一种新的混合的共轭梯度算法的全局收敛性
- 格式:pdf
- 大小:118.54 KB
- 文档页数:3
无约束最优化中两种改进共轭梯度法的收敛性证明周安娃;范浩;黄青群【摘要】对于无约束优化中已提出的两种改进共轭梯度算法:改进的DY算法(MDY)和新的混合HS-DY算法(NH),证明了其在Wolfe线搜索下的全局收敛性.证明中的关键技巧是利用DY算法公式的一个等价公式,也正是由于该策略的运用,使得证明更为简化,进而得到了上述两种改进的共轭梯度法的全局收敛性.%Considering two modified conjugare gradient methods which had been presented: the modified DY method and the new hybrid HS-DY method for unconvex function, we explore the global convergence of these two methods with the Wolfe line search. It is very important to use a equivalence formula of DY method for the proof, which makes it simplify and shows that these modified methods are both globally convergent.【期刊名称】《桂林电子科技大学学报》【年(卷),期】2011(031)001【总页数】4页(P37-40)【关键词】共轭梯度法;下降方向;全局收敛性【作者】周安娃;范浩;黄青群【作者单位】桂林电子科技大学,数学与计算科学学院,广西,桂林,541004;桂林电子科技大学,数学与计算科学学院,广西,桂林,541004;桂林电子科技大学,数学与计算科学学院,广西,桂林,541004【正文语种】中文【中图分类】O224其中:gk是f在点xk处的梯度,βk是一参数。
一类Armijo搜索下的混合HS-PRP共轭梯度法∗董晓亮;高岳林;何郁波【摘要】Based on the HS method and the PRP method, a new kind of hybrid conjugate gradient methods for solving large scale unconstrained optimization problems is proposed. The modified method provides automatically a suffcient descent direction for the objective function at each iteration, a property depends neither on the line search used, nor on the convexity of the function. If the exact line search is used, the given method reduces to the standard PRP method. Under mild conditions, the proposed method with the Armijo line search converges globally even if the objective function is nonconvex. Numerical results show that the new method is effcient and can be used to deal with some test problems.%为有效求解大规模无约束优化问题,本文基于HS方法和PRP方法,提出了一类新的混合共轭梯度法。
该方法在每步迭代中都不依赖于函数的凸性和搜索条件而自行产生充分下降方向。