当前位置:文档之家› 金属材料的强度水平

金属材料的强度水平

金属材料的强度水平
金属材料的强度水平

金属材料的强度水平

金属物理研究指出:金属材料的理论强度,大约为其弹性模数E的1/5。铁基合金的弹性模数为200000MPa,所以它的理论强度应达到40000MPa的水平。但是目前实际使用的金属材料的强度水平高的是上千MPa,一般的则只有几百MPa。与理论强度相比,要低两个数量级。

金属材料的实际强度之所以低,其主要原因在于金属材料是由多晶体组成,并且在晶体中存在着诸如位错、空穴、间隙原子等缺陷所致。晶体缺陷的存在,对金属材料的机械性能、物理性能、化学性能都有显著的影响。

从理论上讲,提高金属材料的强度有两个方向:

一是消除晶体缺陷,如制作晶须。晶须被认为是无缺陷的完整晶体,其强度可以接近理论强度。这一方面的工作,由于宇宙航行的需要,如碳晶须,硼晶须等已在使用。人们所能制造的晶须是很小的,如果大了,晶体中的缺陷就多了。小晶须可以用粘结剂粘结成复合材料。宇宙航行方面要求材料有很高的强度,

高的弹性模数,重量又要轻,尽管用晶须制成的复合材料成本高,但可以满足宇航上对高强度的要求。

对一般工业来说,我们提高强度所走的是另一个方向、另一条道路,这就是利用晶体缺陷。实际上我们的合金化、热处理,包括弥散强化、时效、冷变形强化等都是利用晶体缺陷以提高金属材料的强度的。在国外,对某些材料的位错密度已被列入有关的规范之中。

当前,一般使用的金属材料的强度水平是:

高强度冷拉高碳钢丝——5000MPa;

某些具有贝氏体稳定区的合金钢,经低温形变热处理,然后再经冷变形时效(可制成棒材、板材),其强度可达——4000MPa;

基体钢——3000MPa;

高镍马氏体时效钢,低中合金的超高强度钢(如30CrMnSiNi,40CrNiMo等等),其强度水平可达——2500MPa;

低碳马氏体、下贝氏体、中碳钢经淬火+低中温回火,其强度水平可达——2000MPa。

球墨铸铁等温淬火后,强度水平可达1000MPa;

90-2球墨铸铁正火状态,强度水平可达900MPa;

40MnB的强度水平可达2000MPa;

合金低碳马氏体的强度水平最高可达1800MPa;

中碳钢经高频淬火后,疲劳强度可达600MPa;

弹簧钢淬火+中温回火后进行喷丸处理,疲劳强度可达700MPa;

中碳钢淬火+低温回火后进行滚压强化,疲劳强度可达800MPa。

由上述可知,金属材料的强度水平不仅可以提高,而且也有提高强度的充分手段。现在的问题是,我们必须打消在提高金属材料使用强度水平上,存在的顾虑。主要顾虑是:强度提高了,材料的塑性和冲击韧性降低,是否能保证机件安全可靠?这是一个严肃的科学问题,必须认真对待。经过科学工作者的长期研究,已经圆满地解决了这个难题。从而,为进一步发挥金属材料的潜在性能,奠定了可靠基础。

参考文献:1、西安交通大学周惠久教授〈材料强度研究及应用〉;2、上海材料所、西安交大主编

〈金属材料强度〉。

机械专业基础知识--金属屈服强度、抗拉强度、硬度知识

机械专业基础知识--金属屈服强度、抗拉强度、硬度知识 [日期:2005-03-28编] 来源:Jackyc 原创文稿作者:陈俊光 [字体:大中小] 钢材机械性能介绍 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡 =N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。 4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个支持角120°的金刚石圆锥体或直径为1.59、3.18mm的钢

金属材料强度理论

强度理论在加工硬化中的应用 强度理论在锻压方向的主要应用是加工硬化 加工硬化的机理: (1)三种单晶体金属的应力应变情况 1,面心立方金属形变强化能力远大于其他金属。2,随着应变增大,面心立方金属经历弱的变形强化阶段后,发生强的形变强化,随后形变强化能力减弱。3,体心立方的金属和密排六方金属初始弱形变强化阶段长度大于面心立方金属。

