当前位置:文档之家› 衍射光栅的基本原理

衍射光栅的基本原理

衍射光栅的基本原理
衍射光栅的基本原理

衍射光栅的基本原理

1 光栅方程 (2)

2光栅的基本特性 (3)

3 衍射光栅的应用 (4)

1 光栅方程

图1光束斜入射到反射光栅上发生的衍射

决定各级主极大位置的方程称为光栅方程

βλ±± dsin =m (m=0,1,2,)

,它是正入射时设计和使用光栅的基本方程,下面以反射光栅(见图1)为例,导出更为普遍的斜入射情形的光栅方程。设平行光束以入射角α斜入射到反射光栅上,并且所考察的衍射光与入射光分别处于光栅法线的两侧或者同侧。当光束到达光栅时,两支相邻光束的光程差为

dsin dsin αβ?±=

(1)

因此,光栅方程的普遍形式可写为

dsin dsin m m=012αβλ

±=±± (,,) (2)

在考察与入射光同一侧的衍射光谱时,上式取正号;在考察与入射光异侧的衍射光谱时,方程2取负号。

2光栅的基本特性

光栅主要有四个基本性质:色散、分束、偏振和相位匹配,光栅的绝大多数应用都是基于这四种特性。

光栅的色散是指光栅能够将相同入射条件下的不同波长的光衍射到不同的方向,这是光栅最为人熟知的性质,它使得光栅取代棱镜成为光谱仪器中的核心元件。光栅的色散性能可以由光栅方程推导出来,这个问题我们将在后面作更为详细的分析,推导出光栅的广义色散公式。

光栅的分束特性是指光栅能够将一束入射单色光分成多束出射光的本领。应用领域有光互连、光藕合、均匀照明、光通讯、光计算等。其性能评价指标有:衍射效率、分束比、压缩比、光斑非均匀性以及光斑模式等。目前较常用的光栅分束器有:Dammann光栅分束器、Tablot光栅分束器、相息光栅分束器、波导光栅分束器等。另外,位相型菲涅耳透镜阵列分束器、Gbaor透镜分束器等透镜型的分束器也是相当常用的。

在标量领域范围内,光栅的偏振特性往往被忽略,因此,光栅的偏振性在以前不被人广知。但是理论和实验都证明,一块设计合理、制作优良的光栅可以被用来做偏振器、1/2波片、1/4波片和位相补偿器等。光栅的偏振特性需要用光栅的矢量理论才能分析得到,我们将

在后面章节对光栅的偏振特性进行理论分析。

光栅的相位匹配性质是指光栅具有的将两个传播常数不同的波祸合起来的本领。最明显的例子是光栅波导祸合器,它能将一束在自由空间传播的光束祸合到光波导中。根据瑞利展开式,一束平面波照射在光栅上会产生无穷多的衍射平面波,相邻衍射波的波矢沿x 方向的投影之间的距离是个常数,等于光栅的波矢,即i x k k -i2/T 0=平面波可以看作是电磁波在无源、均匀媒质中的一种模式,因此光栅有能力把波矢沿着固定方向而投影相差光栅波矢整数倍的不同平面波耦合起来。

3 衍射光栅的应用

衍射光栅是一种分光元件,也是光谱仪器的核心元件。1960年代以前,全息光栅,刻划光栅,作为色散元件,广泛用于摄谱仪光谱分析,是分析物质成分、探索宇宙奥秘、开发大自然的必用仪器,极大地推动了包括物理学、天文学、化学、生物学等科学的全面发展。随着科学技术的发展,其应用早已不局限于光谱学领域,在计量学、天文学、集成光学、光通信、原子能等方面已被广泛应用。因此,对光栅制作技术的研究从来没有间断过。

衍射光栅的经典概念虽然简单,但其内涵却极为丰富。在过去的二十多年里,光栅的用途远远超过传统意义上的应用范围,在科研和技术等诸多领域成为无可替代的及其重要的工具。例如,衍射光栅应用于集成光学、光学全息、光谱分析、模糊处理、数模转换、相关存储、光束耦合、光束扩束、光束偏转、光束取样、光束分光、光学逻辑、数据储存、光学测试、模式转换、位相共轭、脉冲整形与压缩、调Q、锁模、信号处理、太阳能聚焦、空间光调制、光学开关、诊断测量、图像识别等等,同时光栅还在不断在新领域得到应用。

