具体人数应根据工程量大小确定。上表为常规一座热风炉劳动力组织情况。

6、材料及机具设备

6.1材料

表6.1主要施工材料

注根据施工项目不同,采用不同班制。具体人数应根据工程量大小确定。上表为常规一座热风炉施工材料情况。

6.2 机具设备

表6.2-1 主要施工机具

主要机械有:

表6.2-2 主要施工机械

注根据施工项目不同,采用不同班制。具体人数应根据工程量大小确定。上表为常规一座热风炉机具设备组织情况。

7、质量控制

7.1耐火泥浆的使用和调制要求。

砌筑耐火制品用的泥浆耐火度和化学成分,应同新用耐火制品的耐火度和化学成分相适应。

砌筑前,应根据砌体类别通过试验确定泥浆的稠度和加水量,同时检查泥浆的砌筑性能(粘结时间)。

泥浆的最大颗粒,不应大于规定砖缝厚度的30%。

调制泥浆时,不得混用搅拌机和泥浆槽等机具,需共用时必须冲洗干净。

7.2 施工质量检验评定指标

7.2.1砌筑前应根据炉子中心线和标高检查砌的各部位尺寸和相

关标高。待炉子中心线和标高及各部位尺寸检查无误后,开始炉子的内衬施工,施工检验标准见《工业炉砌筑工程施工及验收规范》及下述评定指标。

7.2.2砌体砌筑中,泥浆应饱满,其砌缝应均匀,并应错缝砌筑。

7.2.3砌筑中,应用木槌像胶槌找正,泥浆干涸后,不得敲打砌体。

7.2.4砌体内的各种孔洞、通道、膨胀缝等在施工中及时检查、找正。

7.2.5每班砌筑需由甲方质检人员当班检查、当班确认,方可进行下一班砌筑。砌至拱顶时须有设计院人员进行指导施工。

7.3砌体砌缝标准见表7.3

7.4关键质量控制点的控制方法:

7.4.1砌体泥浆:

砌砖时的程序为:先将砖干排、验缝,并将砖依次移放于一边;接着清扫工作面,铺上一层泥浆,并进行打灰、揉浆、挤浆。操作时,用打好灰浆的砖块放在墙面上揉动1-2下将砖抵紧已砌好的墙砖并将灰浆挤出,保证水平与垂直缝内的泥浆饱满。

热风炉作用

热风炉———高炉高风温的重要载体 来源:中国钢铁新闻网作者:毛庆武张福明发布时间:2008.04.29 高风温是现代高炉的重要技术特征。提高风温是增加喷煤量、降低焦比、降低生产成本的主要技术措施。近几年,国内钢铁企业高炉的热风温度逐年升高,2007年重点企业热风温度比上年提高25℃。特别是新建设的一批大高炉(大于2000立方米)热风温度均超过1200℃,达到国际先进水平。如2002年后,首钢技术改造或新建高炉的热风温度均实现高于1200℃的目标。 热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。理论研究和生产实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。 高风温有赖热风炉的结构优化 20世纪50年代,我国高炉主要采用传统的内燃式热风炉。这种热风炉存在着诸多技术缺陷,且随着风温的提高而暴露得更加明显。为克服传统内燃式热风炉的技术缺陷,20世纪60年代,外燃式热风炉应运而生。该设备将燃烧室与蓄热室分开,显著地提高了风温,延长了热风炉寿命。20世纪70年代,荷兰霍戈文公司(现达涅利公司)对传统的内燃式热风炉进行优化和改进,开发了改造型内燃式热风炉,在欧美等地区得到应用并获得成功。与此同时,我国炼铁工作者开发成功了顶燃式热风炉,并于上世纪70年代末在首钢2号高炉(1327立方米)上成功应用。自上世纪90年代KALUGIN顶燃式热风炉(小拱顶)投入运行,迄今为止在世界上已有80多座KALUGIN(卡鲁金)顶燃式热风炉投入使用。 截至目前,顶燃式热风炉由于具有结构稳定性好、气流分布均匀、布置紧凑、占地面积小、投资省、热效率高、寿命长等优势,已在国内几十座高炉上应用。首钢第5代顶燃式热风炉自投产以来,已正常工作22年3个月,曾取得月平均风温≥1200℃的业绩。生产实践证实,顶燃式热风炉是一种长寿型的热风炉,完全可以满足两代高炉炉龄寿命的要求。然而,由于国内有的企业高炉煤气含水量高、煤气质量差,致使顶燃式热风炉燃烧口出现过早破损;而且采用的大功率短焰燃烧器在适应助燃空气高温预热(助燃空气预热温度≥600℃)方面还存在一些技术难题。因此,国内钢铁企业进行了技术改造,Corus(康力斯)高风温内燃式热风炉也因此得到应用。 合理的热风炉配置保持高炉稳定 根据实践,现代大型高炉配置3~4座热风炉比较合理。大型高炉如果配置4座热风炉,可以实现交错并联送风,能提高风温20℃~40℃,在炉役的中后期,还可以在1座热风炉检修的情况下,采用另外3座热风炉工作,使高炉生产不会出现过大的波动。目前,国内外许多大型高炉都配套建设了4座热风炉,但采用3座热风炉可以大幅度降低建设投资,减少占地面积,也同样具有非常大的吸引力。随着设计和安装大直径热风炉条件的改进,热风炉设计的日趋合理,热风炉使用的耐火材料质量也得到提高,设备更经久耐用,控制系统也日益成熟可靠,形成了多种多样的热风炉高风温和长寿技术,使得热风炉操作可以更加平稳可靠,从而保证了高炉稳定操作。以此为基础,现代热风炉的发展方向转变为减少热风炉座数、延长热风炉寿命、强化燃烧能力、缩短送风时间、减少蓄热面积、回收废气热量、提高总热效率上。另外,尽量缩短送风时间的操作方式也得到重视,基于新设计理念和完备的技术支撑,国内钢铁企业将热风炉数量由4座减少为3座,热风炉的操作模式改为“两烧一送”,风温的调节控制依靠混风实现,也同样达到了高风温的效果。 提高加热炉传热效率和寿命是可靠保证