金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。又称冷作硬化。产生原因是,金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力等。加工硬化的程度通常用加工后与加工前表面层显微硬度的比值和硬化层深度来表 加工硬化 示。 加工硬化给金属件的进一步加工带来困难。如在冷轧钢板的过程中会愈轧愈硬以致轧不动,因而需在加工过程中安排中间退火,通过加热消除其加工硬化。又如在切削加工中使工件表层脆而硬,从而加速刀具磨损、增大切削力等。但有利的一面是,它可提高金属的强度、硬度和耐磨性,特别是对于那些不能以热处理方法提高强度的纯金属和某些合金尤为重要。如冷拉高强度钢丝和冷卷弹簧等,就是利用冷加工变形来提高其强度

和弹性极限。又如坦克和拖拉机的履带、破碎机的颚板以及铁路的道岔等也是利用加工硬化来提高其硬度和耐磨性的。 以低碳钢拉伸的应力-应变(σ-ε)图为例(见图)。当载荷超过屈服阶段cе后,进入强化阶段еg,到某点k卸载时,应力不沿加载路线ocdеk 返回,而是沿着基本平行于oɑ的直线ko1下降,产生塑性变形oo1。再加载时,应力沿o1k上升,过k点后继续产生塑性变形,此时屈服极限已由σS提高到。如此反复作用,每循环一次都产生一次新的塑性变形,并提高强度指标。但随着循环次数的增加,加工硬化逐渐趋于稳定。这种加工硬化现象可解释为:在塑性变形时晶粒产生滑移,滑移面和其附近的晶格扭曲,使晶粒伸长和破碎,金属内部产生残余应力等,因而继续塑性变形就变得困难,引起加工硬化。这种现象受到构成金属基体的元素性质、点阵类型、变形温度、变形速度和变形程度等因素影响。加工硬化可由真正应力-应变曲线来描述。 编辑本段在机械工程中的作用 ①经过冷拉、滚压和喷丸(见表面强化)等工艺,能显著提高金属材料、零件和构件的表面强度; 加工硬化 ②零件受力后,某些部位局部应力常超过材料的屈服极限,引起塑性变形,由于加工硬化限制了塑性变形的继续发展,可提高零件和构件的安全度; ③金属零件或构件在冲压时,其塑性变形处伴随着强化,使变形转移到其周围未加工硬化部分。经过这样反复交替作用可得到截面变形均匀一致的冷冲压件; ④可以改进低碳钢的切削性能,使切屑易于分离。但加工硬化也给金属件进一步加工带来困难。如冷拉钢丝,由于加工硬化使进一步拉拔耗能大,甚至被拉断,因此必须经中间退火,消除加工硬化后再拉拔。又如在切削加工中为使工件表层脆而硬,再切削时增加切削力,加速刀具磨损等。

金属材料的力学性能

金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。 金属材料的机械性能 1、弹性和塑性: 弹性:金属材料受外力作用时产生变形,当外力 去掉后能恢复其原来形状的性能。力和变形同时存在、同时消失。如弹簧:弹簧靠弹性工作。 塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。 塑性变形:在外力消失后留下的这部分不可恢复的变形。 2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。 材料在常温、静载作用下的宏观力学性能。是确定各种工程设计参数的主要依据。这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力- 应变曲线。 对于韧性材料,有弹性和塑性两个阶段。弹性阶段的力学性能有: 比例极限:应力与应变保持成正比关系的应力最高限。当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。 弹性极限:弹性阶段的应力最高限。在弹性阶段内,载荷除去后,变形全部消失。这一阶段内的变形称为弹性变形。绝大多数工程材料的比例极限与弹性极限极为接近,因而可近似认为在全部弹性阶段内应力和应变均满足胡克定律。 塑性阶段的力学性能有: 屈服强度:材料发生屈服时的应力值。又称屈服极限。屈服时应力不增加但应变会继续增加。 屈服点:具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为 N/mm2(MPa)。 上屈服点(Re H):试样发生屈服而力首次下降前 的最大应力; 下屈服点(Re L):当不计初始瞬时效应时,屈服阶段中的最小应力。 条件屈服强度:某些无明显屈服阶段的材料,规定产生一定塑性应变量(例如0.2 %)时的应力值,作为条件屈服强度。应力超过屈服强度后再卸载,弹性变形将全部消失,但仍残留部分不可消失的变形,称为永久变形或塑性变形。 规定非比例延伸强度(Rp):非比例延伸率等于规定的引伸计标距百分率时的应力,例如Rp0.2 表示规定非比例延伸率为0.2%时的应力。 规定总延伸强度(Rt ):总延伸率等于规定的引伸计标距百分率时的应力。例如Rt0.5 表示规定总延伸率为