近年来,一系列新型光栅的出现对科学技术的发展和工业生产技术的革新也发挥着越来越大的作用:把光栅做在光纤里面,产生了光

纤光栅,促进了光纤通信产业的发展;光栅和波导的结合,产生了阵列波导光栅,是非常重要的光纤通信的波分复用器件;光栅的飞秒脉冲

啁啾放大技术促进了强激光的产生; 大尺寸的脉冲压缩光栅是激光

核聚变装置不可缺少分束器; Dammann光栅应用于光电子阵列照明技术;体全息光栅在光存储及波分复用方面的已快进入实用化阶段。

光栅推动了科学技术的发展,世界上对光栅的需求越来越大。

衍射光栅实验

衍射光栅实验 【实验目的】 1.了解分光计的原理与结构。 2.学习掌握分光计的调节方法。 3. 观察光通过光栅后的衍射现象。 4. 测透射光栅的光栅常数。 5. 用透射光栅测光波波长 【仪器用具】 分光计、光源、平面反射镜、汞灯光源、透射光栅 【实验原理】 1.分光计 分光计是一种用来精确测量角度的仪器,如测量反射角、折射率和衍射角等。通过测量有关角度,可以确定测定材料的折射率、光波波长和色散率等,其用途十分广泛。近代摄谱仪、单色仪等精密光学仪器也是在分光计的基础上发展起来的。 分光计结构复杂、构件精密、调节要求高,对初学者有一定难度。但只要了解了其结构和光路,严格按要求步骤耐心调节,就能掌握。 (一)仪器描述 图1 JJY型分光仪 1狭缝体锁紧螺钉;2 狭缝体锁紧螺钉;3 狭缝宽度调节手轮;4 狭缝体高低调节手轮; 5 平行光管部件;6平行光管水平调节螺钉;7载物台;8载物台调平螺钉;9 望远镜部件;10望远镜水平调节螺钉;11目镜组锁紧螺钉;12目镜组;13目镜调节手轮;14望远镜光轴高低调节螺钉;15支臂;16望远镜微调螺钉;17转座;18度盘止动螺钉;19载物台锁紧螺钉;20制动架;21望远镜止动螺钉;22度盘;23底座;24立柱;25游标盘微调手轮;26游标盘止动螺钉。 分光计的种类繁多,但构造基本相同。分光计主要由望远镜、平行光管、载物台、光学游标刻度盘四部分组成,其外形如图1所示。 分光计的下部是金属底座,底座中央装有竖直的固定轴,望远镜、载物台、主刻度盘和游标刻度盘都可绕这一固定竖轴旋转,此轴为分光计主轴(中心轴)。 (1)望远镜它由物镜、阿贝目镜、分划板三部分组成。分划板上刻有双十字准线(“╪”),在分划板的右下方紧贴一块45°全反射小三棱镜,其表面涂不透明薄膜,薄膜上刻有一个空心十字透光窗口,反射棱镜另一光学面上涂有绿色,当小电珠光从管侧射入后成为

光栅衍射实验实验报告

工物系 核11 李敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,(1)式中应取加号,即d (sin φ+sin ι)=mλ。以Δ=φ+ι为偏向角,则由三角形公式得 2d (sin Δ 2cos φ?i 2 )=mλ (3) 易得,当φ?i =0时,?最小,记为δ,则(2.2.1)变

为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角δ,就可以根据(4)算出波长λ。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 2.使用注意事项 (1)水银灯在使用中必须与扼流圈串接,不能直接接220V 电源,否则要烧 毁。 (2)水银灯在使用过程中不要频繁启闭,否则会降低其寿命。 (3)水银灯的紫外线很强,不可直视。 四、 实验任务 (1)调节分光计和光栅使满足要求。 (2)测定i=0时的光栅常数和光波波长。 (3)测定i=15°时的水银灯光谱中波长较短的黄线的波长

光栅衍射实验报告

字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm;绿色2=546.1nm;黄色两条3=577.0nm和4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比:

光栅的结构及工作原理

光栅的结构及工作原理 光栅是利用光的透射、衍射现象制成的光电检测元件,它主要由标尺光栅和光栅读数头两部分组成。通常,标尺光栅固定在机床的活动部件上(如工作台或丝杠),光栅读数头安装在机床的固定部件上(如机床底座),二者随着工作台的移动而相对移动。在光栅读数头中,安装着一个指示光栅,当光栅读数头相对于标尺光栅移动时,指示光栅便在标尺光栅上移动。当安装光栅时,要严格保证标尺光栅和指示光栅的平行度以及两者之间的间隙(一般取或要求。 1.光栅尺的构造和种类 光栅尺包括标尺光栅和指示光栅,它是用真空镀膜的方法光刻上均匀密集线纹的透明玻璃片或长条形金属镜面。对于长光栅,这些线纹相互平行,各线纹之间距离相等,我们称此距离为栅距。对于圆光栅,这些线纹是等栅距角的向心条纹。栅距和栅距角是决定光栅光学性质的基本参数。常见的长光栅的线纹密度为25,50,100,125,250条/mm。对于圆光栅,若直径为70mm,一周内刻线100-768条;若直径为110mm,一周内刻线达600-1024条,甚至更高。同一个光栅元件,其标尺光栅和指示光栅的线纹密度必须相同。 2.光栅读数头 图4-7是光栅读数头的构成图,它由光源、透镜、指示光栅、光敏元件和驱动线路组成。读数头的光源一般采用白炽灯泡。白炽灯泡发出的辐射光线,经过透镜后变成平行光束,照射在光栅尺上。光敏元件是一种将光强信号转换为电信号的光电转换元件,它接收透过光栅尺的光强信号,并将其转换成与之成比例的电压信号。由于光敏元件产生的电压信号一般比较微弱,在长距离传递时很容易被各种干扰信号所淹没、覆盖,造成传送失真。为了保证光敏元件输出的信号在传送中不失真,应首先将该电压信号进行功率和电压放大,然后再进行传送。驱动线路就是实现对光敏元件输出信号进行功率和电压放大的线路。