泥水平衡顶管施工工法.doc

泥水平衡顶管穿越施工工法 冯大永倪宏源曾士伟历明马鹏程 1.前言 随着管道建设的发展,管道在穿越高速公路、铁路、建筑物等特殊地段时,传统的人工掏土顶管施工,因易坍塌、效率低、受周边环境制约等缺点越来越不适合于现场施工,泥水平衡顶管施工属于机械化、长距离顶进施工技术,在我国近年来逐步得到推广和应用,泥水平衡顶管施工则切实解决了施工中受地形限制、顶管长度限制、施工安全、环境污染等传统顶管存在的各项问题。本工法对施工技术操作要求较高,主要体现在对顶管设备操作、排泥系统的操作、注浆系统的操作都比较严格。 泥水平衡顶管的主要设备有:泥水平衡顶管机、主顶设备、测量设备、电气控制系统、泥水处理设备、压浆系统等。 2.工法特点 2.1 该工法层次清楚,操作简便,运行可靠,便于掌握,可以对复杂的地下情况作出快速反应。

2.2顶管在地面操作,安全、直观、方便。 2.3适用土质范围广,软土、粘土、砂土、砂砾土、硬土均可适用。 2.2施工精度高,上、下、左、右可纠偏,最大纠偏角度达2.5°,并可作较长距离顶进。 2.3对管体周围的土体扰动较小,地面沉降小,道路交通及构筑物相对安全。 2.4操作坑内施工环境较好,采用泥水输送弃土,没有吊土、搬运土方,施工无安全风险。 2.5施工噪音小,对周围的环境影响小。 3.适用范围 泥水平衡顶管施工工法适用于各种粘土、粉土、砂土和渗透系数较大的砂卵石,也适应强风化岩等恶劣地质条件下的石油管道、室外给水、排水、电力及其它适用于顶管施工的管道工程。 由于泥水平衡顶管顶距长,只要控制好降水措施,就能很好控制地面隆沉、施工安全等特点,并可适用于各类复杂地质条件,因此像穿越重要公路、铁路、建筑物等特殊工程地段、穿越砂层、淤泥质土等特殊地质构造地段应用泥水平衡顶管施工工法,可达到良好的效果。 4. 工艺原理 泥水平衡式顶管机是利用泥水压力来平衡顶进工作面上的水压力和土压力,采用机械掘进技术。工艺原理为:当接通机头刀盘电动机的电源开关时,刀盘就被驱动并以均匀速度对土体进行切削,刀盘可以根据土压自动前后移动,在顶进中起机械支撑开挖面的作用,维持挖掘面的土压。通过刀盘切削,将相当于管子顶入土壤同体积的泥土进入泥水仓,土将相当于管子顶入土壤同体积的泥土进入机头泥水仓内,由供水管向泥水仓内供水,泥土在泥水仓内与泥水混合成泥浆后,再由排泥管道排到泥浆池,泥浆经沉淀或分离后泥水可重复利用,残渣外运;掘进过程通过调节循环水压力用以平衡地下水压力。在切土、排泥时同步采用等压油缸持续顶进套管,同时通过机头内设置的4处纠偏油缸进行纠偏,在顶进过程中,加注触变泥浆填充管道周围的空隙,形成一道泥浆保护套,起到支撑地层,减少地面沉降,减少顶进阻力的作用。

老桥加固方案2

G207、G353、S233常德沅澧城镇快速干线津市至石门公路改建工程(临澧县段) (A1合同段) 施 工 方 案 工程名称:老桥加固 施工单位:河北北方公路工程建设集团有限公司日期:2017 年 03 月

目录 一、工程简介 (1) 二、施工工艺流程 (1) 三、施工要点 (2) 四、投入设备计划表 (16) 五、人员投入表 (17) 六、施工工期保证体系及保证措施 (17) 七、工程质量管理体系及保证措施 (24) 八、安全生产管理体系及保证措施 (33) 九、文明施工保证体系及保证措施 (44) 十、职业健康安全保障措施 (48) 十一、雨季、夏季高温施工措施 (54) 十二、其他应说明的事项 (58)

老桥加固施工方案 一、工程简介 本合同段共有桥梁2座(均以整幅计);K30+204.671龙池中桥、K30+890.588白鹤小桥;均为老桥改造利用且全部为公路桥梁。二、施工工艺流程

三、施工要点 1、我部采用全国同步顶升系统优秀单位江苏飞耀非常先进4点阵位PLC同步顶升系统,而一联2跨桥梁须4台4点阵位PLC同步顶升系统串联才能进行同步顶升操作。 2、我部采用的千斤顶为江苏飞耀SL-RSM-1000∕150型千斤顶,顶高60㎝,顶升行程40㎝,在千斤顶底部我部使用了千斤顶抗倾覆装置,同时在挡块上安装100㎝高的钢限位装置,防止梁体偏位。 3、我部使用植入全螺纹高强钢螺栓,锚固钢牛腿入桥台或盖梁上。具体检算待施工进行实施性施工组织设计附入。 4、施工操作平台采用钢结构悬挂式操作平台 具体方案如下:在本项目施工中对于桥梁净空高大于5米的,我部计划使用2套钢结构操作平台对桥梁进行桥梁顶升加固作业,如下是我公司荣获专利的钢结构操作平台计算书:桥梁加固工程施工悬挂吊篮钢结构操作平台结构受力计算书 桥梁加固工程施工悬挂钢结构吊篮及横移施工平台结构受力分析,以及对人行道板压力分析: 4.1、悬挂吊篮可根据桥面人行道的宽度安装移动式标准钢构件平车支撑装置,能沿大桥方向前后移动,同时在移动式标准钢构件平车支撑装置下面安装槽钢导轨和铺设松木板,减少移动式标准钢构件平车支撑装置对人行道板局部压强以免破坏人行道板混凝土结构。

热风炉论文解读

“卡鲁金”顶燃式热风炉筑炉施工技术浅析 彭强 摘要热风炉是为高炉提供高温热风的主要附属设备。筑炉专业的施工对确保一代炉龄具有非常重要的作用。本文主要介绍“卡鲁金”顶燃式热风炉筑炉施工技术。 关键词热风炉顶燃式筑炉施工 一、前言 热风炉是高炉的主要附属设备。它是利用高炉煤气燃烧的热量,借助砖格子的热交换作用为高炉提供高温的热风。由俄罗斯KALUGIN公司设计的称为“卡鲁金”顶燃式热风炉。空气、煤气自热风炉顶部的空气支管及煤气支管进入预燃室混合均匀后,在热风炉顶部燃烧。由于热风炉在高温条件下工作,炉料砌筑施工质量要求较高。如:砌缝、泥浆的饱满度,膨胀缝的合理留设等。各种耐火材料之间衔接部位缝隙处理,特别是炉顶、热风口等区域的施工质量对保证炉衬的整体质量至关重要。因此,只有采用科学合理的施工方法,才能达到降低成本、缩短工期、确保质量和安全的目的。 二、施工工艺及质量控制要点 1 施工工艺流程 炉体及各孔洞检查→测量放线→炉体及管道喷涂→炉内墙体第一层砖预砌筑→炉篦子以下墙体及孔洞砌筑→炉篦子以上墙体、孔洞及格子砖砌筑→炉内格子砖上搭设脚手架→拱顶砌筑→预燃室通道及孔洞砌筑→球顶砌筑→拆除炉内脚手架→清扫检查→井架拆除。见附图1;

