当前位置:文档之家› 高性能纤维混凝土

高性能纤维混凝土

高性能纤维混凝土
高性能纤维混凝土

聚丙烯纤维高性能混凝土

学生姓名:

指导老师:

专业:高分子材料与工程

【摘要】高性能混凝土是集高强度、高耐久性和高工作性等于一体的新型绿色混凝土。混凝土结构的耐久性主要包括抗渗性、抗冻性、抗侵蚀性、抗碳化及抗碱-骨反应。本文通过分析聚丙烯纤维在高强混凝土中的作用以及使混凝土高性能化的作用,说明在混凝土中掺入适量的聚丙烯纤维有效地改善混凝土材料的物理力学性能,提高混凝土材料的耐久性。

【关键词】高性能混凝土聚丙烯纤维耐久性力学性能物理性能Abstract:High Performance Concrete is one of the new concrete with high strength, high durabilityand high workability. The durability of the construction mainly consists of penetration-proof quality, frost resistance, corrosion resistance ,anti-carbonation and alkali-bone reaction. Analysisingthe role of polypropylene fiber in high strength concrete and the high performance concrete explains that adding appropriate amount of polypropylene fiber concrete material effectively improve physical propertiesin concreteand the durability of concrete material.

Keywords:high performance concretepolypropylene fiberdurabilitymechanical propertiesphysicial properties

一、概述

纤维混凝土是近年来在国际与国内迅速发展的新型复合材料,其中尤以聚丙烯纤维混凝土发展最快,它以优良的抗渗、抗冻、抗冲磨、抗冲击等性能而广泛用于公路、机场、桥梁、水工、建筑等领域。目前,美国合成纤维混凝土的使用量己占混凝土总产值的7%,我国自20世纪90年代中期开始,已有数以千计的工程采用聚丙烯纤维混凝土,并取得显著成效。

二、高性能混凝土的主要特点:

高性能混凝土是指采用普通原材料、常规施工工艺,通过掺加一定的外加剂和矿物掺入料配制成具有高工作性、高强度、高耐久性的综合性能优良的混凝土。具体是指:

(1)混凝土拌合物成髙塑或流态适于泵送、不离析不泌水,便于浇注密实;

(2)在凝结硬化过程中和硬化后的体积稳定、水化热低、不产生微细裂缝、徐变小;

(3)有很高的抗渗性。其中高工作性是高性能混凝土必须具备的首要条件,即高流动性、高抗分离性、高间隙通过性、高填充性、高密实性、高稳定性,并同时具备低成本的技术经济合理性;

(4)能满足地域性差异造成的主要原材料变化及气候等因素的影响,适合各种施工环境。

三、聚丙烯纤维的特性

聚丙烯是一种结构规整的结晶型聚合物,为乳白色、无味、无毒。质轻的热塑性塑料,密度为0.9~0.91g/cm3,是现有树脂中最轻的一种,它不溶于水,耐热性能良好,在121℃~160℃连续耐热,熔点为165℃~170℃,聚丙烯几乎不吸水,与大多数化学品如酸、碱、盐不发生作用,物理机械性能良好,抗拉强度3.3×107~4.14×107Pa,抗压强度4.14×107~5.51×107Pa,伸长率200%~700%,因此聚丙烯有较好的加工性能,聚丙烯可纺、可塑、拉膜、吹膜以及真空成型等。

并不是任何未经专门处理的聚丙烯纤维都能用于制备纤维混凝土,混凝土材料用合成纤维应具有较高的耐碱性及水泥基体的分散性与粘结性能,普通的聚丙烯纤维存在着耐老化性能差、混凝土中搅拌易结成团等缺点,不能直接在工程中应用,只有经过改性处理的纤维,才能与水泥基材共同工作,早期的纤维混凝土所掺用的聚丙烯纤维大多采用聚丙烯膜裂纤维,20世纪80年代初,美国成功开发出单丝聚丙烯纤维,由于这种纤维成本低,以及改善混凝土效果显著,而广泛用在地下工程防水、工业与民用建筑屋面、地面以及公路、桥梁工程中。

四、对混凝土物理性能的影响

1、减少离析,改善和易性

普通混凝土从搅拌到硬化完成之前,经常会出现离析及泌水现象,由于聚丙烯纤维的掺入,均匀散布的纤维在混凝土中呈现三维网络结构,起到了支撑集料的作用,阻止了粗、细骨料的下沉,抑制了新拌混凝土的泌水和离析,从而改善了混凝土拌合物的和易性。

2、凝结时间

混凝土中加入低掺率的聚丙烯纤维,因粘聚性增大,坍落度会略有下降,与等强度不掺纤维的混凝土相比,初凝时间提前l~1.5h,终凝时间也略有提前,但是不会对混凝土的工作性能产生不利影响。

3、减少混凝土的收缩裂缝

混凝土的塑性收缩及干缩裂缝,主要是由于混凝土内部因为收缩而出现的拉应变超过了混凝土的极限应变值所致。众所周知,混凝土的极限拉伸率相当低,一般仅为0.01%~0.20%,而聚丙烯纤维的极限拉伸率高达15%~18%,当数千万根聚丙烯单丝纤维均匀散布于混凝土当中时,即可承受因混凝土收缩而产生的拉

应变,延缓或阻止混凝土内部微裂缝及表面宏观裂缝的发生发展。根据混凝土配合比、养护条件及合成纤维的品牌及掺量,聚丙烯纤维的掺入能使混凝土的非结构裂缝减少50%~90%。

4、提高混凝土的耐火性

高强混凝土由于密度大,在遇火灾经受高温后,内部的水蒸汽散发不出去,巨大的蒸汽内压使混凝土构件产生爆裂。在混凝土中掺入一定量的聚丙烯纤维,高温能使聚丙烯纤维熔化,在混凝土内部形成微细孔隙,散发水蒸汽,防止构件在火灾中发生爆裂。

四、对混凝土力学性能的影响

1、提高抗压、抗折强度

研究结果表明,混凝土中掺加聚丙烯纤维可明显提高混凝土的抗压、抗折等性能,其掺量在达到0.1%前强度增加较明显,在达到0.1%后随掺量的增加强度提高较慢。掺入少量低弹性模量的聚丙烯纤维促进混凝土抗压、抗折强度的增长,是纤维的补强效应,而非增强效应,主要在于聚丙烯纤维的阻裂效应,减少了裂缝产生和发展的几率,混凝土得以保持较好的完整性和连续性,从而间接地促进了强度增长。

2、提高抗冲击性及抗疲劳性

有资料表明,掺加聚丙烯纤维有助于提高混凝土的抗疲劳性及抗冲击性,这是由于纤维的阻裂作用所致,在混凝土受冲击荷载作用时,纤维可以阻止混凝土中裂缝的扩散与发展,间接地提高了混凝土的抗疲劳性及抗冲击性。国家建筑材料测试中心试验结果表明,掺有0.05%与0.1%纤维的砂浆抗冲击强度比素砂浆分别提高17.7%与25.8%。

3、提高韧性

聚丙烯纤维加入水泥基体,对基材的韧性有明显增进作用,既使掺加体积率仅为0.05%的聚丙烯纤维,也可以使混凝土受弯的韧性指数有明显提高,其韧性提高的主要机制是由于纤维使混凝土在达到抗折极限强度后仍然保留着高于素混凝土的裂后强度。

4、弹性模量

有资料显示,低掺率的聚丙烯纤维对混凝土的静态弹性模量并无明显影响,但对混凝土受压或受拉的弹性模量有比较大的影响。科研人员根据聚丙烯纤维增强混凝土弹性模量与混凝土强度等级建立关系,并取整数后得到设计应用的聚丙烯纤维增强混凝土的弹性模量值,与新颁布的国家标准规定混凝土受压或受拉的弹性模量值对应比较,其变动范围均低于设计规范规定的许用误差5%,相关数据表明,混凝土强度等级越高,聚丙烯纤维混凝土弹性模量值与设计规范规定值之间的差异越小,说明聚丙烯纤维尤其适用于在高强度等级的混凝土工程中发挥

