当前位置:文档之家› 全国初中数学竞赛辅导(八年级)教学案全集第11讲 勾股定理与应用

全国初中数学竞赛辅导(八年级)教学案全集第11讲 勾股定理与应用

全国初中数学竞赛辅导(八年级)教学案全集第11讲 勾股定理与应用
全国初中数学竞赛辅导(八年级)教学案全集第11讲 勾股定理与应用

全国初中数学竞赛辅导(八年级)教学案全集

第十一讲勾股定理与应用

在课内我们学过了勾股定理及它的逆定理.

勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即

a2+b2=c2.

勾股定理逆定理如果三角形三边长a,b,c有下面关系:

a2+b2=c2

那么这个三角形是直角三角形.

早在3000年前,我国已有“勾广三,股修四,径阳五”的说法.

关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法.

证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.

过C引CM∥BD,交AB于L,连接BG,CE.因为

AB=AE,AC=AG,∠CAE=∠BAG,

所以△ACE≌△AGB(SAS).而

所以 S AEML=b2.①

同理可证 S BLMD=a2.②

①+②得

S ABDE=S AEML+S BLMD=b2+a2,

即 c2=a2+b2.

证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知

△ADG≌△GEH≌△HFB≌△ABC,

所以

AG=GH=HB=AB=c,

∠BAG=∠AGH=∠GHB=∠HBA=90°,

因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即

化简得 a2+b2=c2.

证法3 如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D作DK⊥CB延长线于K,又作AF,DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等:

△AFE≌△EHD≌△BKD≌△ACB.

设五边形ACKDE的面积为S,一方面

S=S ABDE+2S△ABC,①

另一方面

S=S ACGF+S HGKD+2S△ABC.②

由①,②

所以 c2=a2+b2.

关于勾股定理,在我国古代还有很多类似上述拼图求积的证明方法,我们将在习题中展示其中一小部分,它们都以中国古代数学家的名字命名.

利用勾股定理,在一般三角形中,可以得到一个更一般的结论.

定理在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.

证 (1)设角C为锐角,如图2-19所示.作AD⊥BC于D,则CD就是AC在BC上的射影.在直角三角形ABD中,

AB2=AD2+BD2,①

在直角三角形ACD中,

AD2=AC2-CD2,②

BD2=(BC-CD)2,③

②,③代入①得

AB2=(AC2-CD2)+(BC-CD)2

=AC2-CD2+BC2+CD2-2BC·CD

=AC2+BC2-2BC·CD,

c2=a2+b2-2a·CD.④

(2)设角C为钝角,如图2-20所示.过A作AD与BC延长线垂直于D,则CD就是AC在BC(延长线)上的射影.在直角三角形ABD中,

AB2=AD2+BD2,⑤

在直角三角形ACD中,

AD2=AC2-CD2,⑥

BD2=(BC+CD)2,⑦

将⑥,⑦代入⑤得

AB2=(AC2-CD2)+(BC+CD)2

=AC2-CD2+BC2+CD2+2BC·CD

=AC2+BC2+2BC·CD,

c2=a2+b2+2a·cd.⑧

综合④,⑧就是我们所需要的结论

特别地,当∠C=90°时,CD=0,上述结论正是勾股定理的表述:

c2=a2+b2.

因此,我们常又称此定理为广勾股定理(意思是勾股定理在一般三角形中的推广).

由广勾股定理我们可以自然地推导出三角形三边关系对于角的影响.在△ABC中,

(1)若c2=a2+b2,则∠C=90°;

(2)若c2<a2+b2,则∠C<90°;

(3)若c2>a2+b2,则∠C>90°.

勾股定理及广勾股定理深刻地揭示了三角形内部的边角关系,因此在解决三角形(及多边形)的问题中有着广泛的应用.

例1 如图2-21所示.已知:在正方形ABCD中,∠BAC的平分线交BC 于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2.

分析注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,从而有AF2=2FG2,因而应有AF=AB,这启发我们去证明△ABE≌△AFE.

证因为AE是∠FAB的平分线,EF⊥AF,又AE是△AFE与△ABE的公共边,所以

Rt△AFE≌Rt△ABE(AAS),

所以 AF=AB.①

在Rt△AGF中,因为∠FAG=45°,所以

AG=FG,

AF2=AG2+FG2=2FG2.②

由①,②得

AB2=2FG2.

说明事实上,在审题中,条件“AE平分∠BAC”及“EF⊥AC于F”应使我们意识到两个直角三角形△AFE与△ABE全等,从而将AB“过渡”到AF,使AF(即AB)与FG处于同一个直角三角形中,可以利用勾股定理进行证明了.

