共轭梯度法
- 格式:ppt
- 大小:360.00 KB
- 文档页数:19
最速下降法1.最速下降方向函数f(x)在点x处沿方向d的变化率可用方向导数来表示。
对于可微函数,方向导数等于梯度与方向的内积,即:Df(x;d) = ▽f(x)T d,因此,求函数f(x)在点x处的下降最快的方向,可归结为求解下列非线性规划:min ▽f(x)T ds.t. ||d|| ≤ 1当 d = -▽f(x) / ||▽f(x)||时等号成立。
因此,在点x处沿上式所定义的方向变化率最小,即负梯度方向为最速下降方向。
2.最速下降算法最速下降法的迭代公式是x(k+1) = x(k) + λk d(k) ,其中d(k)是从x(k)出发的搜索方向,这里取在x(k)处的最速下降方向,即d = -▽f(x(k)).λk是从x(k)出发沿方向d(k)进行一维搜索的步长,即λk满足f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).计算步骤如下:(1)给定初点x(1) ∈ R n,允许误差ε> 0,置k = 1。
(2)计算搜索方向d = -▽f(x(k))。
(3)若||d(k)|| ≤ε,则停止计算;否则,从x(k)出发,沿d(k)进行一维搜索,求λk,使f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).(4)令x(k+1) = x(k) + λk d(k),置k = k + 1,转步骤(2)。
共轭梯度法1.共轭方向无约束问题最优化方法的核心问题是选择搜索方向。
以正定二次函数为例,来观察两个方向关于矩阵A共轭的几何意义。
设有二次函数:f(x) = 1/2 (x - x*)T A(x - x*) ,其中A是n×n对称正定矩阵,x*是一个定点,函数f(x)的等值面1/2 (x - x*)T A(x - x*) = c是以x*为中心的椭球面,由于▽f(x*) = A(x - x*) = 0,A正定,因此x*是f(x)的极小点。
共轭梯度法公式推导一、问题的提出与预备知识。
1. 二次函数的极小化问题。
- 考虑二次函数f(x)=(1)/(2)x^TAx - b^Tx + c,其中A是n× n对称正定矩阵,x,b∈ R^n,c∈ R。
- 对f(x)求梯度∇ f(x)=Ax - b。
- 求f(x)的极小值点,即求解Ax = b。
2. 共轭方向的概念。
- 设A是对称正定矩阵,若对于非零向量d_1,d_2∈ R^n,满足d_1^TAd_2 = 0,则称d_1和d_2是A - 共轭的(或A - 正交的)。
二、共轭梯度法的基本思想。
1. 迭代格式。
- 共轭梯度法是一种迭代算法,其基本迭代格式为x_k + 1=x_k+α_kd_k,其中x_k是第k次迭代的近似解,α_k是步长,d_k是搜索方向。
2. 确定步长α_k- 为了使f(x_k+1)最小,将x_k + 1=x_k+α_kd_k代入f(x)中,得到f(x_k+α_kd_k)=(1)/(2)(x_k+α_kd_k)^TA(x_k+α_kd_k)-b^T(x_k+α_kd_k)+c。
- 对α_k求导并令其为0,可得α_k=((r_k)^Td_k)/((d_k)^TAd_k),其中r_k = b - Ax_k=∇ f(x_k)。
三、搜索方向d_k的确定。
1. 初始搜索方向。
- 取d_0=-r_0,其中r_0 = b - Ax_0,x_0是初始近似解。
2. 后续搜索方向。
- 对于k≥1,d_k=-r_k+β_k - 1d_k - 1,其中β_k-1=frac{(r_k)^TAd_k - 1}{(d_k - 1)^TAd_k - 1}。
- 下面推导β_k - 1的表达式:- 因为d_k - 1和d_k是A - 共轭的,所以d_k - 1^TAd_k = 0。