作用。

5、变形性

聚丙烯纤维混凝土的弹性模量小于普通混凝土,但聚丙烯纤维混凝土的极限拉伸变形则明显高于普通混凝土,这是由于聚丙烯纤维的弹性模量较低,而其断裂伸长率大于普通混凝土断裂伸长率的缘故。聚丙烯纤维所具有的这些特性,有利于提高混凝土的延性,改善混凝土变形性能。聚丙烯纤维混凝土的收缩变形试验结果表明,掺入一定量的聚丙烯纤维可以明显地减少混凝土的收缩变形。其主要原因在于聚丙烯纤维的乱向分布形式大大有助于削弱混凝土砂浆的塑性收缩,收缩的能量被分散到每立方米数千万条具有高抗拉强度而弹性模量相对降低的纤维单丝上,从而极为有效地增加了混凝土的韧性,抑制了混凝土微细裂缝的产生和发展,同时,无数纤维丝形成的支撑体系,有效地保证了均匀泌水,阻碍早期塑性裂缝的产生。

五、对混凝土耐久性的影响

1、增加抗渗性

掺加聚丙烯纤维增加抗渗性的效果要大于强度的增加,这是因为纤维的阻裂作用不但减少了裂缝的数量,裂缝的长度和宽度,而且降低了生成贯通裂缝的可能性,同时,呈三维乱向分布的纤维也起到阻断混凝土内毛细作用效果。根据国家建筑材料测试中心测试结果,0.05%掺量的聚丙烯纤维混凝土在1.2MPa水压作用下,与同强度(28d龄期)未掺纤维混凝土比较,抗渗性提高70%。

2、抗冻性

加入聚丙烯纤维可以有效提高混凝土的抗冻能力,这主要是由于当有纤维存在时,可减少多次冻融循环而引起的混凝土内的抗拉集中应力,阻止了微裂缝的进一步扩展,另外,由于混凝土抗渗性的提高,也有利于改善其抗冻性。

掺入聚丙烯腈等合成纤维对混凝土低温和抗冻融性能的作用机能不同于引

气剂。首先,纤维混凝土含气量增大,缓解了低温循环过程中的静水压力和渗透压力;其次,数千万根微细纤维改善了混凝土内在品质,减少了内部缺陷数量,降低了原生裂隙尺度,提高了混凝土的抗拉极限应变和断裂能等抗拉性能;另外,聚丙烯腈纤维的弹性模量随温度的降低而提高的特性对纤维混凝土低温环境下

抵抗冻胀破坏具有正面加强效应;最后,由于聚丙烯腈纤维直径小,单位重量的纤维数量庞大(每克约876000)根),纤维间距小,增加了混凝土冻融损伤过程中的能量损耗,有效地抑制了混凝土的冻胀开裂,有益于混凝土低温环境下的强度增长和抗冻融耐久性的提高。

3、抗碳化性

混凝土碳化的关键因素是空气中的CO2。渗透到混凝土体内,与其碱性物质发生化学反应,要提高混凝土抗碳化性能就必须提高混凝土的防裂性能,切断空

气渗入渠道,聚丙烯纤维在混凝土中的作用并不直接影响混凝土的碳化速度,只是由于掺加纤维的原因,使得钢筋的保护层变得更加完善,从而间接地起到延缓混凝土碳化作用。

4、抗碱骨料反应性

治理碱骨料反应的关键之一是阻水、外界不供给混凝土水分,则碱骨料反应中产生的胶体停止膨胀,破坏消失,聚丙烯纤维抗碱骨料反应性,从本质上来说也是通过减少混凝土结构当中各种裂缝以提高混凝土抗渗性途径实现的。

六、合成纤维的掺量

综合考虑经济原因,聚丙烯纤维用于混凝土的掺量为0.7~1.5kg/m3,用于砂浆的掺量为0.7~0.9kg/m3。根据砂、石、料、水泥用量的变化,及抗裂要求,可适当增加或减少掺量,最高掺量1.8kg/m3,最低掺量0.5kg/m3。

七、结语

目前,我国应用聚丙烯纤维混凝土的工程有广州新中国大厦、重庆世界贸易中心、北京大运村、武汉长江二桥、三峡工程等都使用了聚丙烯纤维混凝土,并取得了理想效果。

大量的工程实践及试验研究表明,低掺率的聚丙烯纤维混凝土综合性能优于普通混凝土,可以满足某些特殊工程的需要,聚丙烯纤维在混凝土中以物理方式发挥作用,因此,它能够用以任何工程场合,尤其适用于刚性防水混凝土、大体积混凝土,高强混凝土等,施工方法简单,安全无害,质量性能可靠,具有明显的技术、经济效益。

参考文献:

孙家瑛大口径排水管用高性能混凝土渗透对耐久性影响,山东建材学院学报1999

冯乃谦高性能混凝土1996

冯乃谦高性能混凝土结构北京:机械工业出版社,2004.

朱清江高强高性能混凝土研制及应用中国建材工业出版社

朱江,苏健波,李士恩聚丙烯纤维混凝土的力学性能研究广西工学院学报;2000年02期

玄武岩纤维混凝土的特性及应用

Ana lysis on Ulti m a te Bear i n g Capac ity of Rock Founda ti on HOU Da 2wei (Chongqing Survey I nstitute,Chongqing 400020,China ) Abstract:Many high 2risie buildings are based on r ock foundati on in mountainous city,s o how to evaluate the bearing capacity of r ock foundation is the core for r ock foundation engineering . In view of the influence of central major stress and lithology and rock structure characteristics on rock foundati on bearing capacity,this paper equates j ointing r ock with discontinuous mediu m characteristics to continuous medium,and then seeks for s olution with instant fricti on angle and slip 2line field theory . It establishes analysis model for ulti m ate bearing capacity of r ock foundation and verifies feasibility of the model through calculati on .Key words:r ock foundation;ulti m ate analysis;slip 2line field theory;bearing capacity 收稿日期:2009-02-23 作者简介:武 迪(1984-),男,山东泰安人。硕士研究生,主 要从事钢筋混凝土结构方面的研究。E 2mail:wudi610@ https://www.doczj.com/doc/d18824659.html, 。 玄武岩纤维混凝土的特性及应用 武 迪,邵式亮 (空军工程大学工程学院,西安 710038) 摘 要:介绍玄武岩纤维的发展及特点,归纳、总结了玄武岩纤维混凝土(BFRC )的主要特征。 对近年来玄武岩纤维在混凝土结构的抗冲击、加固补强、耐腐蚀性和动态能量耗散等方面的研究进行了阐述,有助于玄武岩纤维混凝土在实际工程中的推广应用。 关键词:玄武岩纤维混凝土;增强增韧;加固补强;动态能量耗散中图分类号:T U5281572 文献标志码:A 文章编号:1003-8825(2010)02-0037-03 0 引言 玄武岩纤维是一种由火山喷发形成的玄武岩矿石经高温熔融、拉丝而成的无机纤维材料,其外观为深褐色,色泽与碳纤维相似。作为国内最近几年刚刚研发出的一种新型纤维材料,玄武岩纤维具有独特的力学性能、良好的稳定性以及较高的性价比,这使其成为一种良好的混凝土增强材料,在建筑领域有着广阔的应用前景。 1 玄武岩纤维111 发展概况 玄武岩纤维于1953~1954年由前苏联莫斯科玻璃和塑料研究院开发。1985年,第一台工业化生产炉于乌克兰纤维实验室(TZI )建成投产,采用200 孔漏板、组合炉拉丝工艺。在2002年前,前苏联诸国每年大约有500t 连续玄武岩纤维产品,主要用于军工行业。现今玄武岩纤维生产池窑已发展到年产 700t 规模,使用400孔漏板拉丝技术 [1] 。俄罗斯与 乌克兰在玄武岩纤维研究、生产及制品的开发上,代表了世界的最高水平,其生产的玄武岩纤维产品性能稳定,且已开发出了上百个品种。美国对玄武岩纤维的研究虽然起步较晚,但其生产池窖现已发展到 1000~1500t 规模,使用800孔漏板拉丝技术。近 几年来,德国、日本等国也相继展开了这方面的研究工作,并取得了一系列新的应用研究成果。目前,我国玄武岩纤维的研究开发、制备和应用尚处于较为初级的阶段,但部分技术已经达到了国际先进水平,且其应用领域也在不断拓展。 112 主要特点 玄武岩纤维与碳纤维、芳纶纤维等其它高科技纤维相比,具有很多独特的优点。它具有很好的耐温性能,可在-269~700℃范围内连续工作;有优良的化 ? 73?武 迪,等;玄武岩纤维混凝土的特性及应用