例2 如图2-22所示.AM是△ABC的BC边上的中线,求证:

AB2+AC2=2(AM2+BM2).

证过A引AD⊥BC于D(不妨设D落在边BC内).由广勾股定理,在△ABM中,

AB2=AM2+BM2+2BM·MD.①

在△ACM中,

AC2=AM2+MC2-2MC·MD.②

①+②,并注意到MB=MC,所以

AB2+AC2=2(AM2+BM2).③

如果设△ABC三边长分别为a,b,c,它们对应边上的中线长分别为m a,m b,m c,由上述结论不难推出关于三角形三条中线长的公式.

推论△ABC的中线长公式:

说明三角形的中线将三角形分为两个三角形,其中一个是锐角三角形,另一个是钝角三角形(除等腰三角形外).利用广勾股定理恰好消去相反项,获得中线公式.①′,②′,③′中的m a,m b,m c分别表示a,b,c边上的中线长.

例3 如图2-23所示.求证:任意四边形四条边的平方和等于对角线的平方和加对角线中点连线平方的4倍.

分析如图2-23所示.对角线中点连线PQ,可看作△BDQ的中线,利用例2的结论,不难证明本题.

证设四边形ABCD对角线AC,BD中点分别是Q,P.由例2,在△BDQ 中,

2BQ2+2DQ2=4PQ2+BD2.①

在△ABC中,BQ是AC边上的中线,所以

在△ACD中,QD是AC边上的中线,所以

将②,③代入①得

=4PQ2+BD2,

AB2+BC2+CD2+DA2=AC2+BD2+4PQ2.

说明本题是例2的应用.善于将要解决的问题转化为已解决的问题,是人们解决问题的一种基本方法,即化未知为已知的方法.下面,我们再看两个例题,说明这种转化方法的应用.

例4 如图2-24所示.已知△ABC中,∠C=90°,D,E分别是BC,AC 上的任意一点.求证:AD2+BE2=AB2+DE2.

分析求证中所述的4条线段分别是4个直角三角形的斜边,因此考虑从勾股定理入手.

证 AD2=AC2+CD2,BE2=BC2+CE2,所以

AD2+BE2=(AC2+BC2)+(CD2+CE2)=AB2+DE2

例5 求证:在直角三角形中两条直角边上的中线的平方和的4倍等于斜边平方的5倍.

如图2-25所示.设直角三角形ABC中,∠C=90°,AM,BN分别是BC,AC边上的中线.求证:

4(AM2+BN2)=5AB2.

分析由于AM,BN,AB均可看作某个直角三角形的斜边,因此,仿例4的方法可从勾股定理入手,但如果我们能将本题看成例4的特殊情况——即M,N分别是所在边的中点,那么可直接利用例4的结论,使证明过程十分简洁.

证连接MN,利用例4的结论,我们有

AM2+BN2=AB2+MN2,

所以 4(AM2+BN2)=4AB2+4MN2.①

由于M,N是BC,AC的中点,所以

所以 4MN2=AB2.②

由①,②

4(AM2+BN2)=5AB2.

说明在证明中,线段MN称为△ABC的中位线,以后会知道中位线的

基本性质:“MN∥AB且

MN=

图2-26所示.MN是△ABC的一条中位线,设△ABC的面积为S.由于M,N

分别是所在边的中点,所以S△ACM=S△BCN,两边减去公共部分△CMN后得S△AMN=S

AB必与MN平行.又S△

△BMN,从而

高相ABM=

同,而S△ABM=2S△BMN,所以AB=2MN.

练习十一

1.用下面各图验证勾股定理(虚线代表辅助线):

(1)赵君卿图(图2-27);

(2)项名达图(2-28);

(3)杨作枚图(图2-29).

2.已知矩形ABCD,P为矩形所在平面内的任意一点,求证:

PA2+PC2=PB2+PD2.

(提示:应分三种情形加以讨论,P在矩形内、P在矩形上、P在矩形外,均有这个结论.)

3.由△ABC内任意一点O向三边BC,CA,AB分别作垂线,垂足分别是D,E,F.求证:

AF2+BD2+CE2=FB2+DC2+EA2.

4.如图2-30所示.在四边形ADBC中,对角线AB⊥CD.求证:

AC2+BD2=AD2+BC2.它的逆定理是否成立?证明你的结论.

5.如图2-31所示.从锐角三角形ABC的顶点B,C分别向对边作垂线BE,CF.求证:

BC2=AB·BF+AC·CE.