金属材料力学性能

金属材料力学性能文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

常见的金属材料力学性能一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位面积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。 几种常用金属材料力学性能一览表

注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]=σσ σ, σu ={σσσσ 式中,n 为大于1的因数,称为安全因数。对于塑性材料n 为,σu=σs ;对于脆性材料n 为,σu=σb 。 强度条件 σmax=(σ σ)max ≤[σ] 式中,F ,机械零件所承受的最大载荷作用力,单位N ; A ,承受载荷作用的面积,单位mm2; [σ],材料的许用应力,单位MPa ;

金属材料屈服强度的影响因素

材料屈服强度及其影响因素 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很高的均匀变形量。不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。高碳钢丝经过

金属材料强度

金属材料强度:强度就是指材料在外力作用下抵抗变形与破坏得能力.主要指标可分为抗拉(最基本强度指标)、抗压、抗弯、抗扭与抗剪强度. 塑性:材料在外力(静载)作用下产生永久变形而不被破坏得能力.主要指标为伸长率与断面收缩率。 硬度:材料抵抗更硬物体压入得能力.常用指标为布氏硬度、洛氏硬度与维氏硬度. 下列硬度指标就是否正确? HBS210-240 180-210HRCHRC29—25 450-480HBS钢得热处理:钢固态下,采用适当方法进行加热、保温与冷却,以改变钢得内部组织与结构,从而获得所需性能得一种工艺方法。 预先热处理:为消除坯料或半成品得某些缺陷或为后续得切削加工与最终热处理做组织准备得热处理。(退火、正火) 最终热处理:为使工件获得所要求得使用性能得热处理。 退火与正火得区别与选用:与退火相比、正火得冷却速度稍快,过冷度较大。 选用:1切削加工性考虑。作为预先热处理,低碳钢退火优于正火,而高碳钢正火后硬度太高,必须采用退火. 2使用性能上考虑.对于亚共析钢,正火处理比退火处理具有更好得力学性能。如果零件得性能要求不就是很高,则可用正火作为最终热处理。对于一些大型、重型零件,当淬火有开裂危险时,则采用正火作为最终热处理;但当零件得形状复杂,正火冷却速度较快开裂危险时,则采用退火为宜。 3 经济上考虑。正火比退火得生产周期短、耗料少、成本低、效率高、操作简便,因此在可能得条件下应采用正火。 钢淬火后为什么一定要回火,说明回火得种类及主要应用范围. 钢件经淬火后,虽然具有很高得硬度与强度,但脆性大,并且具有较大得淬火应力,因此在退火后,必须配以适当得回火. 种类及范围:高温回火:用于重要零件如轴、齿轮等。 中温回火:用于各种弹性元件及热锻模。 低温回火:用于各种工、模具钢及要求硬而耐磨得工件。 调制及特点:淬火后,加热到500-650度,保温后在空气中冷却。获得良好得综合力学性能,在保持高强度得同时,具有良好得塑、韧性,硬度为200—330HBS。