超高性能混凝土(UHPC)简介及应用

超高性能混凝土(UHPC)简介及应用 超高性能混凝土(UHPC)最早是由法国一家名叫布依格的承包商公司于上个世纪90年代被作为活性粉末混凝土被引入使用的。自此之后,法国、日本、马来西亚、韩国及其他很多国家采用该材料将其应用于桥梁等工程领域,并取得了积极有效的重要进展。法国于2001年第一次采用超高性能混凝土(UHPC)材料建造了铁路桥梁,其中梁的截面为由5个双T梁截面构成的π形状所构成。 在美国,由美国高速公路管理局(FHWA)及地方高校的资助下,许多州的交通运输部门都在开发研究超高性能混凝土(UHPC)在桥梁工程中的应用。特别值得一提的是,过去十年来,弗吉尼亚州已经采用超高性能混凝土(UHPC)生产了工字型梁,爱德华州已经采用超高性能混凝土(UHPC)进行了两座桥的建造,其中一座是用的超高性能混凝土(UHPC)梁、另一座用的是超高性能混凝土(UHPC)桥面板。实际上,美国一些公司已经开始在市场上进行成袋打包并销售超高性能混凝土(UHPC)了。然而,由于这些成袋打包的超高性能混凝土(UHPC)价格非常昂贵,它只能被局限应用于弗吉尼亚州及爱德华州那些有美国高速公路管理局(FHWA)资助资金的示范性项目中,并且还主要是应用于预制混凝土构件之间的连接接缝区域,使用范围非常有限。 为了提升或促进超高性能混凝土(UHPC)在美国中的应用,需要满足两个基本的条件:1)相对于打包成袋的超高性能混凝土(UHPC)拌合料价格为23500元/ m3,超高性能混凝土(UHPC)的原材料价格须被控制并减少到不足1000美元/码(折合人民币为9400元/m3)才

行;2)亟需开发一种新的结构体系出来,其中该结构体系能充分利用超高性能混凝土(UHPC)的材料特性,从而使其结构构件的自重可以减少降低至少50%而同时还能满足强度、刚度及耐久性等要求。美国PCI致力于通过挖掘和整合相关资源来满足这两个条件,主要是通过资助一个由许多个人公司(Wiss, Janney, Elstner)及相关高校(诸如内布拉斯加林肯大学、北卡莱罗纳州立大学、俄亥俄州州立大学)发起的一个实施课题项目。 目前该课题项目的第一个阶段已经完成结束,相关的报告内容也已公布给PCI生产商成员会员。两个既定的目标即超高性能混凝土(UHPC)的原材料成本低廉且结构构件性能优化都得到了很好的满足。当这个课题项目的目标得以实现的时候,可以预见,基于其较低的成本价格,超高性能混凝土(UHPC)的相关产品是相当具有竞争力的。已经做了一些足尺比例的桥梁构件和房屋构件试件并且做了相关的试验研究。大多数构件产品破坏时其承载力都显著高于其所需要的承载力。而且,相对于传统的混凝土而言,该材料是类似于陶瓷的,为零孔隙率且可具有上百年乃至几百年的使用寿命。该PCI项目的第二阶段目前正在进行,包括足尺结构构件及整体结构的试验,目的是为了检验、细化、验证该课题项目第一阶段所起草制订的相关设计准则。 超高性能混凝土(UHPC)的主要组成成份为波兰水泥、附加水泥基材料、细砂、纤维增强复合材料、高比例减水剂等,见图1所示。

钢纤维混凝土配合比

C50钢纤维混凝土配合比 1,设计依据及参考文献 《普通混凝土配合比设计规程》JGJ55-2000(J64-2000) 《公路桥涵施工技术规范》JTJ041-2000 《国内公路招标文件范本》之第二卷技术规范(1) 《混凝土配合比设计计算手册》——刘长俊主编,辽宁科学技术出版社 2,确定钢纤维掺量: 选定纤维掺入率P=1.5%, T0=(78.67*P)kg=78.67*1.5=118kg; 3,确定水灰比 取W/C=0.45 (水灰比一般控制在0.40-0.53); 4,确定用水量: 取W=215kg(用水量一般控制在180-220kg),施工中采用掺用UNF-2A型高效减水剂,掺量为水泥用量的1%,减水率达10%,但考虑钢纤维混凝土的和易性较差,且施工中容易结团,故在试配中不考虑其减水效果,在试拌过程中观察其坍落度及施工性能。 5,计算水泥用量: C O=W O/(W/C)=215/0.45=478kg; 6,确定砂率: 取S P=65%(从强度和稠度方面考虑,砂率在60%-70%之间); 7,计算砂石用量: 设a=2 V S+G=1000L-[(W O/ρw+C O/ρc+T O/ρt+10L*a)] =1000L-[(215/(1/L)+478/(3.1/L)+118/(7.85/L)+10L*2)] =1000L-404L=596Lkg; S O = V S+G * S P * ρs=596 * 0.65 * 2.67 = 1034kg; G O = V S+G * (1-S P)*ρs = 596*0.35*2.67kg/L=557kg;

8,初步配合比: C O:S O:G O:T O:W O:W外= 478 : 1034 : 557 : 118 : 215 : 4.78 kg/m3 = 1: 2.16 : 1.17 : 0.25: 0.45 : 1% 9、混凝土配合比的试配、调整与确定: 试拌材料用量为: 水泥:砂:碎石:钢纤维:水:减水剂 = 11: 23.76: 12.87:2.75:4.95:0.11 kg; 拌和后,坍落度为10mm,能符合设计要求。观察拌和物施工性能: 棍度:中;保水性:少量;含砂:多; 拌和物在拌和过程中比普通砼困难,较难搅拌,但经机械振捣易密实。 6、经强度检测(数据见试表),28天抗压符合试配强度要求,故确定该配合比为基准配合比,即: 水泥: 砂: 碎石: 钢纤维: 水: 减水剂 = 11 : 23.76 : 12.87 : 2.75 : 4.95 : 0.11 kg = 1 : 2.16 : 1.17 : 0.25 : 0.45 : 1% = 478 : 1034 : 557 : 118 : 215 : 4.78kg/m3