初二数学勾股定理测试题及答案

勾股定理测试题 体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。 一、选择题 | 1.下列各数组中,不能作为直角三角形三边长的是( ) A. 9,12,15 B. 7,24,25 C. 6,8,10 D. 3,5,7 2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A. 可能是锐角三角形 B. 不可能是直角三角形 C. 仍然是直角三角形 D. 可能是钝角三角形 ! 3.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m) ( ) 4.一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为( ) A. 12cm B. C. D. ~ 二、填空题 5.如图,64、400分别为所在正方形的面积,则图中字母A所代表的正方形面积是_________ . 6.直角三角形两条直角边的长分别为5、12,则斜边上的高为. < 7.已知甲往东走了4km,乙往南走了3km,这时甲、乙两人相距. 8.一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为. 9.以直角三角形的三边为边向形外作正方形P、Q、K,若SP=4,SQ=9,则Sk= . 三、解答题 @ 10.假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米

为正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBE的位置,若BP=a.求:以PE 为边长的正方形的面积. / 12.已知:如图13,△ABC中,AB=10,BC=9,AC=17. 求BC边上的高. 13.拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,· 如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和__________ (填“大于”、“小于”或“等于”)图③中小正方形 《 的面积,用关系式表示为________ .(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有__________个正方形,它们的面积之间的关系是________ ,用 关系式表示为_____ .(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方>

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

初中数学竞赛定理大全

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

八年级数学《勾股定理》讲义全

【课题名称】八上数学《勾股定理》 【考纲解读】 1.掌握勾股定理的含义; 2.理解勾股数,并且会熟练地运用勾股数; 3.能够根据勾股定理,解决实际问题。 【考点梳理】 考点1:勾股定理 (1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)勾股定理的表示:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += (3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。 考点2:勾股定理的适用围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 考点3:勾股数 (1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。 (2)记住常见的勾股数可以提高解题速度,比如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等。 考点4:勾股定理的应用 (1)已知直角三角形的任意两边长,求第三边。在A B C ?中,90C ∠=?,则c , b ,a ; (2)已知直角三角形一边,可得另外两边之间的数量关系; (3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。 【例题讲解】 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

初中数学勾股定理拔高综合训练含答案

初中数学勾股定理拔高综合训练 一.选择题(共15小题) 1.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出() A.2个 B.3个 C.4个 D.6个 2.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有() A.1 B.2 C.3 D.4 3.如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是() A.4 B.8 C.16 D.32 4.分别以下列四组数为一个三角形的边长①6,8,10②5,12,13 ③8,15,16④4,5,6,其中能构成直角三角形的有() A.①④B.②③C.①②D.②④

5.如图,是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果正方形的面积是13,小正方形的面积是1,直角三角形的两条边是分别是a,b,则a+b和的平方的值() A.13 B.19 C.25 D.169 6.如图,一架25米的梯子AB靠在一座建筑物AO上,梯子的底部B距离建筑物AO的底部O有7米(即BO=7米),如果梯子顶部A下滑4米至A1,则梯子底部B滑开的距离BB1是() A.4米 B.大于4米C.小于4米D.无法计算 7.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或D.60cm 8.如图,A、B是4×5网格中的格点,网格中的每个小正方形的边长都是1,图中使以A、B、C为顶点的三角形是等腰三角形的格点C有() A.2个 B.3个 C.4个 D.5个 9.如图所示:数轴上点A所表示的数为a,则a的值是()

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

初中数学竞赛常用公式

初中数学竞赛常用公式Last revision on 21 December 2020

初中数学常用公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理:三角形两边的和大于第三边 16 推论:三角形两边的差小于第三边 17 三角形内角和定理:三角形三个内角的和等于180° 18 推论1:直角三角形的两个锐角互余 19 推论2:三角形的一个外角等于和它不相邻的两个内角的和 20 推论3:三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS):有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1:在角的平分线上的点到这个角的两边的距离相等 28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角) 31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3:等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1:三个角都相等的三角形是等边三角形 36 推论 2:有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1:关于某条直线对称的两个图形是全等形 43 定理 2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

最新人教版八年级下学期数学勾股定理》知识点归纳

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一: 4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=, 化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以 222a b c += 方法三: 1 ()()2S a b a b =+?+梯形, 211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简 得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=?, 则c b ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b , c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是 否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a , b , c 为三边的三角形是直角三角形;若 222a b c +<,时,以a ,b ,c 为三边的三角形 是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