金属材料学基础试题及答案

金属材料的基本知识综合测试 一、判断题(正确的填√,错误的填×) 1、导热性好的金属散热也好,可用来制造散热器等零件。() 2、一般,金属材料导热性比非金属材料差。() 3、精密测量工具要选用膨胀系数较大的金属材料来制造。() 4、易熔金属广泛用于火箭、导弹、飞机等。() 5、铁磁性材料可用于变压器、测量仪表等。() 6、δ、ψ值越大,表示材料的塑性越好。() 7、维氏硬度测试手续较繁,不宜用于成批生产的常规检验。() 8、布氏硬度不能测试很硬的工件。() 9、布氏硬度与洛氏硬度实验条件不同,两种硬度没有换算关系。() 10、布氏硬度试验常用于成品件和较薄工件的硬度。 11、在F、D一定时,布氏硬度值仅与压痕直径的大小有关,直径愈小,硬度值愈大。() 12、材料硬度越高,耐磨性越好,抵抗局部变形的能力也越强。() 13、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 14、20钢比T12钢的含碳量高。() 15、金属材料的工艺性能有铸造性、锻压性,焊接性、热处理性能、切削加工性能、硬度、强度等。() 16、金属材料愈硬愈好切削加工。() 17、含碳量大于0.60%的钢为高碳钢,合金元素总含量大于10%的钢为高合金钢。() 18、T10钢的平均含碳量比60Si2Mn的高。() 19、一般来说低碳钢的锻压性最好,中碳钢次之,高碳钢最差。() 20、布氏硬度的代号为HV,而洛氏硬度的代号为HR。() 21、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 22、某工人加工时,测量金属工件合格,交检验员后发现尺寸变动,其原因可能是金属材料有弹性变形。() 二、选择题 1、下列性能不属于金属材料物理性能的是()。 A、熔点 B、热膨胀性 C、耐腐蚀性 D、磁性 2、下列材料导电性最好的是()。 A、铜 B、铝 C、铁烙合金 D、银 3、下列材料导热性最好的是()。 A、银 B、塑料 C、铜 D、铝 4、铸造性能最好的是()。 A、铸铁 B、灰口铸铁 C、铸造铝合金 D、铸造铝合金 5、锻压性最好的是()。

金属材料强度

金属材料强度:强度是指材料在外力作用下抵抗变形和破坏的能力。主要指标可分为抗拉(最基本强度指标)、抗压、抗弯、抗扭和抗剪强度。 塑性:材料在外力(静载)作用下产生永久变形而不被破坏的能力。主要指标为伸长率和断面收缩率。 硬度:材料抵抗更硬物体压入的能力。常用指标为布氏硬度、洛氏硬度和维氏硬度。 下列硬度指标是否正确? HBS210-240 180-210HRC HRC29-25 450-480HBS 钢的热处理:钢固态下,采用适当方法进行加热、保温和冷却,以改变钢的内部组织和结构,从而获得所需性能的一种工艺方法。 预先热处理:为消除坯料或半成品的某些缺陷或为后续的切削加工和最终热处理做组织准备的热处理。(退火、正火) 最终热处理:为使工件获得所要求的使用性能的热处理。 退火与正火的区别与选用:与退火相比、正火的冷却速度稍快,过冷度较大。选用:1切削加工性考虑。作为预先热处理,低碳钢退火优于正火,而高碳钢正火后硬度太高,必须采用退火。 2使用性能上考虑。对于亚共析钢,正火处理比退火处理具有更好的力学性能。如果零件的性能要求不是很高,则可用正火作为最终热处理。对于一些大型、重型零件,当淬火有开裂危险时,则采用正火作为最终热处理;但当零件的形状复杂,正火冷却速度较快开裂危险时,则采用退火为宜。 3 经济上考虑。正火比退火的生产周期短、耗料少、成本低、效率高、操作简便,因此在可能的条件下应采用正火。 钢淬火后为什么一定要回火,说明回火的种类及主要应用范围。 钢件经淬火后,虽然具有很高的硬度和强度,但脆性大,并且具有较大的淬火应力,因此在退火后,必须配以适当的回火。 种类及范围:高温回火:用于重要零件如轴、齿轮等。 中温回火:用于各种弹性元件及热锻模。 低温回火:用于各种工、模具钢及要求硬而耐磨的工件。

金属材料抗拉强测量不确定度

金属材料抗拉强度测量不确定度分析 1.试验依据 GB228-2002(金属材料拉伸试验方法) 试验采用RGM-100型万能材料试验机,以20~30MPa/s 速率加荷直至将试样拉伸至断裂。试样拉断时的最大力所对应的应力即为金属材料的抗拉强度。 2.钢材抗拉强度测量的影响因素 根据钢材抗拉强度的计算公式为: 24d F πσ= (1) 式中:σ -抗拉强度,单位MPa (N/mm 2); F -拉力,单位 N ; d -钢材直径,单位mm 。 对于钢材抗拉强度检测,只要温度在室温(25~35℃)附近变化不大,温度对试验结果的影响就可以忽略不计;另外,只要加荷速率控制在规范允许范围内(规范允许范围:10-30MPa/s ;实际加荷速率:20-30MPa/s ),加荷速率的影响也可以忽略不计。能够对试验测试结果产生影响的因素主要有:重复测试(同一批试件在相同试验条件下重复测量结果的差异性)、试件截面积变化(归结为直径d 偏差)、荷载测量的精度以及测量结果的数据修约。上述影响因素中,试件材质非均匀性直接表现在测量结果的数据变化上,属于A 类不确定度评定;其余影响因素都是由于影响量的误差而导致试验测试量的偏差,均属B 类不确定度评定。金属材料抗拉强度测量不确定度影响因素汇总于表1中。 表1 影响金属材料抗拉强度测量准确性的主要因素 3.标准不确定度评定 3.1 样品不均匀性引起的标准不确定度R u