光栅衍射实验报告

光栅衍射实验报告 字体大小:大|中|小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 ------实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2. 加深对分光计原理的理解。 3. 用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其

示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

,常用的是复制光栅和 的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵 全息光栅。图1中的为刻痕的宽度,为狭缝间宽度,为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹 数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路 图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射, 所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜, 在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 岀现明纹时需满足条件 (2) (2 )式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2 )式光栅方程,若波长已知,并能测岀波长谱线对应的衍射角,则可以求岀光栅常数 d。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的 两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同 的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm; 绿色2=546.1 nm; 黄色两条3=577.0nm 和4=579.1 nm 。 衍射光栅的基本特性可用分辨本领和色散率来表征。

光栅衍射实验的MATLAB仿真

届.别.2012届 学号200814060106 毕业设计 光栅衍射实验的MATLAB仿真 姓名吴帅 系别、专业物理与电子信息工程系 应用物理专业 导师姓名、职称姚敏教授 完成时间2012年5月16日

目录 摘要................................................... I ABSTRACT................................................ II 1 引言 (1) 1.1 国内外研究动态 (1) 2理论依据 (2) 2.1 平面光栅衍射实验装置 (2) 2.2 原理分析 (3) 2.3 MATLAB主程序的编写 (6) 2.4 仿真图形的用户界面设计 (7) 3 光栅衍射现象的分析 (8) 3.1 缝数N对衍射条纹的影响 (8) 3.2 波长λ对衍射条纹的影响 (10) 3.3 光栅常数d对衍射光强的影响 (12) 3.4 条纹缺级现象 (13) 4 总结 (14) 参考文献 (16) 致谢 (17) 附录 (18)

摘要 平面光栅衍射实验是大学物理中非常重要的实验,实验装置虽然简单,但实验现象却是受很多因素的影响,例如波长λ,缝数N,以及光栅常数d。本文利用惠更斯一菲涅耳原理,获得了衍射光栅光强的解析表达式,再运用Matlab软件,将模拟的界面设计成实验参数可调gui界面,能够连续地改变波长λ,缝数N,光栅常数d,从而从这 3个层面对衍射光栅的光强分布和谱线特征进行了数值模拟,并讨论了光栅衍射的缺级现象,不仅有利于克服试验中物理仪器和其他偶然情况等因素给实验带来的限制和误差.并而且通过实验现象的对比,能够加深对光栅衍射特征及规律的理解,这些都很有意义。 关键词:平面光栅衍射;惠更斯-菲涅尔原理;gui;光强分布;Matlab

光栅衍射实验报告

光栅衍射实验 系别 精仪系 班号 制33 姓名 李加华 学号 2003010541 做实验日期 2005年05月18日 教师评定____________ 一、0i =时,测定光栅常数和光波波长 光栅编号:___2____;?=仪___1’___;入射光方位10?=__7°6′__;20?=__187°2′__。 由衍射公式,入射角0i =时,有sin m d m ?λ=。 代入光谱级次m=2、绿光波长λ=546.1及测得的衍射角m ?=19°2′,求得光栅常数 ()2546.13349sin sin 192/60m m nm d nm λ??= ==+? cot cot 2m m m d d ?????==?=? ()4cot 192/601/60 5.962101802180ππ-????=+??=? ? ????? 445.96210 5.962103349 1.997d d nm nm --?=??=??= ()33492d nm =± 代入其它谱线对应的光波的衍射角,得 ()3349sin 2013/60sin 578.72 m nm d nm m ?λ?+?===黄1

()3349sin 209/60576.82 nm nm λ?+? = =黄2 ()3349sin 155/60435.72 nm nm λ?+?==紫 λ λ?== 578.70.4752nm nm λ?==黄1 576.80.4720nm nm λ?= =黄2 435.70.4220nm nm λ?==紫()578.70.5nm λ=±黄1,()576.80.5nm λ=±黄2,()435.70.4nm λ=±紫 由测量值推算出来的结果与相应波长的精确值十分接近,但均有不同程度的偏小。由于实验中只有各个角度是测量值(给定的绿光波长与级数为准确值),而分光计刻度盘读数存在的误差为随机误差,观察时已将观察显微镜中心竖直刻线置于谱线中心——所以猜测系统误差来自于分光镜调节的过程。 二、150'i =?,测量波长较短的黄线的波长 光栅编号:___2____;光栅平面法线方位1n ?=__352°7′__;2n ?=__172°1′__。