新人教版八年级下册数学勾股定理教案

第十七章 勾股定理 勾股定理(一) 教学内容: 新课标对本节课的要求: 教学目标 知识与技能:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 过程与方法:培养在实际生活中发现问题总结规律的意识和能力。 情感态度价值观:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 教学重点、难点 重点:勾股定理的内容及证明。 难点:勾股定理的证明。 教学过程 1.引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗? 命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c , 那么 。 2、合作探究: 方法1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、 ∠C 的对边为a 、b 、c 。 A B

初二数学勾股定理教案(模板)

初二数学上册教案模板勾股定理(2课时) 一、教学目标及重点 1、教学目标 (1)经历探索勾股定理及验证勾股定理的过程,通过自主学习体验获取数学知识的感受,培养学生的思维能力和语言表达能力。 (2)运用勾股定理解决实际问题。 (3)了解有关勾股定理的历史,通过有关勾股定理的历史讲解,对学生进行德育教育。 2、教学重点:勾股定理及其应用。 3、教学难点:通过有关勾股定理的历史讲解,了解数学发展史,激发学习兴趣,对学生进行德育教育。 二、探索发现:(在教师的引领下,小组合作,探索学习) 通过此案例引出:勾股定理(商高定理、毕达哥拉斯定理、百牛定理)的渊源。 三、知识透析: 1.勾股定理:如果直角三角形两直角边分别为a、b,斜边为c,

那么: 即:直角三角形两直角边的 等于斜边的平方。 2.注意:(1)勾股定理的条件是:只有在直角三角形中才使用;(2)勾股定理的变形:222a =-b c ;222b =-a c 3.勾股定理验证方法:(教师引导学生通过面积计算,实现勾股定理证明) (1)赵爽证明: (2)伽菲尔德“总统证明法” 四、典例分析: 题型1:勾股定理 1.=90ABC C A B C ?∠∠∠∠V 例在中,,、、所对的边分别是a 、b 、c 。 (1)当a=3,b=4,则c= (2)若a=5,b=12,则c= 例2.一个等腰三角形的腰长为13cm ,底边长为10cm ,则底边上的高为?( )

(随堂练习:教材3页1、2) 题型2:勾股定理验证 例3.请您用下图验证勾股定理 例4.教材5页第三问 (随堂练习:教材6页中间) 题型3:勾股定理应用 例5.有两棵树,一棵高10米,另一棵高4m,两棵相距8米。一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()(2013安顺中考) A.8米 B.10米 C.12米 D.14米 注:将应用题转化构造为直角三角形 例6.教材5页例题

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

2018初中数学竞赛勾股定理讲解学习

精品文档 初中数学竞赛专题选讲 勾股定理 一、内容提要 1. 勾股定理及逆定理:△ABC 中 ∠C =Rt ∠?a 2+b 2=c 2 2. 勾股定理及逆定理的应用 ① 作已知线段a 的2,3, 5……倍 ② 计算图形的长度,面积,并用计算方法解几何题 ③ 证明线段的平方关系等。 3. 勾股数的定义:如果三个正整数a,b,c 满足等式a 2+b 2=c 2,那么这三个正整数a,b,c 叫做 一组勾股数. 4. 勾股数的推算公式 ① 罗士琳法则(罗士琳是我国清代的数学家1789――1853) 任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。 ② 如果k 是大于1的奇数,那么k, 212-k ,2 12+k 是一组勾股数。 ③ 如果k 是大于2的偶数,那么k, 122-??? ??K ,122+?? ? ??K 是一组勾股数。 ④ 如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。 5. 熟悉勾股数可提高计算速度,顺利地判定直角三角形。简单的勾股数有:3,4,5; 5, 12,13; 7,24,25; 8,15,17; 9,40,41。 二、例题 例1.已知线段a a 5a 2a 3a 5 a 求作线段5a a 分析一:5a =25a =224a a + 2a ∴5a 是以2a 和a 为两条直角边的直角三角形的斜边。 分析二:5a =2492 a a - ∴5a 是以3a 为斜边,以2a 为直角边的直角三角形的另一条直角边。 作图(略) 例2.四边形ABCD 中∠DAB =60ο,∠B =∠D =Rt ∠,BC =1,CD =2 求对角线AC 的长 解:延长BC 和AD 相交于E ,则∠E =30ο

八年级数学下册知识点总结-勾股定理

第十八章勾股定理 知识点一:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 知识点二:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 用勾股定理的逆定理判定一个三角形是否是直角三角形应注意: (1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