从根据这10个测试数据进行钢材抗拉强度测量不确定度的评定,属于A 类不确定度评定,相应的测量不确定度称为重复测量不确定度R u ,可采用贝塞尔法按(2)式进行评定: R u =∑=--n i i n n 1 2)()1(1σσ (2) 式中:n 为重复测量次数,σ i 为第i 次测量的材料强度测量值,σ为同一材料的试件强度各次测量结果的平均值。按式(2)计算,重复测量导致的试件抗拉强度测量标准不确定度为:R u 3.2 试件尺寸导致的测量标准不确定度d u 由于试件直径偏差导致的试件抗拉强度测量不确定度属B 类不确定度。 对于偏差为±a 的影响量x 的不确定度)(x u ,可按式(4)进行评定: )(x u =k a (3) 直径尺寸出现在区间d ±αmm 内各点的概率相等,即直径误差分布为均匀分布,所以其包含因子k =3。根据式(4),试件直径d 的测量不确定度)(d u 为: k a d u =)( (mm ) (4) 试件抗拉强度 σ 对试件直径 d 的灵敏系数d c = d ??σ可以通过对式(1)求偏导数得到: d c =d ??σ=38d F π-=d σ2 (5) 取 σ =σ,d 取标称尺寸,代入上式中得d c MPa/mm ) 由试件直径偏差引起的试件抗拉强度测量标准不确定度d u 为: d u =d c ?)(d u (6) 3.3 试验机拉力误差引起的试件抗拉强度测量标准不确定度F u

冷轧带钢抗拉强度与硬度对照表

2)HRC,负荷150公斤的测量值; 3)HRB,用带1/16寸钢球压头,负荷100公斤的测量值. ⑶维氏硬度(HV)以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV) 洛氏硬度中HRA、HRB、HRC的区别 洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为(合10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至(合60kgf);标尺B使用的是直径为(1/16英寸)的钢球作为压头,然后加压至(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 但各种材料的换算关系并不一致硬度換算公式: 1.肖氏硬度(HS)=勃式硬度(BHN)/10+12 2.肖式硬度(HS)=洛式硬度(HRC)+15 3.勃式硬度(BHN)= 洛克式硬度(HV) 4.洛式硬度(HRC)= 勃式硬度(BHN)/10-3 硬度測定範圍: HS<100HB<500HRC<70HV<1300(80~88)HRA, (85~95) HRB, (20~70)HRC 洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为(合10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至(合60kgf);标尺B使用的是直径为(1/16英寸)的钢球作为压头,然后加压至(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。但各种材料的换算关系并不一致。硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。 常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2.洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为、的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。HRB:是采用100kg载荷和直径淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 .维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV值(kgf/mm2)。『HK=?P/L2。式中:HK-努普硬度,Mpa;P-荷重,kg;L-凹坑对角线长度,mm。我国和欧洲各国采用维氏硬度,美国则采用努普硬度。兆帕(MPa)是显微硬度的法定计量单位,而kg/mm2是以前常用的硬度计算单位。它们之间的换算公式为1kg/mm2=。洛氏硬度(HRC)、布氏硬度(HB)等硬度具体区别和换算硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最常用的是静负荷压入法硬度试验,即布氏硬度HB、洛氏硬度HRA,HRB,HRC、维氏硬度HV,橡胶塑料邵氏硬度HA,HD等硬度其值表示材料表面抵抗坚硬物体压入的能力。而里氏硬度Hl、肖氏硬度HS 则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 含意是洛式硬度C标尺, 和HB在生产中的应用都很广泛 适用范围HRC 20--67,相当于HB225--650 若硬度高于此范围则用洛式硬度A标尺HRA。若硬度低于此范围则用洛式硬度B标尺HRB。布式硬度上限值HB650,不能高于此值。 4.洛氏硬度计C标尺之压头为顶角120度的金刚石圆锥,试验载荷为一确定值,中国标准是150公斤力。布氏硬度计之压头为淬硬