衍射光栅基本原

衍射光栅的基本原理 1 光栅方程 (1) 2光栅的基本特性 (2) 3 衍射光栅的应用 (3) 1 光栅方程 图1光束斜入射到反射光栅上发生的衍射 决定各级主极大位置的方程称为光栅方程βλ±±dsin =m (m=0,1,2,),它是正入射时设计和使用光栅的基本方程,下面以反射光栅(见图1)为例,导出更为普遍的斜入射情形的光栅方程。设平行光束以入射角α斜入射到反射光栅上,并且所考察的衍射光与入射光分别处于光栅法线的两侧或者同侧。当光束到达光栅时,两支相邻光束的光程差为 dsin dsin αβ?±= (1) 因此,光栅方程的普遍形式可写为 dsin dsin m m=012αβλ ±=±±(,,) (2) 在考察与入射光同一侧的衍射光谱时,上式取正号;在考察与入射光异侧的

衍射光谱时,方程2取负号。 2光栅的基本特性 光栅主要有四个基本性质:色散、分束、偏振和相位匹配,光栅的绝大多数应用都是基于这四种特性。 光栅的色散是指光栅能够将相同入射条件下的不同波长的光衍射到不同的方向,这是光栅最为人熟知的性质,它使得光栅取代棱镜成为光谱仪器中的核心元件。光栅的色散性能可以由光栅方程推导出来,这个问题我们将在后面作更为详细的分析,推导出光栅的广义色散公式。 光栅的分束特性是指光栅能够将一束入射单色光分成多束出射光的本领。应用领域有光互连、光藕合、均匀照明、光通讯、光计算等。其性能评价指标有:衍射效率、分束比、压缩比、光斑非均匀性以及光斑模式等。目前较常用的光栅分束器有:Dammann 光栅分束器、Tablot 光栅分束器、相息光栅分束器、波导光栅分束器等。另外,位相型菲涅耳透镜阵列分束器、Gbaor 透镜分束器等透镜型的分束器也是相当常用的。 在标量领域范围内,光栅的偏振特性往往被忽略,因此,光栅的偏振性在以前不被人广知。但是理论和实验都证明,一块设计合理、制作优良的光栅可以被用来做偏振器、1/2波片、1/4波片和位相补偿器等。光栅的偏振特性需要用光栅的矢量理论才能分析得到,我们将在后面章节对光栅的偏振特性进行理论分析。 光栅的相位匹配性质是指光栅具有的将两个传播常数不同的波祸合起来的本领。最明显的例子是光栅波导祸合器,它能将一束在自由空间传播的光束祸合到光波导中。根据瑞利展开式,一束平面波照射在光栅上会产生无穷多的衍射平面波,相邻衍射波的波矢沿x 方向的投影之间的距离是个常数,等于光栅的波矢,即i x k k -i2/T 0=平面波可以看作是电磁波在无源、均匀媒质中的一种模式,因此光栅有能力把波矢沿着固定方向而投影相差光栅波矢整数倍的不同平面波耦合起来。

2020年光栅衍射实验报告范文

实验时间2019 年 月 日签到序号 【进入实验室后填写】 福州大学 【实验七】 光栅的衍射 (206 实验室) 学学院 班班级 学学号 姓姓名 实验前必须完成【实验预习部分】 登录下载预习资料 携带学生证提前 10 分钟进实验室 实验预习部分【实验目的】 】 【实验仪器】( 名称、规格或型号) 【实验原理】(文字叙述、主要公式、衍射的原理图)实验预习部分【实验步骤和注意事项】 】 实验预习部分

一、 巩固分光计的结构(P 197 ,图25-10 ) 载物台 6 7 25 望远镜11 12 15 16 17 平行光管2 27 调节分光计,要求达到(验调节步骤参阅实验25 ) ⑴⑴望远镜聚焦于无穷远,且其光轴与仪器转轴垂直。 ⑵⑵平行光管产生平行光,且其光轴与望远镜光轴同轴等高,狭缝为宽度在望远镜视场中约为1 mm (狭缝宽度不当应由教师调节) 二、光栅位置的调节 1 、光栅平面与平行光管轴线垂直 ①①转动望远镜使竖直叉丝对准 。 ,然后固定望远镜位置。 ②放置光栅时光栅面要垂直

。 ③③调节 螺丝直到望远镜中看到光栅面反射回来的绿色十字叉丝像与 重合。 2 、光栅上狭缝与仪器转轴平行。 松开望远镜止动螺钉,向左(或向右)转动望远镜,观察各谱线,调节被螺丝使各谱线都被分划板视场中央的水平叉丝平分。 3 、反复调节直到1 和2 两个要求同时满足! 数据记录与处理【一】测定光栅常数 测出第一级绿光谱线的衍射角 绿=541 nm k=1 置望远镜位置 T 1 置望远镜位置 T 2 1 1 2 2 2 1 2 1 1- -41 1′= rad) (弧度) 10sin 绿 kd