2 进料方法 (1)炉外水平运输(如附图2),搅拌站与热风炉上料井架之间搭设轻型运输轨道,利用小矿车将耐材推至井架内大提升罐笼。 (2)炉内、外垂直运输(如附图3),利用井架及提升罐笼将耐材从地坪提

升至进料平台。从进料孔用人工传至炉内。 根据炉壳形状特征,进料平台搭设在炉壳直段处,进料平台往上500 mm沿开设进料孔(避开炉壳焊缝不小于150mm,开孔尺寸650*650mm)。待耐火砖砌至进料孔高度后封闭进料孔,焊缝为双面60°剖口焊。 炉外卷扬塔采用4根L160*10角钢制作立柱,3米/段,M16螺栓连接。沿炉壳方向@1500设置90°斜撑([16b槽钢焊接于炉壳)。 进料平台采用φ48*5脚手架钢管搭设,上铺20mm木板。 (3)炉外至炉内进料方式 炉篦子以下从烟气管、冷风管、人孔等孔洞传至炉内。炉篦子至热风口高度从进料平台处开设的进料孔传至炉内。热风口以上利用热风炉上部人孔钢平台从上部人孔传至炉内。球顶最后两环耐材利用炉顶平台用人工传至炉内。 3 炉身大墙与格子砖砌筑 根据炉体的安装中心,从炉顶法兰分中并将该中心利用线锤下放到炉底,与炉体安装结构中进行比较,在规范允许范围内对上下中进行比对调整后确定耐材筒体部分施工十字中心,在设计、施工、业主三方确认该中心线的前提下,定出十字中心线。在砌筑大墙和火井墙前需用泥浆进行找平。圆形大墙炉衬砌筑由炉壳向内,依次是轻质砖、耐火砖,一层一层砌筑,砌筑半径应拉十字中心线进

桥梁顶升施工方案.

桥梁维修加固工程桥梁顶升及支座更换 施 工 专 项 方 案 施工单位: 编制日期:2015年9月15日

目录 一、概述 (2) 二、支座更换部位 (2) 三、编制依据 (2) 四、施工准备 (3) 五、施工部署 (4) 六、施工工艺 (4) 七、顶升注意事项 (6) 八、过程监控 (7) 九、施工安全保证措施 (8) 十、应急预案 (13) 十一、环境保护措施 (21)

一、工程概述 1、该桥为一座东西走向的预应力钢筋混凝土简支梁桥,全长90米,跨径组合为3*30米,全宽21米,由七片小箱梁组成,桥面横坡为2%。该桥下部采用多柱式墩台结构。 二、支座更换部位 施工要求对全桥支座进行更换0号台与3号台支座规格为250x66f4滑板支座,1号、2号墩柱为375x77。本次维修加固产生变形、老化支座全部更换,对全桥支座全部更换。对该桥部分支座垫石开裂的顶升后凿除,凿除后加相应规格及厚度钢板或用灌浆料重新浇筑垫石。 三、编制依据 (2)、《城市桥梁设计规范》(CJJ11-2011) (3)、《城市桥梁抗震设计规范》(CJJ166-2011) (4)、《城市道路工程设计规范》(CJJ37-2012) (5)、《公路工程技术标准》JTG B01-2003。 (6)、《城市桥梁养护技术规范》CJJ99-2003 (7)、《公路桥技术状况评定标准》(JTG/T H21-2011) (8)、《公路桥梁加固设计规范》(JTG/T H22-2008) (9)、《公路污工桥涵设计规范》(JTG D61-2005) (10)、《公路桥涵地基与基础设计规范》(JTG D63-2007) (11)、《公路桥涵设计通用规范》(JTJ004-89) (12)、《公路圬工桥涵设计规范》(JTG D60-2004)

炼铁厂顶燃式热风炉改造结构设计

炼铁厂顶燃式热风炉改造结构设计 【摘要】本文以邯钢炼铁部4号1080m3高炉热风炉大修工程为对象,对热风炉炉壳、基础、吊车钢架以及相关平台的改造计算设计作了介绍,为钢铁厂相似工程的设计提供了经验。 【关键词】热风炉;改造;结构;应力;设计 1.前言 热风炉的基本作用就是将高炉鼓风加热,使高炉鼓风携带尽可能多的物理热进入高炉,从而达到降低燃烧比,实现高炉稳定顺行的目的.热风炉分为蓄热室和燃烧室,煤气和空气在燃烧室混合后燃烧,将热量传给蓄热室的格子砖,高炉鼓风通过格子砖时将热量带进高炉。顶燃式热风炉蓄热室设在直段筒体内,燃烧室设在拱顶,燃烧器在热风炉拱顶处燃烧。本次改造采用新型燃烧器,以提高风温.改造后拱顶加高约7.65米,基础荷载增加约5100KN,设计时必须对热风炉基础和热风炉下部炉壳进行核算,以确定是否可以利旧。这是顶燃式热风炉改造结构设计的关键,决定着本次改造方案是否可行。另外,随着拱顶温度的增加,晶间应力腐蚀加大,结构设计时,必须采取相应的措施。 2.概况 邯钢炼铁部4号1080m3高炉热风炉系统,原配置3座首钢式顶燃热风炉,燃烧系统配置两台套筒燃烧器。目前热风出口与燃烧器附近存在炉皮开焊、掉砖发红现象,热风温度不理想。简单的进行拱顶大墙的修复不能改变套筒燃烧器的缺陷,为以后生产留下隐患。要想延长热风炉寿命,实现高炉强化冶炼、降低焦比、持续高风温,只有改变热风炉的结构形式,同时热风炉若要进一步发展、完善,必须彻底改变燃烧器的结构形式,使用高效节能的多火孔陶瓷燃烧器。为此,本次改造将热风炉型式改为“改进型”顶燃式热风炉。 3.改造内容 热风炉系统由顶燃式热风炉炉壳、管道、栈桥、管道支架、平台组成。改造后,热风炉上部拱顶形状彻底改变,上部炉壳、顶部吊车钢架及平台需改造;热风炉荷载增加,热风炉基础需核算。 3.1热风炉炉壳改造 热风炉炉壳由直筒壳体及拱顶壳体两大部分构成。直筒部与埋入基础混凝土的结构螺栓相连接,直接座落混凝土基础上。本次改造保留热风炉34.568m以下的炉壳,34.568m至38.8m之间的炉壳拆除。热风出口和两个燃烧口部位炉壳钢板更换。根据工艺要求,热风炉增高至46.45米,并分别在标高43.44米和41.62米设空煤气入口。