金属材料力学性能

一.名词解释 1,E,弹性模量,表征材料对弹性变形的抗力, 2,δs:呈现屈服现象的金属拉伸时,试样在外力不增加仍能继续伸长的应力,表征材料对微量塑性变形的抗力。 3,σbb:是灰铸铁的重要力学性能指标,是灰铸铁试样弯曲至断裂前达到的最大弯曲里 (按弹性弯曲应力公式计算的最大弯曲应力) 4δ:延伸率,反应材料均匀变形的能力。 5,韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力(或指材料抵抗裂纹扩展能力)6低温脆性:某些金属及中低强度钢,在实验的温度低于某一温度Tk时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔集聚型变为穿晶解理型,断口特征由纤维状态变为结晶状,这就是低温脆性 7 Kic:断裂韧度,为平面应变的断裂韧度,表示在平面应变条件下材料抵抗裂变失稳扩展的能力 8 弹性比功(弹性比能):表示单位体积金属材料吸收变形功的能力 9σ-1:疲劳极限,表明试样经无限次应力循环也不发生疲劳断裂所对应的能力 10循环韧性(消振性):表示材料吸收不可逆变形功的能力(塑性加载) 11Ψ:断面收缩率,缩经处横截面积的最大缩减量与原始横截面积的百分比, 12Ak:冲击功、,冲击试样消耗的总能量或试样断裂过程中吸收的总能量 13蠕变:材料在长时间的恒温应力作用下,(即使应力低于屈服强度)也会缓慢地产生塑性变形的现象。 14σtて:在规定温度(t)下,达到规定的持续时间(て)而不发生断裂的最大应力。 15:氢致延滞断裂:由于氢的作用而产生的延滞断裂现象。 17.δ0.2:屈服强度 18.△K th:疲劳裂纹扩展门槛值,表征阻止裂纹开始扩展的能力 19δbc:抗拉强度,式样压至破坏过程中的最大应力。 20.包申效应:金属材料经过预加载产生少量塑变,卸载后再同向加载,规定残余伸长应力增加,反向加载,规定残余应力减低的现象,称为包申效应。 21.NSR:缺口敏感度,缺口试样的抗拉强度δbn与等截面尺寸光滑试样的抗拉强度δb之比。 22.力学行为:材料在外加载荷,环境条件及综合作用下所表现出的行为特征。 23.强度 24:应力腐蚀:金属在拉应力和特定化学介质共同作用下,进过一段时间后所产生的应力脆断现象。 25.滞弹性:(弹性后效)在弹性范围内快速加载或卸载后,随时间延长而产生附加弹性应变的现象。 二、填空题 17、断裂可以分为(裂纹形成)与(扩展)两个阶段。静拉伸断裂宏观断口分为(纤维区)、(放射区)、(剪切唇)三个区域。该断口微观特征:(纤维状)对于脆性穿晶断裂断口主要特征:(放射状)和(结晶状) 18、典型疲劳断裂的宏观断口分为三个区(疲劳源)(疲劳区)(瞬间区)疲劳断口宏观特征(贝纹线、海滩花样)、微观特征(疲劳条带) 19、应力腐蚀微观断口可以看到呈(枯树枝状)的微观裂纹,呈(泥状花样)的腐蚀产物和(腐蚀抗) 20微孔聚集型断裂的微观特征(韧窝),解理断裂的微观特征主要有(解理台阶)和(河流花样),沿晶断裂的微观特征(冰糖状) 断口和(晶粒状)断口。 21应力状态系数值越大,表示应力状态越(软),材料越容易产生(塑性)变形和(韧性)断

金属材料力学性能

金属材料力学性能文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

常见的金属材料力学性能 一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位面 积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。

几种常用金属材料力学性能一览表 注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]=σu n , σu ={σs σb 式中,n 为大于1的因数,称为安全因数。对于塑性材料n 为,σu=σs ;对于脆性材料n 为,σu=σb 。 强度条件 σmax =(F A )max ≤[σ] 式中,F ,机械零件所承受的最大载荷作用力,单位N ;

金属材料屈服强度的影响因素.