光栅衍射实验实验报告

工物系 核11 敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,

(1)式中应取加号,即。以为偏向角,则由三 角形公式得 (3) 易得,当时,?最小,记为 ,则(2.2.1)变为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角,就可以根据(4) 算出波长。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 颜色 紫 绿 黄 红 波长/nm 404.7 491.6 577.0 607.3 407.8 546.1 579.1 612.3 410.8 623.4 433.9 690.7

光栅光谱仪的使用实验报告-董芊宇

实验报告 题目: 光栅光谱仪的使用 姓名董芊宇 学院理学院 专业应用物理学 班级2013214103 学号2013212835 班内序号22 2015年9 月

一. 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 二. 实验原理 1.闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(φ=90?)光栅衍射的一般特性。当入射角φ=90?时,衍射强度公式为 22 2 sin sin sin I u Nv A u v = ???? ? ????? (9.1) 光栅衍射强度仍然由单缝衍射因子和多缝干涉因子共同决定。只不过此时 ()sin sin a u π φθλ= + (9.2) ()sin sin d v πφθλ =+ (9.3) 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号,单缝衍射中央主 极大的条件是0u =,即sin sin φθ=-或?θ=-。将此条件代入到多缝干涉因子中,恰好满足0v =,即0级干涉最大条件。这表明单缝衍射中央极大与多缝衍射0级最大位置是重合的,光栅衍射强度最大的峰是个波长均不发生散射的0级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿形的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当于平面光栅的“缝”,与平面光栅一样,多缝干涉条件只取决于光栅常数,与锯齿角度、形状无关。所以当光栅常数及入射角与平面光栅一样时,两者0级极大的角度也一样。闪耀光栅的沟槽斜面相当于单缝,衍射条件与锯齿面法线有关。中央极大的衍射方向与入射线对称于齿面法线N ,于是造成衍射极大与0级干涉极大方向不一致。适当调整光栅参数,可以使光栅衍射的某一波长最强峰发生在1级或其他高级干涉极大的位置。 2.非平衡光辐射(发光) 处于激发态上的电子处于非平衡态。它向低能级跃迁时就会发光。设电子跃迁1 E 和0E ,发 射光子的能量为 10hc hv E E E λ ==-=? (9.4) 电子受光辐射激发到高能态上导致的发光成为光致发光。光致发光时,电子在不同能级间跃迁常见如下情况。 (1) 电子受光辐射激发,然后以无辐射情况跃迁到低能级。(无发射跃迁释放的能量转化成热能

光栅衍射实验报告

光栅衍射实验报告 字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期:20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为

光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入 射时衍射光路 图3光栅衍射光谱示意图图4载物台当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色 1=435.8nm;绿色 2=546.1nm;黄色两条 3=577.0nm和 4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比: (3)

光栅常数的实验报告

光栅常数的实验报告

————————————————————————————————作者:————————————————————————————————日期:

得分教师签名批改日期 一、实验设计方案 1、实验目的 1.1、了解光栅的分光特性; 1.2、掌握什么是光栅常数以及求光栅常数的基本原理与公式; 1.3、掌握一种测量光栅常数的方法。 2、实验原理 2.1、测量光栅常数 光栅是由许多等宽度a(透光部分)、等间距b(不透光部分)的平行缝组成 的一种分光元件。当波长为λ的单色光垂直照射在光栅面上时,则透过各狭缝的 光线因衍射将向各方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一 系列间距不同的明条纹。根据夫琅和费衍射理论,衍射光谱中明条纹的位置由下 式决定: (a+b)sinφk=kλ(k=0,±1,±2,…)(2.1.1) 式中a+b=d称为光栅常数,k为光谱级数,φk为第k级谱线的衍射角。见图2.1.2, k=0对应于φ=0,称为中央明条纹,其它级数的谱线对称分布在零级谱线的两侧。 如果入射光不是单色光,则由式(2.1.1)可知,λ不同,φk也各不相同, 于是将复色光分解。而在中央k=0,φk=0处,各色光仍然重叠在一起,组成中 央明条纹。在中央明条纹两侧对称地分布k=1,2,…级光谱线,各级谱线都按波 长由小到大,依次排列成一组彩色谱线,如图2.1.2所示。 根据式(2.1.1),如能测出各种波长谱线的衍射角φk,则从已知波长λ的大 小,可以算出光栅常数d; 反之,已知光栅常数d, 则可以算出波长λ。本试 验则是已知波长λ求光 栅常数。 2.2、注意事项 2.2.1、光源必须垂直 入射光栅,否则会引起较 大的误差。 2.2.2、所有装置尽量 处于同一水平面上,这样 才能发生明显的衍射。 图2.1.2 光栅衍射谱

光栅衍射实验报告

光栅衍射实验报告 【实验目的】 1、观察光栅衍射现象,了解光栅的主要特征,加深对光栅衍射原理的理解; 2、进一步熟悉和巩固分光计的调节使用; 3、学会测量光栅常数,以及用光栅测光波的波长。 【实验仪器】 光栅、分光计、氦灯 【实验原理】 实验装置如图4-16-1所示。光栅放置在分光计的载物台上,氦灯光经过分光计的平行光管垂直入射到光栅上,经光栅色散后,由分光计的望远镜光谱,由分光计的读数窗读出各衍射光谱的衍射角。 凡含众多全同单元,且排列规则、取向有序的周期结构,统称为光栅。一维多缝光栅是一个最简单也是最早被制成的光栅,如图4-16-2所