全国初中数学竞赛辅导(初2)第11讲 勾股定理与应用

第十一讲勾股定理与应用 在课内我们学过了勾股定理及它的逆定理. 勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即 a2+b2=c2. 勾股定理逆定理如果三角形三边长a,b,c有下面关系: a2+b2=c2 那么这个三角形是直角三角形. 早在3000年前,我国已有“勾广三,股修四,径阳五”的说法. 关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法. 证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和. 过C引CM∥BD,交AB于L,连接BG,CE.因为 AB=AE,AC=AG,∠CAE=∠BAG, 所以△ACE≌△AGB(SAS).而 所以 S AEML=b2.①

同理可证 S BLMD=a2.② ①+②得 S ABDE=S AEML+S BLMD=b2+a2, 即 c2=a2+b2. 证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知 △ADG≌△GEH≌△HFB≌△ABC, 所以 AG=GH=HB=AB=c, ∠BAG=∠AGH=∠GHB=∠HBA=90°, 因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即 化简得 a2+b2=c2.

(完整版)初二(八年级)下册数学勾股定理典型习题

初二(八年级)下册数学勾股定理典型习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面 积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为 222()2S a b a ab b =+=++ 所以222a b c +=方法三:1 ()()2 S a b a b =+?+梯形, 211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠= ?,则c = ,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些 实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

初中数学勾股定理

聚智堂学科教师辅导讲义 年级:课时数:学科教师: 学员姓名:辅导科目:数学辅导时间: 课题勾股定理 教学目的 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 2、勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a2+b2=c2,那么这个三角形是 直角三角形。 3、满足2 2 2c b a= +的三个正整数,称为勾股数。 教学内容 一、日校回顾 二、知识回顾 1. 勾股定理 如图所示,在正方形网络里有一个直角三角形和三个分别以它的三条边为边的正方形,通过观察、探索、发现正方形面积之间存在这样的关系:即C的面积=B的面积+A的面积,现将面积问题转化为直角三角形边的问题,于是得到直角三角形三边之间的重要关系,即勾股定理。 勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么 2 2 2c b a= + 即直角三角形两直角边的平方和等于斜边的平方。 说明: (1)勾股定理只有在直角三角形中才适用,如果不是直角三角形,那么三条边之间就没有这种关系了。

(2)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。在没有特殊说明的情况下, 直角三角形中,a ,b 是直角边,c 是斜边,但有时也要考虑特殊情况。 (3)除了利用a ,b ,c 表示三边的关系外,还应会利用AB ,BC ,CA 表示三边的关系,在△ABC 中,∠B =90°,利 用勾股定理有2 2 2 AC BC AB =+。 2. 利用勾股定理的变式进行计算 由2 2 2 c b a =+,可推出如下变形公式: (1)2 2 2 b c a -=; (2)2 2 2 a c b -= (3)22b c a -= (4)22a c b -= (5)22b a c += (平方根将在下一章学到) 说明:上述几个公式用哪一个,取决于已知条件给了哪些边,求哪条边,要判断准确。 三、知识梳理 1、勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、如何判定一个三角形是直角三角形 (1) 先确定最大边(如c ) (2) 验证2 c 与2 2 b a +是否具有相等关系 (3) 若2 c =2 2 b a +,则△ABC 是以∠C 为直角的直角三角形;若2 c ≠2 2 b a + 则△ABC 不是直角三角形。

全国初中数学竞赛辅导(初1)上

全国初中数学竞赛辅导(初一) (上) 目录 第一讲有理数的巧算 (1) 第二讲绝对值 (10) 第三讲求代数式的值 (17) 第四讲一元一次方程 (24) 第五讲方程组的解法 (32) 第六讲一次不等式(不等式组)的解法 (40) 第七讲含绝对值的方程及不等式 (47) 第八讲不等式的应用 (56) 第九讲“设而不求”的未知数 (64) 第十讲整式的乘法与除法 (73) 第十一讲线段与角 (79) 第十二讲平行线问题 (88)

第一讲有理数的巧算 有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性. 1.括号的使用 在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单. 例1计算: 分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.

注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算. 例2计算下式的值: 211×555+445×789+555×789+211×445. 分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算. 解原式=(211×555+211×445)+(445×789+555×789) =211×(555+445)+(445+555)×789 =211×1000+1000×789 =1000×(211+789) =1 000 000. 说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧. 例3计算:S=1-2+3-4+…+(-1)n+1·n. 分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法. 解S=(1-2)+(3-4)+…+(-1)n+1·n. 下面需对n的奇偶性进行讨论: 当n为偶数时,上式是n/2个(-1)的和,所以有 当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有

相关主题
文本预览
相关文档 最新文档