钢纤维混凝土配合比

l—2 钢纤维混凝土的配合比设计 钢纤维混凝土虽已在各种工程领域得到较广泛的应用,但对钢纤维混凝土拌合料的配合比设计,尚未建立起合理而成热的设计方法。国外有关学者,曾介绍过关于钢纤维混凝土配合比方面的资料,提出一些参考用表和经验配合比。国内有关单位”,曾提出要以抗折强度为指标进行钢纤维混凝土配合比设计,并通过试验,建立抗折强度与各主要影响因素之间量的关系,有利于配合比的设计。但多数仍按普通水泥混凝土的配合比设计方法,以混凝土的抗压强度确定拌合料的配合比,只是适当调整砂率、用水量和水泥用量。按此确定配合比时,为了获得较高的抗折强度,势必使抗压强度也相应提高,这是不必要的。钢纤维混凝土配合比的设计,应根据对钢纤维混凝土的使用要求和钢纤维混凝土配合比的特点进行合理的设计。 1-2-11-2-1钢纤维混凝土配合比设计的要求和特点 一、钢纤维混凝土配合比设计的要求 钢纤维混凝土配合比设计的目的是将其组成的材料,即钢纤维、水泥、水、粗细骨料及外掺剂等合理的配合,使所配制的钢纤维混凝土应满足下列要求: 1. 满足工程所需要的强度和耐久性。对建筑工程一般应满足抗压强度和抗拉强度的要求对路(道)面工程一般应满足抗压强度和抗折强度的要求。 2.配制成的钢纤维混凝土拌合料的和易性应满足施工要求。 3.经济合理。在满足工程要求的条件下,充分发挥钢纤维的增强作用,合理确定钢纤 维和水泥用量,降低钢纤维混凝土的成本。 二、钢纤维混凝土配合比设计的特点 钢纤维混凝土的配合比设计与普通水泥混凝土相比,其主要特点是: 1.在水泥混凝土的配合拌合料中掺入钢纤维,主要是为了提高混凝土的抗弯、抗拉、抗疲劳的能力和韧性,因此配合比设计的强度控制,当有抗压强度要求时,除按抗压强度控制外,还应根据工程性质和要求,分别按抗折强度或抗拉强度控制,确定拌合料的配合比,以充分发挥钢纤维混凝土的增强作用,而普通水泥混凝土一般以抗压强度控制(道路混凝土以抗折强度控制)来确定拌合料的配合比。 2.配合比设计时,应考虑掺人拌合料中的钢纤维能分散均匀,并使钢纤维的表面包满砂浆,以保证钢纤维混凝土的质量。 3.在拌合料中加入钢纤维后,其和易性有所降低。为了获得适宜的和易性,有必要适当增加单位用水量和单位水泥用量。 1-2-2钢纤维混凝土配合比设计原理与方法。 钢纤维混凝土配合比设计的基本方法是建立在钢纤维混疑土拌合料的特性及其硬化后的强度基础上的。其主要目的是根据使用要求,合理确定拌合料的水灰比,钢纤维体积率、单位用水量和砂率等四个基本参数,由此,即可计算出各组成材料的用量。 在确定基本参数时,既要满足抗压强度要求,又要符合抗折强度或抗拉强度要求,以及和易性、经济性要求。 试验表明,钢纤维混凝土的抗压强度、抗折强度和抗拉强度与水泥标号;水灰比、钢纤维体积率和长径比、砂率、用水量等因素有关,其中水灰比和水泥标号对抗压强度影响最大,其他因素影响较小。即钢纤维体积率和长径比、水泥标号却对抗折强度和抗拉强度影响最大,砂率和用水量对和易性影响较大。因此,采用以抗压强度与水灰比,水泥标号的关系来确定水灰比,然后用抗折强度或抗拉强度确定

玄武岩纤维水泥混凝土应用技术手册

玄武岩纤维水泥混凝土 应用技术手册 玄武岩纤维水泥混凝土 应用技术手册 1、短切玄武岩纤维 玄武岩纤维是一种无机纤维材料,用纯天然火山喷出岩为原料,经1450~

1500℃高温熔融后快速拉制而成的连续纤维,其外观为金褐色,具有卓越的综合性能和较低的价格,在讲究绿色、环保、节约资源的今天,玄武岩纤维是一种理想的材料,具有广阔的应用领域和发展前景。短切玄武岩纤维是由相应的连续玄武岩纤维基材为原料短切而成的长度小于50mm,能均匀分散在水泥混凝土中的无机矿物纤维。 2、短切玄武岩纤维的特性 (1)原材料的天然性。由于生产连续玄武岩纤维的原料取决于天然的火山喷出岩,除了它与生俱来就具有很高的化学稳定性和热稳定外,其中并没有与人类健康有害的成分。 (2)性能的综合性。玄武岩纤维是名副其实的“多能”纤维。譬如既耐酸又耐碱、既耐低温又耐高温,既绝热电绝缘又隔音,拉伸强度超过大丝束碳纤维,断裂延伸率比小丝束的碳纤维还要好,具有较高的抗压缩强度、剪切强度和在耐恶劣环境中使用的适应性、抗老化性等有优异的综合性能。 (3)成本的低廉性。水泥混凝土用的玄武岩纤维价格明显低于钢纤维、碳纤维等,和合成纤维相当。 (4)天然的相容性。玄武岩纤维是典型的硅酸盐纤维,用它与水泥混凝土和砂浆混合时很容易分散,新拌玄武岩纤维混凝土的体积稳定、和易性好、耐久性好,具有优越的耐高温性、防渗抗裂性和抗冲击性。 除了它具有强度高、防渗抗裂、耐高温、耐酸碱腐蚀能力强、抗冲击性好等一系列优点外,它还在我国分布较广,价格便宜,造价低,还兼有绿色、环保、节约资源等优势,产品符合国家相关产业政策。且大量试验证明玄武岩纤维对混凝土性能有很好的改善作用,与钢纤维和合成纤维相比,玄武岩纤维的结合性更好,玄武岩纤维抗腐蚀耐锈蚀性均好于其它纤维。因此,玄武岩纤维用于水泥混凝土中有其自身的优势和特点,相比钢纤维混凝土、玻璃纤维混凝土、合成纤维混凝土和碳纤维混凝土较有明显的性能、价格等综合优势 3、玄武岩纤维的技术指标 随着国家863计划“玄武岩纤维及其复合材料”等课题的研发完成,《水泥混凝土和砂浆用玄武岩纤维》(GB/T 23265-2009)国家标准及《公路工程玄武岩纤维及其制品第1部分:玄武岩短切纤维》(JT/T )交通部标准的实施,玄

高性能混凝土的研究与发展现状

高性能混凝土的研究与发展现状 学生姓名: 指导教师: 专业年级: 完稿时间: XX大学

高性能混凝土的研究与发展现状 摘要 随着科学技术的进步,现代建筑不断向高层、大跨、地下、海洋方向发展。高强混凝土由于具有耐久性好、强度高、变形小等优点,能适应现代工程结构向大 跨、重载、高耸发展和承受恶劣环境条件的需要,同时还能减小构件截面、增大使用 面积、降低工程造价,因此得到了越来越广泛的应用,并取得了明显的技术经济效益。 关键词:高性能混凝土性能发展应用前景 装 订 线

目录 一高性能混凝土的发展方向 (1) 1.1轻混凝土 (1) 1.2绿色高性能混凝土 (1) 1.3超高性能混凝土 (1) 1.4智能混凝土 (1) 二高性能混凝土的性能 (1) 2.1耐久性 (1) 2.2工作性 (1) 2.3力学性能 (1) 2.4体积稳定性 (1) 2.5经济性 (2) 三高性能混凝土质量与施工控制 (2) 3.1高性能混凝土原材料及其选用 (2) 3.2配合比设计控制要点 (3) 四高强高性能混凝土的应用与施工控制 (3) 4.1高强高性能混凝土的应用 (3) 4.2高性能混凝土的施工控制 (4) 五高性能混凝土的特点 (4)

5.1高耐久性能 (4) 5.2高工作性能 (5) 5.3高稳定性能 (5) 六高性能混凝土的发展前景 (5) 参考文献 (6)