- 将d_k=-r_k+β_k - 1d_k - 1代入d_k - 1^TAd_k = 0,得到d_k - 1^TAd_k=-d_k - 1^TAr_k+β_k - 1d_k - 1^TAd_k - 1=0。
共轭梯度法总结
共轭梯度法总结
一、什么是共轭梯度法
共轭梯度法(Conjugate Gradient Method),是一种用于求解线性方程组的迭代优化算法,它是一种搜索梯度的迭代算法。
共轭梯度法的基本思想是沿梯度的反方向搜索,并在每一步令搜索的方向接近更新的局部梯度。
它是一种非常有效的求解有约束的非线性优化问题的方法,是求解线性方程组的有效算法。
共轭梯度法可以看作是一种极小化函数的迭代方法,它最主要的思想是不断更新梯度的方向,从而寻找函数值最小的点。
二、共轭梯度法的原理
共轭梯度法是一种迭代优化算法,它以凸二次型函数为例,可以用来求解最小值问题。
它的基本思想是:
(1)首先求得函数的梯度,即每一步优化的搜索方向,使梯度变为最小;
(2)以梯度的反方向搜索,令搜索的方向接近更新的局部梯度,而不是与旧的梯度成正比的步长;
(3)逐步更新搜索的方向为新的梯度;
(4)重复这个过程,直到所有的自变量满足限制条件。
三、共轭梯度法的优缺点
共轭梯度法最大的优点是它具有收敛速度快,可以在有限的迭代步数内收敛到最优解;另外,它还具有计算量小,不需要计算精确的
Hessian矩阵的优点。
共轭梯度法的缺点是它不能用来求解非凸优化问题,因为它只能求解凸优化问题;另外,它也不能用于强不可约的优化问题。
共轭梯度法beamforming 理论说明1. 引言1.1 概述共轭梯度法(Conjugate Gradient Method)是一种常用的优化算法,广泛应用于解决线性方程组和最优化问题。
Beamforming是一种利用信号处理技术来实现指向性传输和接收的方法,在通信、雷达等领域有着广泛的应用。
本篇长文将探讨共轭梯度法在Beamforming中的理论应用。
1.2 文章结构本文将按照以下结构进行论述:首先介绍共轭梯度法的原理和基本思想,包括线性方程求解的问题、共轭梯度法的基本思想以及迭代过程与收敛性分析;然后,将详细阐述Beamforming的基本概念,包括信号传输和接收的需求、Beamforming技术在通信中的应用以及技术实现原理和方法;接着,我们将探究共轭梯度法在Beamforming中的具体应用,涵盖了优化问题表述、目标函数定义及优化过程说明以及基于共轭梯度法的Beamforming实例分析与结果讨论;最后总结主要研究发现并展望取得成果和应用前景,并提出后续研究工作的建议。
1.3 目的本文的目标是通过理论说明共轭梯度法在Beamforming中的应用,以深入探讨这一优化算法在指向性传输和接收技术中的实际效果。
通过对共轭梯度法及其在Beamforming中的应用进行分析,旨在提供有关该算法与通信技术结合方面的研究参考,为相关领域的学者和工程师提供新思路和解决问题的方法。
2. 共轭梯度法的原理2.1 线性方程求解的问题在讨论共轭梯度法的原理之前,我们首先来了解一下线性方程求解的问题。
线性方程组是由多个线性等式组成的方程组,如Ax = b,其中A为已知矩阵,x为待求解向量,b为已知向量。
线性方程求解即为找到满足该方程组的解x。
2.2 共轭梯度法的基本思想共轭梯度法是一种用于求解对称正定线性方程组Ax = b的迭代方法。
它基于以下基本思想:通过选择合适的搜索方向,将目标函数在各个搜索方向上取得最小值,并以此逼近实际的最优解。
共轭梯度法对物质的一种分析方法,共轭梯度分析法是近几十年发展起来的无损检测技术。
共轭梯度技术是将多种物理效应相结合,并且具有较高的检出率、分辨率和灵敏度,这是一种具有很大发展潜力的分析技术。
共轭梯度法主要包括:共轭电子效应、共轭磁效应、共轭梯度效应。
共轭梯度分析技术是一种高效的新型无损检测技术。