示,其透光的缝宽为a,挡光的宽度为b,即这光栅的空间周期为d =(a+b),亦称其为光栅常数。 其中d是光栅常数,j为衍射角,l为入射光波长,k为该明纹的级次。该式叫做光栅衍射方程。 如果用会聚透镜将衍射后的平行光会聚起来,透镜后焦面上将出现一系列亮线----谱线.在j= 0的方向上可以观察到零级谱线,其他级数的谱线对称分布在零级两侧. 【实验内容与步骤】 测量氦灯光经过光栅衍射后各个谱线的衍射角度,求出光栅的光栅常数。 1、仪器调节 本实验在分光计上进行.要使实验满足式(2)成立的条件,入射光应是平行光垂直入射,衍射后要用聚焦于无穷远的望远镜观察和测量。为了保证测量准确,衍射谱线的等高面应该与分光计转轴垂直。 所以,对分光计的调节要求是:

平行光管产生平行光; 望远镜聚焦于无穷远(即能接收平行光); 使平行光管和望远镜的光轴都垂直仪器的转轴。并要求光栅平面与平行光管光轴垂直;光栅的刻痕与仪器转轴平行。 视频介绍分光计的调整方法 (1)调节光栅平面(即刻痕所在平面)与平行光管光轴垂直 调节方法是:先用水银灯把平行光管的狭缝照亮,使望远镜目镜中分划板中心垂直线对准狭缝像。然后固定望远镜。把光栅放置在载物台上(如图六所示),根据目测尽可能做到使光栅平面垂直平分连线,而栅平面反射回来的亮“+”字像与分划板中心垂直线重合。此时光栅平面与望远镜光轴垂直应在光栅平面内,并使光栅平面大致垂直于望远镜。再用自准直法调节光栅平面,直到从光。再调节平行光管狭缝像与“+”字像重合,使光栅平面与平行光管光轴垂直,然后刻固定游标盘。 (2)调节光栅使其刻痕与仪器转轴平行

分光计和透射光栅测光波波长实验报告【最新版】

分光计和透射光栅测光波波长实验报告 【实验目的】 观察光栅的衍射光谱,掌握用分光计和透射光栅测光波波长的方法。 【实验仪器】 分光计,透射光栅,钠光灯,白炽灯。 【实验原理】 光栅是一种非常好的分光元件,它可以把不同波长的光分开并形成明亮细窄的谱线。 光栅分透射光栅和反射光栅两类,本实验采用透射光栅,它是在一块透明的屏板上刻上大量相互平行等宽而又等间距刻痕的元件,刻痕处不透光,未刻处透光,于是在屏板上就形成了大量等宽而又等间距的狭缝。刻痕和狭缝的宽度之和称为光栅常数,用d表示。 由光栅衍射的理论可知,当一束平行光垂直地投射到光栅平面上时,透过每一狭缝的光都会发生单缝衍射,同时透过所有狭缝的光又会彼此产生干涉,光栅衍射光谱的强度由单缝衍射和缝间干涉两因素共同决定。用会聚透镜可将光栅的衍射光谱会聚于透镜的焦平面上。凡衍射角满足以下条件 k=0,±1,±2, (10) 的衍射光在该衍射角方向上将会得到加强而产生明条纹,其它方向的光将全部或部分抵消。式(10)称为光栅方程。式中d为光栅的光栅常数,θ为衍射角,λ为光波波长。当k=0时,θ=0得到零级明

纹。当k=±1,±2…时,将得到对称分立在零级条纹两侧的一级,二级…明纹。 实验中若测出第k级明纹的衍射角θ,光栅常数d已知,就可用光栅方程计算出待测光波波长λ。 【实验内容与步骤】 1.分光计的调整 分光计的调整方法见实验1。 2.用光栅衍射测光的波长 (1)要利用光栅方程(10)测光波波长,就必须调节光栅平面使其与平行光管和望远镜的光轴垂直。先用钠光灯照亮平行光管的狭缝,使望远镜目镜中的分划板上的中心垂线对准狭缝的像,然后固定望远镜。将装有光栅的光栅支架置于载物台上,使其一端对准调平螺丝a,一端置于另两个调平螺丝b、c的中点,如图12所示,旋转游标盘并调节调平螺丝b或c,当从光栅平面反射回来的“十”字像与分划板上方的十字线重合时,如图13所示,固定游标盘。 物理实验报告·化学实验报告·生物实验报告·实验报告格式·实验报告模板 图12光栅支架的位置图13分划板 (2)调节光栅刻痕与转轴平行。用钠光灯照亮狭缝,松开望远镜紧固螺丝,转动望远镜可观察到0级光谱两侧的±1、±2级衍射光谱,调节调平螺丝a(不得动b、c)使两侧的光谱线的中点与分划板中央十字线的中心重合,即使两侧的光谱线等高。重复(1)、(2)的调节,直到两个条件均满足为止。 (3)测钠黄光的波长