一高性能混凝土的发展方向 1.1轻混凝土是指表观密度小于1950kg/m3的混凝土。可分为轻集料混凝土、多孔混凝土和无砂大孔混凝土三类。 1.2绿色高性能混凝土水泥混凝土是当代最大宗的人造材料,对资源、能源的消耗和对环境的破坏十分巨大,与可持续发展的要求背道而驰。绿色高性能混凝土研究和应用较多的是粉煤灰混凝土,粉煤灰混凝土与基准混凝土相比,大大提高了新拌混凝土的工作性能,明显降低混凝土硬化阶段的水化热,提高混凝土强度特别是后期强度而且,节约水泥,减少环境污染,成为绿色高性能混凝土的代表性材料。 1.3超高性能混凝土如活性粉末混凝土,其特点是高强度,抗压强度高达300MPa,且具有高密实性,已在军事、核电站等特殊工程中成功应用。 1.4智能混凝土是在混凝土原有的组分基础上复合智能型组分,使混凝土材料具有自感知、自适应、自修复特性的多功能材料,对环境变化具有感知和控制的功能。随着损伤自诊断混凝土、温度自调节混凝土、仿生自愈合混凝土等一系列机敏混凝土的出现,为智能混凝土的研究、发展和智能混凝土结构的研究应用奠定了基础。 二高性能混凝土的性能 2.1耐久性。高效减水剂和矿物质超细粉的配合使用,能够有效的减少用水量,减少混凝土内部的空隙,能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。 2.2工作性。坍落度是评价混凝土工作性的主要指标,HPC的坍落度控制功能好,在振捣的过程中,高性能混凝土粘性大,粗骨料的下沉速度慢,在相同振动时间内,下沉距离短,稳定性和均匀性好。同时,由于高性能混凝土的水灰比低,自由水少,且掺入超细粉,基本上无泌水,其水泥浆的粘性大,很少产生离析的现象。 2.3力学性能。由于混凝土是一种非均质材料,强度受诸多因素的影响,水灰比是影响混凝土强度的主要因素,对于普通混凝土,随着水灰比的降低,混凝土的抗压强度增大,高性能混凝土中的高效减水剂对水泥的分散能力强、减水率高,可大幅度降低混凝土单方用水量。在高性能混凝土中掺入矿物超细粉可以填充水泥颗粒之间的空隙,改善界面结构,提高混凝土的密实度,提高强度。 2.4体积稳定性。高性能混凝土具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。

钢纤维混凝土在钢筋混凝土

钢纤维增强钢筋网混凝土(SFRC) 在桥面铺装改造工程中的应用 李永鳞 (江苏扬子大桥股份有限公司江苏靖江 214500) 摘要:桥面铺装层常被设计和施工所忽视,往往造成桥面铺装开裂等病害,引起桥梁使用质量下降,成为桥梁结构安全隐患,降低使用寿命。钢纤维混凝土作为桥面铺装材料及铺装层的修复材料是目前国内外纤维混凝土较为成功的领域,江阴大桥南接线引桥采用剪切异型钢纤维混凝土修复桥面铺装,成功解决了桥面铺装开裂、渗水等问题。本文介绍了剪切异型钢纤维混凝土的优点、施工要求和使用效果。 关键词:钢纤维桥面铺装改造应用 1 钢筋混凝土桥梁桥面铺装存在的问题 桥面铺装层不是桥梁的主体结构,因而常被设计和施工所忽视,所以桥面铺装经常出现混凝土强度不足,发生裂缝、表面蜂窝、麻面等病害;同时,道路超载现象屡禁不止,桥面铺装层在重车荷载作用下容易开裂、破碎,引起混凝土渗水,腐蚀主梁混凝土,锈蚀钢筋,从而使桥梁的使用质量下降,使用寿命降低,严重的甚至造成桥梁的破坏。桥面铺装层一旦损坏,修复非常麻烦,所以重视铺装结构,采用高质量的桥面铺装材料,保证桥面铺装的良好使用状态非常重要。 2 钢纤维增强钢筋网混凝土的优点、作用 钢纤维混凝土作为桥面铺装材料以及铺装层的修复材料也是目前国内外纤维混凝土较为成功的领域。钢纤维增强钢筋网混凝土是由钢筋、钢纤混凝土复合而成的高性能混凝土材料,简称为SFRC,研究表明,钢纤维混凝土具有比钢筋混凝土更为优良的抗拉性能、抗裂度,其耐磨性能,其韧性和疲劳性能为同等级普通混凝土的数倍,在公路、机场、桥梁、建筑等工程领域得到广泛的应用。大量工程实践证明,钢纤维增强钢筋混凝土大大提高了桥面铺装的抗裂度、耐磨耐久性,延长桥梁的使用寿命。采用钢纤维增强钢筋混凝土作为桥面铺装对于减少桥面铺装病害效果明显,有着良好的经济效益。 2.1钢纤维混凝土的力学强度 2.1.1抗压强度 钢纤维混凝土虽受压强度较普通混凝土增加不明显,但受压韧性却大幅度提高了。这是由于钢纤维的存在,增大了试件的压缩变形,提高了受压破坏时的韧性。从宏观上呈现,钢纤维混凝土受压破坏时,没有明显的碎块或崩落,仍保持这整体性。 2.1.2抗剪强度 钢纤维混凝土具有优异的抗剪性能,对提高钢筋混凝土结构抗剪能力有重要意义。通常在钢筋混凝土的构件中,其抗剪承载力主要靠箍筋和弯起钢筋承担,这些筋多了,不仅要提高工程投资,而且施工很不方便,尤其对薄壁、抗震结构和复杂形状的特种结构,问题则尤为突出。因此采用钢纤维混凝土是提高结构抗剪能力的有效途径。

玄武岩纤维水泥混凝土应用技术手册

玄武岩纤维水泥混凝土应用技术手册 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

玄武岩纤维水泥混凝土 应用技术手册 玄武岩纤维水泥混凝土 应用技术手册 1、短切玄武岩纤维 玄武岩纤维是一种无机纤维材料,用纯天然火山喷出岩为原料,经1450~1500℃高温熔融后快速拉制而成的连续纤维,其外观为金褐色,具有卓越的综合性能和较低的价格,在讲究绿色、环保、节约资源的今天,玄武岩纤维是一种理想的材料,具有广阔的应用领域和发展前景。短切玄武岩纤维是由相应的连续玄武岩纤维基材为原料短切而成的长度小于50mm,能均匀分散在水泥混凝土中的无机矿物纤维。 2、短切玄武岩纤维的特性 (1)原材料的天然性。由于生产连续玄武岩纤维的原料取决于天然的火山喷出岩,除了它与生俱来就具有很高的化学稳定性和热稳定外,其中并没有与人类健康有害的成分。 (2)性能的综合性。玄武岩纤维是名副其实的“多能”纤维。譬如既耐酸又耐碱、既耐低温又耐高温,既绝热电绝缘又隔音,拉伸强度超过大丝束碳纤维,断裂延伸率比小丝束的碳纤维还要好,具有较高的抗压缩强度、剪切强度和在耐恶劣环境中使用的适应性、抗老化性等有优异的综合性能。

(3)成本的低廉性。水泥混凝土用的玄武岩纤维价格明显低于钢纤维、碳纤维等,和合成纤维相当。 (4)天然的相容性。玄武岩纤维是典型的硅酸盐纤维,用它与水泥混凝土和砂浆混合时很容易分散,新拌玄武岩纤维混凝土的体积稳定、和易性好、耐久性好,具有优越的耐高温性、防渗抗裂性和抗冲击性。 除了它具有强度高、防渗抗裂、耐高温、耐酸碱腐蚀能力强、抗冲击性好等一系列优点外,它还在我国分布较广,价格便宜,造价低,还兼有绿色、环保、节约资源等优势,产品符合国家相关产业政策。且大量试验证明玄武岩纤维对混凝土性能有很好的改善作用,与钢纤维和合成纤维相比,玄武岩纤维的结合性更好,玄武岩纤维抗腐蚀耐锈蚀性均好于其它纤维。因此,玄武岩纤维用于水泥混凝土中有其自身的优势和特点,相比钢纤维混凝土、玻璃纤维混凝土、合成纤维混凝土和碳纤维混凝土较有明显的性能、价格等综合优势 3、玄武岩纤维的技术指标 随着国家863计划“玄武岩纤维及其复合材料”等课题的研发完成,《水泥混凝土和砂浆用玄武岩纤维》(GB/T 23265-2009)国家标准及《公路工程玄武岩纤维及其制品第1部分:玄武岩短切纤维》 (JT/T 776.1-2010)交通部标准的实施,玄武岩纤维在水泥混凝土中的得到了全面的应用。短切玄武岩纤维的指标应满足上述标准的要求,具体见下表: 表2.3.1 短切玄武岩纤维的性能指标