其主要优点在于:①不需要使用电子源;②同时利用共轭电子效应和共轭磁效应,可以消除多种原子的外层电子对核磁矩的屏蔽作用,同时,也降低了铁磁性物质的饱和磁化强度的影响;③能够实现对缺陷浓度较低的金属或非金属材料的快速检测。
共轭梯度技术是20世纪70年代发展起来的无损检测技术,它是利用一些特殊的元素(如铝、铅、铋等)与一些有色金属的原子形成离子,或在两者之间形成过渡族的元素(如汞、铊、铟等),从而达到产生强共轭的效果,再利用超声场或磁场改变他们的相互作用,而不改变他们的化学性质。
共轭梯度的基本原理:①共轭电子效应。
就是利用一些电负性比较强的元素作为原子核,因此他们最外层的电子被核外其他电子吸引,由于距离原子核较远,受到核外电子的排斥,所以核外电子浓度较小。
其电子从价带跃迁到导带,然后再跃迁回价带,所以他们不显电性。
反之,价带中的电子被导带中的电子所吸引,从而降低了价带的电子密度,增加了导带的电子密度,使得原子的核外电子浓度减少,同样会使原子的磁矩减弱。
因此,与这些元素形成化合物的非金属元素的电子都会向原子核附近集聚,从而影响原子的磁矩。
但是当原子序数越高,因为核外电子对核磁矩的屏蔽作用越弱,元素形成的化合物的稳定性越高,原子序数越高的元素的电子就越容易向原子核靠拢。
②共轭磁矩效应。
与电子的共轭电子效应相反,铁磁性物质的原子的核外电子轨道对外磁矩的影响相对比较大。
当这些原子处于磁化状态时,内层电子只能自旋平行,但是这个平行的自旋磁矩,会使这些原子的自旋磁矩大小相等,互相抵消,因此这些原子呈顺磁性。
但当这些原子处于非磁化状态时,内层电子的自旋磁矩可以取向不同,所以,铁磁性物质又显示出反铁磁性。
共轭梯度方法(Conjugate Gradient Method)是求解线性方程组的一种迭代算法。
该方法适用于求解大型稀疏的对称正定线性方程组,可以显著减少计算量和存储空间。
该方法的主要思想是利用共轭方向(Conjugate Directions)的性质,在有限次迭代中求解方程组的解。
共轭梯度方法的基本步骤如下:
选取一个初值$x_0$,并令$r_0=b-Ax_0$,其中$b$ 为方程组的右端向量,$A$ 为系数矩阵。
计算一个共轭方向$p_0=r_0$,即$p_0$ 与$r_0$ 正交,并满足$Ap_0 \neq 0$。
对于$k=0,1,2,\ldots$,执行以下操作:
a. 计算$\alpha_k=\frac{r_k^Tr_k}{p_k^TAp_k}$。
b. 更新解向量$x_{k+1}=x_k+\alpha_kp_k$。
c. 计算残差向量$r_{k+1}=r_k-\alpha_kAp_k$。
d. 计算$\beta_k=\frac{r_{k+1}^Tr_{k+1}}{r_k^Tr_k}$。
e. 更新共轭方向$p_{k+1}=r_{k+1}+\beta_kp_k$,即$p_{k+1}$ 与$p_k$ 具有共轭性。
如果残差向量$r_k$ 较小,则停止迭代,输出解向量$x_k$。
共轭梯度方法具有收敛速度快、存储空间小等优点,但对于非对称和非正定的线性方程组,该方法可能不收敛。
同时,该方法也有一些变体,如预处理共轭梯度法、共轭残差法等,可以更好地解决不同类型的线性方程组求解问题。
共轭梯度法共轭梯度法(also known as Pearson-Newman gradient method)是电化学反应动力学中一种很有用的技术,主要应用于分析化学、环境工程、农药学、微生物学等领域。
用共轭梯度法时,以活性高的配体替代催化剂上的固定配体(一般为固定相),使原来的催化剂仍能发挥作用,但具有选择性更好、灵敏度更高、应用范围更广的特点,同时能降低毒性和提高催化活性,还可改善催化剂的稳定性。
共轭梯度法(reaction-coordinate density technique,缩写为coAPD),是由美国著名的电化学家S.C.R.(赫维斯特)于1976年提出的,最早是应用于考察水溶液中蛋白质在二级胺诱导下的变性行为。