桥梁顶升方案

K1613+452(1*10m)丰塘村分离式桥 顶升施工方案 一:编制依据 1、依据桥梁维修加固设计图纸(湖南省交通规划勘察设计院); 2、依据我部编制的总体施工组织设计; 3、依据本公司现有的技术力量及以往的成功经验; 4、依据现场调查的实际情况。 二:编制原则 1、遵照国家现行的技术规范与标准。 2、充分发挥我公司专业优势,做到依靠科技,精心组织,合理安排,做到施工方案最优化,确保顶升过程中结构的稳定与安全。 3、合理优化施工方案,尽量减小路面施工影响。 4、重视环境保护及文明施工,严格控制弃渣、噪音等污染。 三:工程概况 K1613+452丰塘村分离式桥为1*10m钢筋砼空心板梁桥,设计为预制安装,根据现场调查结果为现浇钢筋混凝土结构。桥梁全长22、4m,半幅桥面净宽12、5m,总宽度13、5m+1、0m+13、5m。 本桥与路面街接方案为顶升桥梁上构30cm,桥面铺装方案为:全部破除原桥面铺装,空心板铰缝进行注浆封闭并在桥面植筋并布置钢筋网后,重新浇筑C40混凝土桥面,铺装层重新浇筑后,桥面加铺〈1cm的路面环氧覆层。 主梁及桥台存在的表面缺陷采用常规修补法处理,混凝土表面裂纹采用环

氧砂浆或壁可法进行封闭。 四:现场调查的情况 根据开工前的现场调查,本桥桥下为机耕道路兼排水沟,车流量较小。中央分隔带处有通迅电缆,电缆支架固定在左右幅桥护栏上,左幅桥梁顶升前需要将电缆支架割除并将电缆临时固定在右幅桥梁上。桥台面与梁底高度3~5cm,如采用桥台作为千斤顶反力支座,需要采用超薄型千斤顶。顶升施工时需封锁桥下机耕道路二天。 五:顶升高度的计算 原设计图中只提供了本桥顶升高度为30cm的数据,考虑到本工程工期紧,前期我部已将D299*7、5mm预制钢管支座垫石按30cm顶升高度进行了制作。 于2012年5月18日收到设计院下发的2012-104号工作联系单,补充了顶升桥梁的高程设计表。我部收到此文件后,对桥梁的原桥面标高进行了实地测量,根据实测结果计算出桥梁实际顶升高度如下: 0号桥台顶升高度=69、204-0、01-68、897=0、297m 1号桥台顶升高度=69、309-0、01-68、991=0、308m 根据以上计算的顶升高度,K1613+452丰塘村分离式桥实际顶升高度与原设计顶升高度差均在1cm内,可利用已预制好的钢管支座垫石。

红钢3号高炉Kalujin顶燃式热风炉技术装备特点

红钢3号高炉K al uji n 顶燃式热风炉技术装备特点 * 林安川 (红河钢铁有限公司,云南 蒙自 661100) 摘 要:对红钢3号高炉配套的Kal u jin 顶燃式热风炉技术装备特点进行了详尽的分析和介绍。 关键词:炼铁;高炉;顶燃式热风炉;技术装备 中图分类号:TF066 文献标识码:A 文章编号:1006-0308(2009)06-0026-04 Technology and Equip m ent Features of K aluji n Top Co m bustion H ot A ir Stove on No 3B last Furnace i n H onghe Iron&Steel Co . LIN An-chuan (H onghe Iron &S tee l Co .,M engzh,i Yunnan 661100,Ch i n a) ABSTRACT :Tec hno l ogy and equ i p m ent f eatures of Kal u ji n t op co m busti on hot air stove on No 3blast f u rnace i n H onghe Iron & S t eelC o .are analysed and i n troduced i n detai.l KEY WORDS :iron m ak i ng ;b l ast f u rnace ;top combusti on hot air stove ;techno l ogy and equ i p m ent 1 前 言 高炉热风炉分为内燃式、外燃式、顶燃式、传统型内燃式热风炉及改造型内燃式热风炉。当风温水平达到1000 以上时,传统型内燃式热风炉会 发生拱顶裂缝、火井倾斜、倒塌、掉砖,甚至短路等现象,不但风温水平下降,也使热风炉寿命大大缩短;而外燃式热风炉存在占地面积大、投资高及砖型较多、气流分布相对较差的缺点;改造型内燃式热风炉存在火井结构不稳定、燃烧效率不高的不足,风温水平难以超越1100 以上。 昆钢红河钢铁有限公司(以下简称:红钢)1号、2号高炉配置的热风炉为球式热风炉,年平均风温1002 ,耐火球使用寿命短,风温水平不高。高效地提高高炉使用风温,是满足高炉炉缸热平衡、达到炉缸热量充沛均匀、活跃的直接手段,在能源日趋紧张的今天,国内外炼铁增产降耗节能采用的技术主要是富氧大喷煤,而高风温是富氧大喷 煤的必要条件。 红钢3号高炉设计有效容积为1350m 3 ,计划在2号高炉西侧空地上建设,设备布置十分紧凑。红钢无焦炉,烧炉使用单一的高炉煤气;再考虑到设备投资,为3号高炉配置俄罗斯K alujin 顶燃式热风炉。该热风炉使用高炉煤气烧炉,拟通过提高耐火材料的质量,改进热风炉的设备、结构,采用高效格子砖,增加蓄热面积,预热助燃空气,改进环形燃烧器煤气和助燃空气的供给方式,使用涡流喷射装置提高燃烧效率,使热风炉实行自动控制等技术措施,达到热风炉各部位结构稳定、实现空气、煤气的最佳混匀燃烧,提高热风炉拱顶温度,最终实现热风炉高风温、长寿。 2 Ka l u jin 顶燃式热风炉内型结构特点 Ka l u ji n 顶燃式热风炉是一种新型高效节能型热风炉。具体结构包括:较为独特的炉壳外型,拱顶选用受力结构很好的悬链线拱顶,高效陶瓷燃烧 26 * 收稿日期:2009-06-02 作者简介:林安川(1973-),男,云南文山人,高级工程师。