钢纤维混凝土配合比设计及质量控制

钢纤维混凝土配合比设计及质量控制 [摘要]钢纤维混凝土克服了普通混凝土抗拉强度低、极限延伸率小、脆性等缺点,具有优良的抗拉、抗弯、抗剪、阻裂、耐疲劳、高韧性等性能,通过在桥面铺装中的应用,总结了钢纤维混凝土施工方法,技术要求及有关注意事项,为钢纤维混凝土的推广应用提供了经验。 [关健词]钢纤维配合比设计质量控制 钢纤维混凝土是以水泥净浆、砂浆或混凝土为基体,以金属纤维增强材料组成的水泥基复合材料。它是将短而细的,具有高抗拉强度、高极限延伸率、高抗碱性等良好性能的金属纤维均匀分散在混凝土基体中形成的一种新型建筑材料。 桥面铺装层作为桥梁的非主体结构,通常被设计和施工所忽视,长期车辆荷载的作用,是造成桥面开裂、损坏的主要原因,从而影响桥梁的使用质量,降低使用寿命,在桥面铺装层使用钢纤维混凝土将会有效地解决桥面使用过程中容易出现的质量问题。

一、钢纤维混凝土配合比设计的要求 钢纤维混凝土配合比设计的目的是将组成材料,即钢纤维、水泥、水、粗细集料及外掺剂合理配合,使配制的钢纤维混凝土能够最大限度的满足施工和工程使用要求。 (1)满足公路桥梁抗压强度和抗折强度要求,提高桥面的耐久性能; (2)使配制的钢纤维混凝土有较好的和易性,方便和满足施工要求; (3)充分发挥钢纤维混凝土的特点,合理确定钢纤维及水泥用量,最大限度地降低工程成本。 二、原材料质量要求

钢纤维:表面应洁净无锈无油,无粘结成团现象,保证钢纤维与混凝土的粘结强度,尺寸和抗拉强度符合技术要求;单根钢纤维丝的最低抗拉强度800N/㎜ 2,掺加量不超过70㎏/M 3。 水泥:采用32.5级或42.5级普通硅酸盐水泥。 碎石:应采用石质坚硬、清洁、不含风化颗粒、表面粗糙,近立方体颗粒的碎石。 细集料:宜采用天然中粗砂或机制砂。细集料的洁净程度,天然砂以小于0.075㎜含量的百分比表示,机制砂以砂当量或亚甲蓝值表示,其质量必须满足规范的要求。 水:无污染的自然水或自来水。 外加剂:宜选用优质减水剂,对抗冻性有明确要求的钢纤维混凝土宜选用引气型减水剂。 三、钢纤维混凝土配合比设计步骤

混凝土和增强材料的发展和应用

混凝土及其增强材料的发展和应用-----------------------作者:

-----------------------日期:

摘要:对混凝土(高性能混凝土、活性微粉混凝土、低强混凝土、轻质混凝土、钢纤维混凝土、自密实混凝土、智能混凝土等)以及混凝土增强材料(非金属配筋、新型预应力钢棒等)近年的应用与发展,作了简要的论述. 关键词:结构材料混凝土 混凝土是现代工程结构的主要材料,我国每年混凝土用量约10亿m3,钢筋用量约2500万t,规模之大,耗资之巨,居世界前列。可以预见,钢筋混凝土仍将是我国在今后相当长时期内的一种重要的工程结构材料,物质是基础,材料的发展,必将对钢筋混凝土结构的设计方法、施工技术、试验技术以至维护管理起着决定性的作用。本文对构成钢筋混凝土的主要材料--混凝土及其增强材料的应用与发展,从工程应用角度作简要介绍。 1 混凝土 组成钢筋混凝土主要材料之一的混凝土的发展方向是高强、轻质、耐久(抗磨损、抗冻融、抗渗)、抗灾(地震、风、火〕、抗爆等。 1.1 高性能混凝土(high performance concrete, HPC) HPC是近年来混凝土材料发展的一个重要方向,所谓高性能:是指混凝上具有高强度、高耐久性、高流动性等多方面的优越性能。从强度而言,抗压强度大于C50的混凝土即属于高强混凝土,提高混凝土的强度是发展高层建筑、高耸结构、大跨度结构的重要措施。采用高强混凝土,可以减小截面尺寸,减轻自重,因而可获得较大的经济效益,而且,高强混凝土一般也具有良好的耐久性。我国己制成C100的混凝土。已有文献报道1),国外在试验室高温、高压的条件下,水泥石的强度达到662MPa(抗压)及64.7MPa(抗拉)。在实际工程中,美国西雅图双联广场泵送混凝土56 d抗压强度达133.5MPa。 在我国为提高温凝土强度采用的主要措施有[1]:(1)合理利用高效减水剂,采用优质骨料、优质水泥,利用优质掺合料,如优质磨细粉煤灰、硅灰、天然沸石或超细矿渣。采用高效减水剂以降低水灰比是获得高强及高流动性混凝土的主要技术措施;(2)采用525,625,725号的硫铝酸盐水泥、铁铝酸盐水泥及相应的外加剂,这是中国建筑材料科学研究院制备高性能混凝土的主要技术措施;(3)以矿渣、碱组分及骨料制备碱矿渣高强度混凝土,这是重庆建筑大学在引进前苏联研究成果的基础上提出的研制高强混凝土的技术措施;(4)交通部天津港湾工程研究所采用复合高效减水剂,用525号水泥320kg/m3,水灰比0.43,和425号水泥480kg/m3,水灰比0.32,在试验室中制成了抗压强度分别为68MPa和65MPa的高强混凝土。 文献[2]报告了采用某些金属矿石粗骨料如赤铁矿石、钛铁矿石等,可以比用普通石料作粗骨料获得强度更高、耐久性和延性更好的高性能混凝土。 高强混凝土具有优良的物理力学性能及良好的耐久性,其主要缺点是延性较差。而在高强混凝土中加入适量钢纤维后制成的纤维增强高强混凝土,其抗拉、抗弯、抗剪强度均有提