金属材料屈服强度及其影响因素 屈服强度是指材材料开始产生宏观塑性变形时的应力。对于屈服现象明显的材料,屈服强度就屈服点的应力—屈服值;对于屈服现象不明显的材料,通常将应力-应变曲线上以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 屈服强度通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。 影响屈服强度的因素 影响屈服强度的内在因素有: 1.金属本性及晶格类型——纯金属单晶体的屈服强度由位错运动时所受的阻力决定。这些阻力有晶格阻力和位错间交互作用产生的阻力之分。其中晶格力与位错宽度和柏氏矢量有关,而两者又与晶体结构有关。位错间交互产生的阻力包括平行位错间交互产生的阻力和运动位错与林位错交互产生的阻力。用公式表示:T=αGb/L,式中α为比例系数,又因为密度ρ与1/L2成正比,因此,T=αGb ρ1/2,由此可见,密度增加,屈服强度也随之增加。 2.晶粒大小和亚结构——晶粒大小的影响是晶界影响的反映,减小晶粒尺寸将增加位错运动障碍的数目,减小晶粒内位错塞积群的长度,将使屈服强度提高。许多金属与合金的屈服强度与晶粒大小的关系均符合霍尔佩奇公式σ s =σ j +k y d-1/2,式中,σ j 是位错在基体金属中运动的总阻力,亦称摩擦阻力,它决定于 晶体结构和位错密度;k y 是度量晶界对强化贡献大小的钉扎常数,或表示滑移带端部的应力集中系数;d为晶粒平均尺寸。亚晶界的作用和晶界类似,也阻碍位错的运动。 3.溶质元素——纯金属中融入溶质原子形成间隙型或置换型固溶合金将会显著提高屈服强度,此即为固溶强化。这主要是由于溶质原子和溶剂原子直径不同,在溶质周围形成了晶格畸变应力场,该应力场产生交互作用,使位错运动受阻,从而提高屈服强度。 4.第二相——工程上的金属材料,其显微组织一般是多相的。第二相对屈服强度的影响与质点本身在金属材料屈服变形过程中能否变形有很大关系。据此可将第二相质点分为不可变形和可变形的两类。 根据位错理论,位错线只能绕过不可变形的第二相质点,为此,必须克服弯曲位错的线张力。不可变形第二相质点的金属材料,其屈服强度与流变应力就决定于第二相质点之间的间距。对于可变形的第二相质点,位错可以切过,使之同基体一起变形,由此也能提高屈服强度。 第二相的强化效果还与其尺寸、形状、数量和分布以及第二相与基体的强度、塑性相应硬化特性、两相间的晶体学配合和界面能等因素有关。在第二相体积比相同的情况下,长形质点显著影响位错运动,因而具有此种组织的金属材料,其屈服强度就比球状的高。 综上所述,表征金属微量塑性变形抗力的屈服强度是一个对成分、组织极其敏感的力学性能指标,受许多内在因素的影响,改变合金成分或热处理工艺可使屈服强度产生明显变化。

金属材料检测报告

金属材料检测报告 抗拉强度(tensilestrength) 试样拉断前承受的最大标称拉应力。 抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临 界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着 横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为: σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。抗拉强度(Rm)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变 形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈

缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:Tensilestrength. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 屈服强度(yieldstrength) 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 yieldstrength,又称为屈服极限,常用符号δs,是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值); (2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生塑性变形,应变增大,使材料失效,不能正常使用。

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1 强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