卡卢金热风炉的工业应用_1000002042331711

2012年第5期世界钢铁 櫬櫬櫬櫬櫬櫬毬毬 毬 毬 其他卡卢金热风炉的工业应用 王长春 (北京天启金桥冶金设备技术有限公司,北京100054) 摘要:卡卢金热风炉是一种现代蓄热式高炉热风炉。相对于内燃式和外燃式热风炉而言,卡卢金顶燃式热风炉淘汰了传统意义上的燃烧室(俗称“燃烧井”),被称为“无燃烧井”热风炉,又叫“顶燃式热风炉”,真正实现了高炉煤气的充分燃烧和高风温的目标。该炉凭借其高风温、低投资、长寿命的特点,已经成为炼铁行业中广泛应用的热风炉之一。独立的设计和技术服务使其在世界范围内赢得了高品质的称赞。使用20mm 孔径格子砖的热风炉已经成为新一代卡卢金热风炉的标志。从高炉热风炉的发展史, 技术改革等方面,阐述了卡卢金热风炉在燃烧器设计,格子砖技术,炉箅子结构,余热利用等方面的优势,并介绍了在中国和国际市场的应用业绩。关键词:高炉;热风炉;送风风温;格子砖doi :10.3969/j.issn.1672-9587.2012.05.012 Application of Kalugin ’s shaftless hot stove WANG Changchun (Beijing Golden Bridge Metallurgical Equipment &Technical Co.,Ltd.,Beijing 100054,China )Abstract :The Kalugin ’s shaftless hot stove (KSS )is a kind of modern heat accumulating type blast stove.Comparing with both hot-air stoves with internal combustion chamber and external combustion chamber , the KSS eliminates combustion chamber (known also as the “shaft ”in the conventional sense ),and has been named “shaftless stove ”,also known as “dome combustion stoves ”.Full burning of blast furnace (BF )gas and higher hot blast temperature have been achieved by KSS.Therefore , KSS becomes one of the best widely used blast stove depending on its advantages of high blast temperature ,low investment and long life in ironmaking industry.The independent design and technical services of KSS make it win the praise of high quality in the worldwide.KSS with 20mm pore diameter checker bricks has become a symbol of new generation.The thesis presents history of hot blast furnace ,the technical and structural innovation of burner design , checker brick ,checker supporting grid ,waste heat utilization ,and the achievements in China and international market. Key words :BF ;blast stove ;blast temperature ;checker 前言 在中国,自从第一座卡卢金热风炉2002年投产以来,截止到2012年5月统计,总共有198座卡卢金热风炉已经建成运行或正在建设中,其中 在中国是107座,包括已经投产的5500m 3 高炉、 正在建造中的4747m 3 、 4350m 3和4150m 3高炉上使用的卡卢金热风炉等项目;在中国以外的 市场共计91座,有俄罗斯北方钢厂5500m 3 高 炉、在日本JFE 公司5000m 3 高炉上已经投产使用的卡卢金热风炉等。 因为卡卢金热风炉的出现,在中国新建高炉热风炉的送风风温平均提高了50 100?,内燃式热风炉逐渐退出中国市场, 在俄罗斯、乌克兰、哈撒克斯坦等市场的情况也是如此。 1 热风炉发展的历史 钢材是一种最常见的金属结构材料,矿石经过高炉冶炼成生铁,钢则是由生铁冶炼而成。蓄热式热风炉仍然是目前炼铁领域最先进、最常见的热风炉形式。 · 56·

顶管施工工艺流程

顶管施工工艺流程文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

顶管施工工艺流程 顶管施工就是非开挖施工方法,是一种不开挖或者少开挖的管道埋设施工技术。顶管法施工就是在工作坑内借助于顶进设备产生的顶力,克服管道与周围土壤的,将管道按设计的坡度顶入土中,并将土方运走。一节管子完成顶入土层之后,再下第二节管子继续顶进。其原理是借助于主顶油缸及管道间、中继间等推力,把工具管或掘进机从工作坑内穿过土层一直推进到接收坑内吊起。管道紧随工具管或掘进机后,埋设在两坑之间。 本工程顶管均采用泥水平衡顶管机进行施工,顶管施工的具体流程如下图 顶管施工工艺流程图 下 一 段 顶 管 施 工

1顶进设备的选用 顶进设备主要包括千斤顶、高压油泵、顶铁、顶管机及排浆设备等。 千斤顶是掘进顶管的主要设备,考虑到为避免千斤顶故障而影响工程进度,故采用两套设备。千斤顶在工作坑内的布置采用两台并列式,顶力合力作用点与管壁反作用力作用点应在同一轴线防止产生顶时力偶,造成顶进偏差。根据施工经验,顶管上半部管壁与土壁有间隙时,千斤顶的着力点作用在管子垂直直径的1/4~1/5处为宜。 高压油泵由电动机带动油泵工作,选用额定压力为62Mpa的ZB-500塞泵,经分配器,控制阀进入千斤顶,各千斤顶的进油管并联在一起,保证各千斤顶活塞的出力和行程。 顶铁是传递和分散顶力的设备。要求它能承受顶压力而不变形,并且便于搬动。根据顶铁位置的不同,可分为横顶铁、顺顶铁和U形顶铁三种。本工程采用U形顶铁形式。顶进设备布置图如下: 2设备安装 顶管设备选定后即开始安装设备,在安装前必须测量好顶管轴线,设备机身托架采用钢结构,在安装时严格控制轴线与高差,轴线控制在3mm以内,高差控制在0~+3mm以内,两轨内距±2mm。在安装调平时确定砼后靠背的位置,后靠背采用40mm厚钢板,砼采用商品砼,后靠背的砼厚度宜控制大于40cm。之后将工具头下到导轨上,就位以后,装好顶铁,连接好各系统并检查正常后,校测工具头水平及垂直标高是否符合设计要求,合格后即可顶进工具头,然后安放混凝土管节,再次测量标高,核定无误后,开动工具头进行试顶,待调整好各项参数后即可正常顶进施工。