超高性能混凝土

概述 超高性能混凝土(UHPC) 比传统的混凝土提供更高的抗压强度和抗拉强度。由于UHPC较高的强度、刚度, 耐久性,使其便于在桥梁上使用。然而,一个缺点是,面板和梁的连接区域一般要有一个较厚的截面来确保适当的剪切连接,这使得甲板上的UHPC不能更薄,更轻。此外,抗剪栓钉剪力连接件嵌入在UHPC板中对强度的影响与传统的混凝土板并不相同。我们通过15个推测试探讨论一个栓钉剪切连接键嵌入在UHPC面板的情况。我们测试了相对栓钉的极限强度极其相对滑移,并选择这些测试参数,以证明一个更薄的板的可行性。我们研究栓钉的长细比,纵横比以及栓钉顶部的覆盖厚度以证实eurocode-4 AASHTO LRFD设计规范中提到的UHPC面板的几何约束的存在。由试验得出,在不用损失栓钉的剪切强度情况下,其纵横比由4减少到3.1。覆盖厚度可以50毫米减少到25毫米而不引起在UHPC裂缝 厚板.然而,在所有情况下,都没有达到6毫米的延展性需求。因此,在UHPC板中栓钉剪力连接件设计应按照弹性设计规范。 1.介绍 超高性能混凝土(UHPC)是一种先进的由高强度基体和纤维组成的复合材料 。与传统的混凝土相比,它提供了优越的抗压强度(>150 MPa)和拉伸强度(>5 MPa)以及更高的弹性模量(>40 GPA)。它通常是由波特兰水泥,硅灰,填料,细集料,高效减水剂,水和钢纤维组成。 UHPC正在越来越广泛地应用到各种民用基础设施。特别是,许多调查发现,由于其较高的强度,刚度和耐久性,它确实适用于桥梁组件,如梁,板和连接 节点。有研究调查了UHPC作为一个面板组件的作用。 saleem等,开发了一个较薄的UHPC板系统以替代一个网格式钢面板。coreslab 结构公司开发的华夫饼形状的UHPC面板,安装在雪松溪、瓦佩洛县,爱荷华的桥上。我们研究了结构的表现,并提出了一个设计这个面板系统的包括连接部分的指南。 通过努力,我们开发了由FRP梁顶加上一层UHPC材料进行组合的组合梁 。陈和埃尔阿查用9.5-mm直径的玻璃纤维增强(GFRP)栓钉连接由空心箱体组成并覆盖了53毫米厚的UHPC层的FRP梁。 Nguyen等人。开发了上覆预制UHPC板的FRP工字梁组成的组合梁 ,其中板采用了M16螺栓作为剪力连接器以及环氧树脂材料。UHPC板 50毫米厚,而螺栓嵌入深度为35毫米,导致螺栓顶部只有15毫米。螺柱长细比为2.2。这个顶部的厚度和纵横比不满足设计规范要求的50毫米和比列值4。UHPC桥面板的可以比传统的混凝土桥面有一个更小的横截面。然而,连接了板和钢梁的连接区域厚度应该比传统条件下的厚度要厚,以确保该剪切连接器可以正确安装和嵌入在在面板中,来符合现有的设计规范。例如,以前开发的两个UHPC节点厚度分别为127毫米的厚度(5英寸)和203毫米(8英寸),这 不低于混凝土桥面的厚度。UHPC板最小的厚度为32毫米(1.25英寸), 63.5毫米(2.5英寸),而剪切连接需要一个足够厚的UHPC板;这不利于降低自重和板的厚度。本研究探讨嵌入在不同厚度UHPC板上的螺栓剪力连接件的结构反应,证实了设计规范的有效性。

C30聚丙烯纤维混凝土配合比

C30聚丙烯纤维混凝土配合比设计说明 一、设计依据:JTJ041-2000、JGJ55-2000、GB/T1596-2005 二、原材料: 1、水泥:赤峰远航水泥有限责任公司P.O42.5R 2、砂:白音青格勒砂场中砂 3、石:宇厦石料厂4.75-9.5mm:25% 9.5-19mm:50% 19-31.5mm:25% 4、水:饮用水 5、粉煤灰:蓝旗电厂 6、减水剂:天津雍阳 7、聚丙烯腈抗裂纤维:北京中创同盛科技有限公司 三、 1、使用部位:墩.台身及台帽 2、设计坍落度:90-110mm 四、配合比设计: 1、确定配制强度:fcu,o=fcu,k+1.645σ=30+1.645*5=38.2MPa 2、计算水灰比(W/C): 水泥强度:fce = 42.5*1.00= 42.5MPa W/C =(Aa.fce)/(fcu,o+Aa.Ab.fce)=(0.46*42.5)/(38.2+0.46*0.07*42.5)=0.49按耐久性校正水灰比,查JTJ55-2000表 4.0.4允许最大水灰比 0.50,取水灰比为0.47; 3、选定单位用水量(m wO): 根据二.3,三.2和JGJ55-2000表4.0.1-2选定用水量229kg/m3加0.6%高效减水剂(减水率20%),则加过减水剂之后用水量为185 kg/m3 4、计算单位水泥用量(m C o): m C o = m w o/(w/c) = 185/0.47=394kg/m3 按耐久性校正单位水泥用量查JGJ55-2000表4.0.4允许最小水泥用量300kg/m3采用计算用量394kg/m3; 根据上级文件要求,并依据《用

(完整版)UHPC超高性能混凝土

北京中德新亚建筑技术有限公司 Beijing Sino-sina Building Technology Co., Ltd. UHPC超高性能混凝土 UHPC超高性能混凝土是一种超高强、韧性、高耐久性的特种工程材料,在国防工程、海洋工程、核工业、特种保安和防护工程、以及市政工程领域有良好的应用前景。经试验证明,其抗折强度是普通C50混凝土的3倍,缩变下降50%,经历700次冻融循环后仍然完好无损,被称为“永不开裂”的混凝土。 一、产品特点 1、UHPC现已用于海洋石油平台的钢结构的外保护层,可大大提高水位变动区的支柱的使用寿命。 2、UHPC的早期度发展快,后期度极高,用于补强和修补工程中可替代钢材和昂贵的有机聚合物,既可保持混土体系的整体性,还可降低成本。 3、UHPC强度高,抗冲击性能好,可用于国防工程的防护结构,也可用于需要高承载力的特殊结构。 4、UHPC的高密实性与良好的工作性能,使其与模板相接触的表面具有很高的光洁度,外界的有害介质很难侵入到UHPC中去,而UHPC中的着色剂等组分也不易向外析出,利用这一特点可把UHPC用作建筑物的外装饰材料。 二、适用范围 1、利用UHPC强度高的性质,可以减小结构构件尺寸,获得更多的使用空间。利用UHPC可以建造跨度更长、净空更大的桥梁;可以减小高层建筑中底层柱子截面尺寸,得到更多的使用面积。 2、利用UHPC高抗拉强度、耐腐蚀的性质可以制作输油、输气管道以替代造价较高的大口径厚壁钢管,显著提高管道耐久性、降低成本。 3、利用UHPC的高抗渗性,制造中低放射性核废料储存整体容器。 4、用于军事与安保领域,制造抗爆炸、抗冲击装置。 5、现场抢修、结构加固等。 三、性能指标

钢纤维混凝土力学性能报告

钢纤维混凝土力学性能报告 作者:波尔派丝吴

前言 现如今在建筑行业中使用最为广泛的材料就是混凝土,它是由骨料、水泥和水组成的,在实际应用当中能够表现出具有良好的抗压效果。在构件受力时利用自身的抗压性能抵抗荷载消除形变。根据混凝土的抗压强度可划分混凝土的等级,混凝土强度是结构设计和施工的重要依据。 但由于普通混凝土力学性能上的缺陷,抗弯拉强度小、弯曲韧度低、易开裂,导致其在工程作业中的应用受到很大限制。我们通常的解决办法是配筋,随着施工技术的革新,钢纤维问世,现今钢纤维改变混凝土性能已成为混凝土改性的重要途经之一。 钢纤维混凝土是指将规定尺寸、不连续的金属短纤维(即钢纤维)均匀、乱向地分散于混凝土中,形成一种可浇筑、可喷射的新型复合材料。因其在实际应用中表现出的抗拉、抗弯、抗剪、耐冲击性能优异,所以在建筑、公路、水工等领域中得到广泛应用。同时钢纤维混凝土相比于配筋混凝土具有更好等效弯曲强度与施工流水节拍。