常用金属材料的力学性能一览表

常用金属材料的力学性能 金属材料的力学性能 任何机械零件或工具,在使用过程中,往往妾受到各种形式外力的作托。如起重机上的钢索,受到悬吊物拉力的作用:柴油机上的连杆,在传递动力时.不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件燮受到弯矩、扭力的作用等尊。这就要求金属材料必须具有一种弟受机械荷而不超过许可变形或不破坏的能力* 这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在夕卜力作坤下表现出力学性能的指标。 111 强度 强度是扌旨金属材料在静载荷作用下抵抗变形和断裂的能力。逼度扌旨标一般用单位面积所承受的载荷即力表示,符号为6 单位为 MP 弘 工程中常用的强度指标有屈服逼度和扰拉强度。屈服逼度是指金属材料在外力作用下* 产生屈服现象时的应力,或开始岀现塑性变形吋的最低应力值,用%表示?抗竝强度是指金厲材料在拉力的作用下,被拉断前所能承受的最大应力值,用巧表示。 对于大多数机械零件.工作时不允许产生塑性变形,所以屈服强度是事件逼度设计的依据!对于因断裂而失效的零件,而用抗拉强度作为其逼度设计的依据。 1.1 2 塑性 塑性是扌旨金属材料在外力作用下产生塑性变形而不断裂的能力。 工程中常用的塑性揭标有诩长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号豪示*断面收縮率指试样拉断后,断面縮小的面积与原来截面积之比,用甲表示。 伸长率和断面收缩率越大,其塑性越好;反之塑性越差,良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。 113 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力? 硬度的测试方法很多,生产中常埔的硬度测试方法有布氏硬度测试法和洛氏碳度试验方法两神° C- )布氏硬度试验法 布氏硬度试验法是用一直径为 D 的淬火钢球或硬质合金球作为压头,在载荷 0 的作用下压入被测试金厲表面,保持一定时间后卸载,测量金属表面形成的压痕直径乩以压痕的单位面积所承受的平均压力作为被测全属的布氏硬度值。 布氏硬度指标有 HBS 和 HBW, 前者所用压头为淬火钢球,适坤于布氏硬度值低于仍 0 的金属材料,如艮火钢、正火钢、调质钢及铸铁、有包金厲等;后者压头为硬质合金,适用于布氏硬度值为 450^650 的金属材料,如悴火钢等。 布氏硬度测试法,因压痕较尢故不宜测试成品件或薄片金属的硬度。

材料力学性能复习题基本概念1抗拉强度18韧性金属试样拉

材料力学性能复习题 一、基本概念 1、抗拉强度(18):韧性金属试样拉断过程中最大应力所对应的应力。 2、弹性模量(3):弹性模量是产生100%弹性变形所需要的应力。 3、弹性比功(4):弹性比功又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。 4、包申格效应(6):金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。 5、屈服强度(10):用应力表示的屈服点或下屈服点就是表征材料对微量塑性变形的抗力,即屈服强度。 6、低温脆性(59):体心立方晶体金属及合金或某些密排六方晶体金属及其合金,特别是工程上常用的中、低强度结构钢,在试验温度低于某一温度k t 时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。 7、蠕变断裂(162):由蠕变变形而最后导致金属材料的断裂称为蠕变断裂。 8、疲劳极限南国梨(98):当循环应力水平降低到某一临界值时,试样可以经无限次应力循环也不发生疲劳断裂,故将对应的应力称为疲劳极限。 9、松弛稳定性(167):金属材料抵抗应力松弛的性能。 10、应变硬化(15):金属材料有一种阻止继续塑性变形的能力,这就是应变硬化性能。 11、断裂韧度(70):I K 是决定应力场强弱的一个复合力学参量,当I K 增大达到临界值时,也就是在裂纹尖端足够大的范围内应力达到了材料的断裂强度,裂纹便失稳抗展而导致材料断裂。这个临界或失稳状态的I K 值记作IC K 或C K ,称为断裂韧度。 12、过载持久值(102):金属材料抵抗疲劳过载损伤的能力,用过载损伤界或过载损伤区表示,过载损伤界与疲劳曲线高应力区直线段各应力水平下发生疲劳断裂的应力循环周次称为过载持久值。 13、蠕变(162):所谓蠕变,就是金属在长时间的恒温、恒载荷作用下缓慢地产生塑性变形的现象。 14、陶瓷(191):陶瓷材料通常是金属与非金属元素组成的化合物。 15、缺口敏感度(46):金属材料的缺口敏感性指标用缺口试样的抗拉强度bn σ与等截面尺寸光滑试样的抗拉强度b σ的比值表示,称为缺口敏感度。 16、冲击韧性(57):冲击韧性是指材料冲击载荷作用下吸收塑性变形功和断裂功的能力。 17、应力腐蚀断裂(128):应力腐蚀断裂是在应力和化学介质的联合作用下,按特有机理产生的断裂。 二、力学性能 1、(165)MPa 10050010000/1=σ 表示:材料在500℃温度下,10000h 后总伸长率为1%的蠕变 极限为100MPa 。 2、(51)500 HBW 5/750 表示:用直径5mm 的硬质合金球在7.355kN (750×9.80665)试验力下保持10~15s 测得的布氏硬度值为500。

相关主题
文本预览
相关文档 最新文档