桥梁顶升施工工法

顶升施工工法 编制人:朱加良 编制单位:长春南环项目 编制时间:2011年10月4日

顶升施工工法 1 前言 我国公路建设发展迅速,我国公路建设,尤其是高速公路的大规模建设经历了十多年来的发展已取得了显著的成绩,目前有的高速公路已进入大、中修期。每年都有相当数量桥梁需要维修。随着桥梁的使用,部分桥梁的支座已经老化或损坏,需要更换;随着现代交通要求,部分桥梁的桥下净空已不满足通行要求,需要加高。整体抬升是一种即经济又快捷的施工方式,现根据长春至四平高速长春至半截沟段改建工程02合同段施工过程总结出桥梁顶升施工工法。 2 工法特点 对桥梁更换支座及抬升是一种即方便又快捷的施工方法。 节约资源、降低成本,具有显著的经济、社会和环境效益。 3 适用范围 本工法适用于桥梁整体加高及更换支座。 4 工艺原理 采用同步顶升,循环顶升,直至顶升高度达到要求。种植钢筋,回落梁体。利用原桥桥台作为支撑。 5 施工工艺流程 本工法工艺流程见图。 操作要点 5.2.1 顶升准备 (1)背墙及连续凿除

在顶升前凿除背墙及梁与背墙之间的填充物,保证梁与背墙不在连续。多孔的两孔间的梁不在连续。 (2)支架搭设 ①桥台护坡脚手架搭设 支架搭设位置为两侧护坡中间平台至桥台及梁底,平台宽度满足油泵、材料、工作人员操作的要求,支架稳固。施工脚手架搭设满足安全可靠,便于施工操作,人员上下方便等原则,脚手架采用门式脚手架和木跳板,步高、步距均不大于1.2m和1.7m,视脚手架高度考虑搭设稳定斜撑,确保施工操作人员在施工过程中脚手架不晃动。 桥台处支架搭设布置图 ②桥墩脚手架搭设 支架搭设位置为桥墩两侧及梁底,预留施工高度,平台宽度满足材料、工作人员操作的要求,支架稳固。施工脚手架搭设满足安全要求,同时便于施工操作,人员上下方便等原则,脚手架采用门式支架和木板搭设,步高、步距均不大于1.2m和1.7m,视脚手架高度考虑搭设稳定斜撑,确保施工操作人员在施工过程中脚手架不晃动。

高炉热风炉介绍.

一、高炉热风炉结构与性能简介 热风炉顾名思义就是为工艺需要提供热气流的集燃烧与传热过程于一体的热工设备,一般有两个大的类型,即间歇式工作的蓄热式热风炉和连续换热式热风炉。在高温陶瓷换热装置尚不成熟的当今,间歇式工作的蓄热式热风炉仍然是热风炉的主流产品。蓄热式热风炉为了持续提供热风最起码必须有两座热风炉交替进行工作。热风炉被广泛应用在工业生产的诸多领域,因工艺要求不同、燃料种类不同、热风介质不同而派生出不同用途与不同结构的热风炉。这里要介绍的是为高炉冶炼提供高温热风的热风炉,且都是蓄热室热风炉,因其间歇式的工作方式,必须多台配合以实现向高炉连续提供高风温。 1.1高炉热风炉的分类 高炉热风炉从结构可以分为外燃结构的热风炉和内燃结构的热风炉两个大类,前者是燃烧室设置在蓄热室的外面,而后者是燃烧室与蓄热室在一个结构里面。在内燃结构的热风炉中因燃烧室与蓄热室之间的相对位置不同而分成顶燃式(燃烧室放置在蓄热室上部)热风炉和侧燃式(火井燃烧室与蓄热室并行放置)热风炉,通常我们也将侧燃式热风炉称为一般意义上的内燃式热风炉,因而在目前使用的热风炉中主要是外燃式热风炉、内燃式热风炉和顶燃式热风炉。在这三种典型的热风炉中,外燃式热风炉结构最复杂而材料用量大,故实现结构稳定和提高风温的技术要求也就较高;而内燃式热风炉的火井墙结构稳定性差、且存在燃烧震荡、热风温度不易提高等问题;至于顶燃式热风炉,因其结构简单而材料用量少,也便于高风温实现。因此,随着热风炉技术的发展,顶燃式热风炉正在逐步取代内燃式热风炉和外燃式热风炉而成为热风炉的主流产品。在顶燃式热风炉中,随着卡鲁金旋流分层混合燃烧技术的应用,与该技术相适应的带旋流混合预燃室的顶燃式热风炉得到了人们的普遍认同,逐步成为顶燃式热风炉中的主流产品。 A 、外燃式热风炉 B 、内燃式热风炉 C 、1型顶燃式热风炉 D 、1型顶燃式热风 炉 E 、3型顶燃式热风炉 F 、3型顶燃式热风炉