I.钢纤维混凝土的基本组成 钢纤维混凝土是由粗骨料(石子)、细骨料(砂)、水泥、水、钢纤维以及适用工程状况的外加剂(无特定情况可不加)组成的一种非均质集合体复合材料。按设计配合比配制,经过立模、浇筑、振捣、整平、养护、拆模,形成具有设计强度的钢纤维混凝土构件。 II.钢纤维混凝土的基本力学性能 为了对钢纤维混凝土的力学性能分析,我们选用C30混凝土、SF80/50BP钢纤维(长径比80、长度50mm的冷拉端钩钢纤维)分别制作了6组样块,每组分别做6个样块,为了保证钢纤维的分散率采用成排钢纤维(在不使用外界设备干扰时成排钢纤维分散效果会优于散纤维),掺量分别为0kg/m3、5kg/m3、10kg/m3、15kg/m3、20kg/m3、25kg/m3,在恒温箱养护 28d后拆模进行试验。 A.抗压强度 龄期28d钢纤维混凝土试块与同等养护条件下龄期28d的普通混凝土试块相比较,在弹性形变阶段弹性模量与泊松比可视为基本相同; 实验数据表明,钢纤维对基体的抗压强度增强效果并不明显。在基体中加入钢纤维后,当钢纤维体积率的增加时基体的抗压强度略有提升,但增量很小,提升在0%~10%(前期工作者的大量实验也印证了此观点)。同时为了保障钢纤维在混凝土基体中的方向效能系数与粘接强度,钢纤维的长度需满足混凝土最大粒径的1.5~2.0倍,否则容易造成钢纤维的局部结团,相当于构成了薄弱截面,此时加入钢纤维反而会产生不利影响,造成钢纤维与混凝土界面粘结性状变差,其抗压强度甚至会比同配比的普通混凝土有所下降。

钢纤维及钢纤维混凝土的技术及规定

钢纤维及钢纤维混凝土知识 混凝土用纤维的分类: 所用纤维按其材料性质可分为:①金属纤维。如钢纤维(钢纤维混凝土)、不锈钢纤维(适用于耐热混凝土)。②无机纤维。主要有天然矿物纤维(温石棉、青石棉、铁石棉等)和人造矿物纤维(抗碱玻璃纤维及抗碱矿棉等碳纤维)。③有机纤维。主要有合成纤维(聚乙烯、聚丙烯、聚乙烯醇、尼龙、芳族聚酰亚胺等)和植物纤维(西沙尔麻、龙舌兰等),合成纤维混凝土不宜使用于高于60℃的热环境中。 钢纤维的性能和规格: 钢纤维是以切断细钢丝法、冷轧带钢剪切、钢锭铣削或钢水快速冷凝法制成长径比(纤维长度与其直径的比值,当纤维截面为非圆形时,采用换算等效截面圆面积的直径)为40~80的纤维。 因制取方法的不同钢纤维的性能有很大不同,如冷拔钢丝拉伸强度为800-2000MPa、冷轧带钢剪切法拉伸强度为600-900MPa、钢锭铣削法为700MPa;钢水冷凝法虽为380MPa,但是适合生产耐热纤维。 为增强砂浆或混凝土而加入的、长度和直径在一定范围内的细钢丝。常用截面为圆形的长直钢纤维,其长度为10~60毫米,直径为0.2~0.6毫米,长径比为50~100。为增加纤维和砂浆或混凝土的界面粘结,可选用各种异形的钢纤维,其截面有矩形、锯齿形、弯月形的;截面尺寸沿长度而交替变化的;波形的;圆圈状的;端部放大的或带弯钩的等。 钢纤维的规格:

钢纤维是当今世界各国普遍采用的混凝土增强材料。钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性。 纤维混凝土的作用: 制造纤维混凝土主要使用具有一定长径比(即纤维的长度与直径的比值)的短纤维。但有时也使用长纤维(如玻璃纤维无捻粗纱、聚丙烯纤化薄膜)或纤维制品(如玻璃纤维网格布、玻璃纤维毡)。其抗拉极限强度可提高30~50%。 纤维在纤维混凝土中的主要作用,在于限制在外力作用下水泥基料中裂缝的扩展。在受荷(拉、弯)初期,当配料合适并掺有适宜的高效减水剂时,水泥基料与纤维共同承受外力,而前者是外力的主要承受者;当基料发生开裂后,横跨裂缝的纤维成为外力的主要承受者。 若纤维的体积掺量大于某一临界值,整个复合材料可继续承受较高的荷载并产生较大的变形,直到纤维被拉断或纤维从基料中被拨出,以致复合材料破坏。与普通混凝土相比,纤维混凝土具有较高的抗拉与抗弯极限强度,尤以韧性提高的幅度为大。 钢纤维主要用于制造钢纤维混凝土,任何方法生产的钢纤维都能起到强化混凝土的作用。 纤维的增强效果主要取决于基体强度(fm),纤维的长径比(钢纤维长度l与直径d的比值,即I/d),纤维的体积率(钢纤维混凝土中钢纤维所占体积百分数),纤维与基体间的粘结强度(τ),以及纤维在基体中的分布和取向(η)的影响。当钢纤维混凝土破坏时,大都是纤维被拔出而不是被拉断,因此改善纤维与基体间的粘结强度是改善纤维增强效果的主要控制因素之一。 钢纤维混凝土的力学性能: 加入钢纤维的混凝土其抗压强度、拉伸强度、抗弯强度、冲击强度、韧性、冲击韧性等性能均得到较大提高。 1、具有较高的抗拉、抗弯、抗剪和抗扭强度 在混凝土中掺入适量钢纤维,其抗压强度提高10%~80%(C50以上混凝土提高幅度显著),抗拉强度提高50%~100%,抗弯强度提高50%~80%,抗剪强度提高50%~100%。试验表明,长度为5~15mm,长径比为10~30的超短钢纤维抗压强度提高幅度较短纤维大得多,但抗拉强度、抗折强度较短纤维低得多。 2、具有卓越的抗冲击性能 材料抵抗冲击或震动荷载作用的性能,称为冲击韧性,在通常的纤维掺量下,冲击抗压韧性可提高2~7倍,冲击抗弯、抗拉等韧性可提高几倍到几十倍。 3、收缩性能明显改善 在通常的纤维掺量下,钢纤维混凝土较普通混凝土的收缩值降低

C50钢纤维混凝土配合比设计说明

C50钢纤维砼配合比设计说明书 一、 设计目的: 该配合比适用于k75+500-k94+900段桥梁伸缩缝等的施工。 二、 设计说明: 1、 设计依据 ① 《公路工程国内招标文件范本》 ② 《普通混凝土配合比设计规程》 ③ 《普通混凝土拌合物性能试验方法标准》 ④ 《普通混凝土力学性能试验方法标准》 ⑤ 《普通混凝土长期性能和耐久性能试验方法标准》 GB/T 50082 ⑥ 《公路工程水泥及混凝土试验规程》 ⑦ 《公路工程岩石试验规程》 ⑧ 《公路工程集料试验规程》 ⑨ 《通用硅酸盐水泥》 ⑩ 《公路桥涵施工技术规范》 (11) 《建设用卵石、碎石》 (12) 《混凝土外加剂》 (13) 《钢纤维混凝土》 2、 配合比设计公式选用 根据《公路桥涵施工技术规范》 砼试配强度R 下式确定: JGJ 55-2011 GB/T 50080 GB/T 50081 JTGE30-2005 JTGE41-2005 JTGE42-2005 GB175-2007 JTG/T F50----2011 GB/T 14685-2011 GB8076-2008 JG/T 472-2015 JTG/T F50— 2011

Feu, o二f eu, k+1.645 a 其中值按下表选用: 三、C50砼配合比计算 1、原材料: ①水泥:柳州鱼峰水泥厂P .0 52.5普通硅酸盐水泥。 ②砂:贝江砂场河砂,细度模数2.72,表观相对密度2.654g/cm3。 ③碎石:神龙石场5?20mm,表观相对密度2.678g/cm3。采用 4.75-9.5mm碎石和9.5-19mm碎石按照30:70的比例进行掺配。 ④钢纤维:河北衡水鑫归机械加工厂,按照设计图纸每方掺量为60Kg ⑤水:饮用水 ⑥外加剂:郑州市邦基建材有限公司BJ聚羧酸高效减水剂,减水率为28%,掺量为1.0%。 ⑦设计坍落度:130?170mm 2、试配强度: f eu, o=f cu,k+1.645 (T =50+1.645 8=59.9 Mpa 3、水泥强度:(富余系数取1.0) f ee=52. 5Mpa 4、确定水灰比:

相关主题
文本预览
相关文档 最新文档