实验光栅衍射实验

实验三 光栅衍射实验——光栅距的测定 一.实验目的 了解光栅的结构及光栅距的测量方法。 二.实验仪器 光栅、激光器、直尺与投射屏(自备)。 三.实验原理 光栅是光学色散元件,为一组数目极多的等宽、等间距平行排列的狭缝。激光照 射光栅时光栅的衍射特性可用公式:表示,根据这一公式可进 行光栅距的测定。 四.实验步骤: 1、激光器放入光栅正对面的支座中用紧定螺丝固定,接通激光电源后使光点对准光栅中点。 2、在光栅后面安放好投射屏,观察到一组有序排列的衍射光斑,与激光器正对的光斑为中央光斑,依次向两侧为一级、二级、三级…衍射光斑。如图(28)所示。请观察光斑的大小及光强的变化规律。 3.根据光栅衍射规律,光栅距D 与激光波长λ、衍射距离L 、中央光斑与一级光斑的间距S 存在下列的关系:(式中单位:L 、S 为mm ,λ为nm, D 为μm ) 根据此关系式,已知固体激光器的激光波长为650nm ,用直尺量得衍射距离L 、 S S L D 2 2+=λ

光斑距S,即可求得实验所用的光栅的光栅距。(测出五组数据,取平均值)4.测距实验: (1)按照光栅衍射公式,已知光栅距、激光波长、光斑间距,就可以求出衍射距离L。 (2)将激光对准衍射光栅中部,在投射屏上得到一组衍射光斑,由公式求出L。(3)调整投射屏与光栅的距离,并尽可能试用不同的激光器,将测得的各参数L、S、D、λ 填入表格,以验证公式。 五.实验数据 实验数据表格一 序号 1 2 3 4 5 L(mm) 134 194 264 294 364 S(mm) 5 8 10 11 13 D(μm) 17432.1 15775.9 17172.3 17384.9 18211.6 实验数据表格二 序号 1 2 3 4 5 S(mm) 12 10 8 7 6 测量L(mm) 323 271 217 190 161 实际L(mm) 318 264 211 185 159 六.实验结论 1.光斑的变化规律:从中央光斑到两侧光斑光强越来越弱,光斑越来越小; 2.实测距离L和由公式算出的理论值L基本接近,从而验证了光栅衍射公式; 3.通过此次实验使我了解了光栅的结构和光栅距的测量方法。培养了动手操作的能力,通过实际的操作,进一步加深了对光栅的了解。

光栅光谱仪实验报告

光栅光谱仪的使用 学号2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学)所在系(院)理学院 2017 年3 月14 日

光栅光谱仪的使用 张家梁 1 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 2实验原理 1. 光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和CCD 来接收出射光。

2. 光探测器 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。 CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的CCD 常用作图象传感和光学测量。由于CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角

大学物理实验报告系列之衍射光栅.doc

大学物理实验报告 【实验名称】衍射光栅 【实验目的】 1.观察光栅的衍射光谱,理解光栅衍射基本规律。 2.进一步熟悉分光计的调节和使用。 3.学会测定光栅的光栅常数、角色散率和汞原子光谱部分特征波长。 【实验仪器】 JJY1′型分光计、光栅、低压汞灯电源、平面镜等 【实验原理】 1.衍射光栅、光栅常数 图40-1中a为光栅刻痕(不透明)宽度,b为透明狭缝宽度。d=a+b为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本参数之一。 图40-1 图40-2 光栅衍射原理图图40-1中a为光栅刻痕(不透明)宽度,b为透明狭缝宽度。d=a+b为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本参数之一。2.光栅方程、光栅光谱 由图40-1得到相邻两缝对应点射出的光束的光程差为: ? ?sin sin ) (d b a= + = ? 式中光栅狭缝与刻痕宽度之和d=a+b为光栅常数,若在光栅片上每厘米刻有n条刻 痕,则光栅常数 n b a 1 ) (= +cm。?为衍射角。 当衍射角?满足光栅方程: λ ?k d= sin( k =0,±1,±2…) (40-1) 时,光会加强。式中λ为单色光波长,k是明条纹级数。 如果光源中包含几种不同波长的复色光,除零级以外,同一级谱线将有不同的 衍射角?。因此,在透镜焦平面上将 出现按波长次序排列的谱线,称为 光栅光谱。相同k值谱线组成的光 谱为同一级光谱,于是就有一级光 谱、二级光谱……之分。图40-3为 低压汞灯的衍射光谱示意图,它每 一级光谱中有4条特征谱线:紫色 λ1= 435.8nm,绿色λ2=546.1nm, 黄色两条λ3= 577.0nm和λ4=579.1nm。 3.角色散率(简称色散率) 从光栅方程可知衍射角?是波长的函数,这就是光栅的角色散作用。衍射光栅的色散率定义为: λ ? ? ? = D 上式表示,光栅的色散率为同一级的两谱线的衍射角之差??与该两谱线波长差?λ的比值。通过对光栅方程的微分,D可表示成: 图40-3