热风炉操作规程

热风炉工艺操作规程 1.热风炉系统 1.1 旋切顶燃式热风炉特点 高炉热风炉系统配备三座旋切顶燃式高效格子砖热风炉。旋切式顶燃热风炉是近年开发的新一代高风温、高效率、长寿命热风炉技术。与其他类型顶燃式热风炉相比,同等条件下可提高风温50℃以上,热效率提高 5%~10%,预期寿命可达到 25 年以上。 旋切式顶燃热风炉燃烧器主要由煤气环道、煤气喷口、空气环道、空气喷口、混合室、喉口等几部分组成。煤气通过切向喷口喷入燃烧器混合室,并在混合室内圆柱面导向作用下,形成向下运动的管状旋流。助燃空气则沿径向喷口喷入燃烧器混合室,向煤气管状旋流的中心切入,对煤气管状旋流形成有效地切割,与煤气发生强烈混合,混合物瞬间从燃烧器喉口喷出,进入燃烧室燃烧,这就是旋切式顶燃热风炉燃烧器“旋切”工作原理。旋切式燃烧器煤气喷口和空气喷口均为水平布置,空气喷口距离煤气喷口较远而且靠近喉口。由于煤气喷口与空气喷口距离较大,保证煤气管状旋流形成,有利于空气穿透。空气喷口距离喉口很近,保证了煤气与空气混合的瞬间从喉口喷出,并进入燃烧室燃烧。旋切式顶燃热风炉燃烧器只起到组织气流的作用,煤气和空气在燃烧器喉口部位一次完成混合,并瞬间从喉口喷出进入燃烧室燃烧,燃烧器内部并无火焰,这是旋切式顶燃热风炉燃烧器的显著特点,也是与其他类型顶燃式热风炉燃烧器根本区别。旋切式燃烧器煤气和空气无预混,混合燃烧一次完成,避免了预混预燃产生的烟气与未燃煤气和空气掺混而阻碍煤气与空气进一步混合,避免了未燃煤气和空气燃烧条件恶化。旋切式燃烧器煤气与空气混合充分,保证很小空气过剩系数下煤气燃烧完全。 旋切式顶燃热风炉使用小孔径高效格子砖,具有良好的热工性能。热风炉换热面积增加,改善了热风炉热交换条件,可以缩小拱顶温度与热风温度的差值,在相同拱顶温度条件下,可获得更高的风温。旋切式顶燃热风炉其差值在 100—140℃之间,而传统热风炉该差值约 150—200℃。较低拱顶温度还可显著减少 NOx 生成,更有利于避免发生炉壳晶间应力腐蚀。由于三十七孔格子砖活面积增加,同等蓄热室断面积时气体流速略有降低,所以采用三十七孔格子砖的热风炉阻力损失并不会增加。 旋切式顶燃热风炉采用三段式砌体结构,包括热风炉炉体三段式砌体结构和蓄热室格子砖三段式砌体结构。热风炉炉体从上到下依次为燃烧器、燃烧室和蓄热室三段。三段砌体采用完全脱开的迷宫式连接,各段砌体可以自由伸缩,避免各段砌体膨胀相瓦影响。圆周方向为完全对称结构,不存在外燃热风炉拱顶联络管或内燃热风炉火井大墙等非对称结构,从根本上消除了由于非对称结构造成不均匀膨胀而引起的破坏。热风出口位于燃烧室直段部位,热风出口组合砖与燃烧室锥顶拱脚砖分开处理,消除了燃烧室锥顶的薄弱环节。另外热风出口与燃烧室砖托距离较小,燃烧室大墙砌体热膨胀上涨量很小,不会对热风出口造成剪切破坏。旋切式顶燃热风炉蓄热室格子砖从上到下依次采用低蠕变格子砖、高铝砖和粘土砖三段式结构。在蓄热室中间设置一段安全温度更高的高铝砖,可以保证热风炉操作大幅

市政道路下穿绕城高速公路顶推施工工艺

市政道路下穿绕城高速公路顶推施工工艺 摘要:结合石化大道下穿绕城高速公路工程实践,介绍了下穿绕城高速施工工程规模、施工组织,重点阐述了下穿高速公路箱体顶推施工工艺过程及工程控制措施,对顶进施工滑板后靠填土力进行验算,以积累经验供类似工程参考。 关键词:市政道路,下穿绕城高速,顶推,施工工艺 1、工程简介 石化大道(西绕城—上林苑)市政道路是西安沣渭新区全力打造西安国际化大都市路网建设的重要组成部分。石化大道道路全长1819.691米,通道桥起点桩号K1+341.572,终点桩号K1+388.572,长47米,宽37.1米。箱体采用预制顶进的方式进行施工,桥顶板、底板厚为1米,机动车道之间及机动车道与非机动车道之间侧壁厚度为1米,两边侧壁厚度为0.8米。通道桥分为两段,长度分别为22米、25米,两段之间设一道2cm变形缝。工程所处地区地质条件不佳,施工地段所处位置地基主要为砂层,基坑开挖极易造成塌方;半幅单侧通道桥各种6002吨、6769吨,箱体施工定位精度要求高,顶进过程中控制难度大。 2、施工方案 2.1 总体施工顺序及规划 总体施工顺序为:首先进行临时设施建设场地平整、基坑开挖及顶进箱体预制等,同时在顶进箱涵预制及养生阶段做好箱体顶进的准备工作,即开挖高速路两侧土钉墙锚喷支护、顶进线路的加固等工作;两侧箱涵分段预制,逐段施工,半幅箱涵顶进就位后,及时进行三角区回填,恢复半幅高速公路;接着进行另外半幅箱涵顶进施工及高速公路恢复施工。 2.2 土钉墙锚喷支护施工 按设计要求通道涵基坑挖深7.2米,基坑两侧支护选用土钉墙锚喷支护。土钉墙布置采用1.2m×1.2m梅花形布置,土钉墙采用Φ28螺纹钢,面筋采用φ10盘圆@20×20cm,加强筋采用2Φ18,土钉长度正面布置由上到下为:12米2层,20米4层,18米1层,共7层;侧面土钉长度由上到下为:12米2层,15米3层,12米1层,9米1层共7层;成孔直径φ130mm,倾角均向下15°。 根据现场地层情况,(第一、二、三、四、五排)采用机械进行土钉成孔工艺,根据《岩土工程勘察报告描述六、七层土钉地层以粉细砂、中砂、中粗砂》

旋切式顶燃热风炉技术特点

旋切式顶燃热风炉技术特点 姜凤山 (中冶京诚工程技术有限公司) 摘要:对旋切式顶燃热风炉的技术特点进行了总结。实践表明,该热风炉结构合理,在同等条件下可提高风温50℃以上,热效率提高5%~10%,预期寿命可达到25年以上。 关键词:热风炉顶燃式燃烧器格子砖 旋切式顶燃热风炉是近年来中冶京诚研制开发的新一代高风温、高效率、长寿命热风炉技术。旋切式顶燃热风炉集成了卡鲁金顶燃式热风炉、新日铁外燃式热风炉和霍戈文内燃式热风炉的优点,并通过大量试验研究,如计算机仿真、全炉模型冷态模拟测试、热态运行测试等,围绕高风温、长寿、和节能环保等技术进行了系统性创新和提高。目前,已有8项国家专利和2项经冶金建设协会认定的专有技术,拥有完全自主知识产权。旋切式顶燃热风炉与其他类型顶燃式热风炉相比,同等条件下可提高风温50℃以上,热效率提高5%~10%,预期寿命可达到25年以上。 1燃烧器 旋切式顶燃热风炉燃烧器主要由煤气环道、煤气喷口、空气环道、空气喷口、混合室、喉口等几部分组成。煤气通过切向喷口喷入燃烧器混合室,并在混合室内圆柱面导向作用下,形成向下运动的管状旋流。助燃空气则沿径向喷口喷入燃烧器混合室,向煤气管状旋流的中心切入,对煤气管状旋流形成有效地切割,与煤气发生强烈混合,混

合物瞬间从燃烧器喉口喷出,进入燃烧室燃烧,这就是旋切式顶燃热风炉燃烧器“旋切”工作原理。 旋切式燃烧器煤气喷口和空气喷口均为水平布置,空气喷口距离煤气喷口较远而且靠近喉口。由于煤气喷口与空气喷口距离较大,保证煤气管状旋流形成,有利于空气穿透。空气喷口距离喉口很近,保证了煤气与空气混合的瞬间从喉口喷出,并进入燃烧室燃烧。旋切式顶燃热风炉燃烧器只起到组织气流的作用,煤气和空气在燃烧器喉口部位一次完成混合,并瞬间从喉口喷出进入燃烧室燃烧,燃烧器内部并无火焰,这是旋切式顶燃热风炉燃烧器的显著特点,也是与其他类型顶燃式热风炉燃烧器根本区别。旋切式燃烧器煤气和空气无预混,混合燃烧一次完成,避免了预混预燃产生的烟气与未燃煤气和空气掺混而阻碍煤气与空气进一步混合,避免了未燃煤气和空气燃烧条件恶化。 旋切式燃烧器煤气与空气混合充分,保证很小空气过剩系数下煤气燃烧完全。国丰5号高炉旋切式顶燃热风炉实际抽测表明大范围改变空气过剩系数,烟气中的没有检测到CO。经检测八钢新区A 高炉旋切式顶燃热风炉废气O2含量在0.3%时。CO含量小于0.03%[1]。而常规热风炉一般在燃烧较好的情况下,废气废气O 0.3% 2含量 时,CO含量0.3%[2]。废气O2含量0.3%相对应的空气过剩系数约1.03,说明旋切式顶燃热风炉燃烧器燃烧性能良好,在1.03空气过剩系数可以保证燃烧完全。计算表明,其他条件不变,过剩空气系数由1.10降低到1.03,燃烧温度可提高20℃。

顶管施工工法及其掘进机械

顶管施工工法及其掘进机械1 魏昌斗1,杜长春2 1宁波市镇海区镇海新城管理委员会(315202) 2浙江省工程勘察院(315010) E-mail:zjawei@https://www.doczj.com/doc/d317371339.html, 摘要:本文对目前国内市政工程施工中所遇到的各类顶管施工工法进行了总结归纳分类,介绍了各类顶管施工工法的施工工艺及相应的机械设备;给出了各类顶管施工工法及相应掘进机械的适用土质条件,并在推进速度、耗电量、劳动力和环境影响方面进行了比较分析。关键字:顶管施工工法掘进机械 1 顶管施工工法的优点 1.1在城区内进行相关管道工程施工,如果地下水不是十分丰富且管道埋深较浅的情况下采用开挖式敷设管道比较经济。但是也存在一些问题,如施工噪音较大、容易阻碍交通、容易引起地面沉降等。 1.2非开挖顶管施工采用油压驱动,施工时噪音远远小于开槽式敷设管道,几乎没有地面沉降的现象,对周围的影响降低到最小程度。而且在较深的埋深情况下施工成本要小于开槽式敷设管道。 1.3在施工穿越中小型河流相关管道时,如采用顶管施工,不仅不需要花巨资截断河流,而且施工速度快、不影响河流通行。 1.4顶管施工工法的优点[2]: ⑴无需隔断交通; ⑵噪音以及震动都很小; ⑶可以在很深的地下敷设管道; ⑷可以安全地穿越铁路、城市道路、河流和地下管廊; ⑸对施工周围的影响很小; ⑹可以穿越障碍物。 2 顶管施工工法分类 根据顶管施工工法掘进机的密闭条件,将目前国内所采用的顶管施工工法划分为开放型施工工法和密封型施工工法两大类。前者即为通常所说的“土顶”,又叫刃口式推进工法,后者分为泥水式推进工法、土压式推进工法、泥浓式推进工法三类],如图2.1所示。 3 顶管施工常见土质分类 根据顶管施工特点,将常见的土质进行如下分类:

桥梁顶升施工工法

顶升施工工法编制人:朱XX 编制单位:XX 南环项目 编制时 间: 20XX年10月4日

顶升施工工法 1前言 我国公路建设发展迅速,我国公路建设,尤其是高速公路的大规模建设经历了十多年来的发展已取得了显著的成绩,目前有的高速公路已进入大、中修期。每年都有相当数量桥梁需要维修。随着桥梁的使用,部分桥梁的支座已经老化或损坏,需要更换;随着现代交通要求,部分桥梁的桥下净空已不满足通行要求,需要加高。整体抬升是一种即经济又快捷的施工方式,现根据XX至四平高速 XX至半截沟段改建工程02合同段施工过程总结出桥梁顶升施工工法。 2工法特点 2.1对桥梁更换支座及抬升是一种即方便又快捷的施工方法。 2.2节约资源、降低成本,具有显著的经济、社会和环境效益。 3适用范围 本工法适用于桥梁整体加高及更换支座。 4工艺原理 采用同步顶升,循环顶升,直至顶升高度达到要求。种植钢筋,回落梁体利用原桥桥台作为支撑 5施工工艺流程及操作要点 5.1施工工艺流程 本工法工艺流程见图。 回落梁体

5.2 操作要点 521 顶升准备 (1)背墙及连续凿除 在顶升前凿除背墙及梁与背墙之间的填充物,保证梁与背墙不在连续。多孔的两孔间的梁不在连续。 (2)支架搭设 ①桥台护坡脚手架搭设 支架搭设位置为两侧护坡中间平台至桥台及梁底,平台宽度满足油泵、材料、工作人员操作的要求,支架稳固。施工脚手架搭设满足安全可靠,便于施工操作,人员上下方便等原则,脚手架采用门式脚手架和木跳板,步高、步距均不大于 1.2m和1.7m,视脚手架高度考虑搭设稳定斜撑,确保施工操作人员在施工过程中脚手架不晃动。 桥台处支架搭设布置图 ②桥墩脚手架搭设 支架搭设位置为桥墩两侧及梁底,预留施工高度,平台宽度满足材料、工作人员操作的要求,支架稳固。施工脚手架搭设满足安全要求,同时便于施工操作,人员上下方便等原则,脚手架采用门式支架和木板搭设,步高、步距均不大于1.2m和1.7m,视脚手架高度考虑搭设稳定斜撑,确保施工操作人员在施工过程中脚手架不晃动。

相关主题
文本预览
相关文档 最新文档