光栅衍射实验

一、 实验名称:光栅衍射实验 核51 粟鹏文 2015011744 二、实验目的: (1)进一步熟悉分光计的调整与使用; (2)学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3)加深理解光栅衍射公式及其成立条件。 三、 实验原理: 衍射光栅简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件。它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝,通常分为透射光栅和平面反射光栅。透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。而平面反射光栅则是在磨光的硬质合金上刻许多平行线。实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250~600条线。由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器的分光元件,用来测定谱线波长、研究光谱的结构和强度等。另外,光栅还应用于光学计量、光通信及信息处理。 1.测定光栅常数和光波波长 光栅上的刻痕起着不透光的作用,当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。 如图1所示,设光栅常数d=AB 的光栅G ,有一束平行光与光栅的法线成i 角的方向,入射到光栅上产生衍射。从B 点作BC 垂直于入射光CA ,再作BD 垂直于衍射光AD ,AD 与光栅法线所成的夹角为?。如果在这方向上由于光振动的加强而在F 处产生了一个明条纹,其光程差CA +AD 必等于波长的整数倍,即: ()sin sin d i m ?λ±= (1) 式中,λ为入射光的波长。当入射光和衍射光都在光栅法线同侧时,(1)式括号内取正号, 在光栅法线两侧时,(1)式括号内取负号。 如果入射光垂直入射到光栅上,即i=0,则(1)式变成: sin m d m ?λ= (2) 这里,m =0,±1,±2,±3,…,m 为衍射级次,?m 第m 级谱线的衍射角。 图1 光栅的衍射

光栅衍射(恢复)

光栅衍射实验 [实验目的] (1)进一步熟悉分光计的调整与使用; (2)学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3)加深理解光栅衍射公式及其成立条件。 [实验原理] 一、测定光栅常数和光波波长 光栅上的刻痕起着不透光的作用,当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经过透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。 如图1所示,设光栅常数d=AB 的光栅G ,有一束平行光与光栅的法线成i 角的方向,入射到光栅上产生衍射。从B 点作BC 垂直于入射光CA ,再作BD 垂直于衍射光AD ,AD 与光栅法线所成的夹角为?。如果在这方向上由于光振动的加强而在F 处产生了一个明条纹,其光程差CA +AD 必等于波长的整数倍,即: ()λ?k i d =±sin sin (4.10.1) 式中,λ为入射光的波长。当入射光和衍射光都在光栅法线同侧时,(4.10.1)式括号内取正号,在光栅法线两侧时,(4.10.1)式括号内取负号。 如果入射光垂直入射到光栅上,即i=0,则(4.10.1)式变成: λ?k d k =sin (4.10.2) 这里,k =0,±1,±2,±3,…,k 为衍射级次,?k 为第k 级谱线的衍射角。 图1 光栅的衍射 图2衍射光谱的偏向角示意图

2.用最小偏向角法测定光波波长 如图2所示,波长为λ的光束入射在光栅G 上,入射角为i ,若与入射线同在光栅 法线n 一侧的m 级衍射光的衍射角为沪,则由式(4.10.1)可知 ()λ?k i d =±sin sin (4.10.3) 若以△表示入射光与第m 级衍射光的夹角,称为偏向角, i ??=+ (4.10.4) 显然,△随入射角i 而变,不难证明i ?=时△为一极小值,记作δ,称为最小偏向角。并且仅在入射光和衍射光处于法线同侧时才存在最小偏向角。此时 2 i π ?== (4.10.5) 带入式(4.10.3)得 2sin 2 d m δ λ= m=0,±1,±2,… (4.10.6) 由此可见,如已知光栅常数d ,只要测出了最小偏向角δ,就可根据式(4.10.6)算出波长λ。 [实验仪器] 一、分光计 分光计的结构和调整方法见4.3节。在本实验的各项任务中,为实现平行光入射并测准光线方叫位角,分光计的调整应满足:望远镜适合于观察平叫行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 二、光栅 如前所述,光栅上有许多平行的,等距离的刻线。在本实验中应使光栅刻线与分光计主轴平行。如果光栅刻线不平行于分光计主轴,将会发现衍射光谱是倾斜的并且倾斜方向垂直于光栅刻痕的方图4.10.3光栅刻痕不平行于分光计向,但谱线本身仍平行于狭缝,如图4.10.3所示。显然这会影响测量结果。通过调整小平台,可使光栅刻痕平行于分光计主轴。为调节方便,放置光栅时应使光栅平面垂直于小平台的两个调水平螺钉的连线,如图4.10.4所示。 三、水银灯、 1. 水银灯谱线的波长 水银灯谱线的波长

相关主题
文本预览
相关文档 最新文档