后来,此方法被用于研究Cu(I)-Zn(II)氧化偶联反应,可用于测定其它一些金属离子。
它能够选择性地催化多种反应,并且操作简便,灵敏度高,催化效率高。
它与同样是基于电极过程机理的原位催化比较,在原理上具有优越性。
对于活性组分分子内部的小的不均匀结构,可以采用共轭梯度法实现更精确的测量。
在这个技术中,如果采用共轭体系,一般可以考虑将其作为一个三电子体系,而与电子得失的量子化运动相联系,即以共振状态作为激发条件。
因此,实验装置也称之为共振极限溶剂。
目前,已经开发了一些共轭体系,其中主要包括共轭二烯体系、共轭异戊二烯体系、共轭二炔体系等。
根据不同的选择性要求,又可将它们划分成几类:双齿配体系列、共轭乙炔体系列、共轭苯炔体系列、共轭乙烯体系列、共轭苯乙炔体系列、双烯类配体系列。
由于选择性较高,该技术广泛用于化学反应机理及反应产物分析。
特别是随着计算机技术的迅速发展,其应用更加广泛。
例如,在定量方面,可以在很短的时间内给出定量结果,可以很快地绘制出实验曲线或计算出数据。
在这个技术中,反应机理以原子轨道理论为基础。
根据反应机理,按照共振条件进行合理的实验设计,通过电化学反应测定反应的产物或催化剂的量,并绘制电位-时间图,即可达到定性、定量的目的。
一.介绍共轭梯度法(Conjugate Gradient )是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse 矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。
在各种优化算法中,共轭梯度法是非常重要的一种。
其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。
共轭梯度法中最关键的两点是,搜索方向)(k d 和最佳步长k α。
其基本步骤是在点)(k X 处选取搜索方向)(k d , 使其与前一次的搜索方向)1(-k d 关于A 共轭,即(1)()(1),0k k k d d Ad --<>=然后从点)(k X 出发,沿方向)(k d 求得)(X f 的极小值点)1(+k X , 即)(min )()()(0)1(k dX f X f k k αλ+=>+如此下去, 得到序列{)(k X }。
不难求得0,)1()(>=<-k k Ad d 的解为)()()1(k k k k d X X α+=+其中,><><-=)()()()(,,k k k k kAd d Ad r α注意到)(k d 的选取不唯一,我们可取)1(1)()()(--+-∇=k k k k d X f d β由共轭的定义0,)1()(>=<-k k Ad d 可得:><><-=----)1()1()1()(1,,k k k k k Ad d Ad r β 共轭梯度法的计算公式如下:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=><><-=+=><><-=-=-==+------(k)(k)1)(k )()()()()1(1(k))()1()1()1()(1(k)(k)(0)(0)d X X,,r ,,X r Xr d k k k k k k k k k k k k k k Ad d Ad r d d Ad d Ad r A b A b ααββ 二.程序框图定义矩阵A 和向量bAx=b定义x 的初值将x 代入计算公式误差到达精度要求Yes输出xNo 迭代出新的x 结束开始三.源码n=100;%矩阵阶数,可以按照题目需要更改syms x1 r1 d1A=zeros(n,n);b=zeros(n,1);b(1,1)=-1;b(n,1)=-1;for i=1:nA(i,i)=-2;endfor i=1:n-1A(i,i+1)=1;A(i+1,i)=1;endx1=zeros(n,1);for i=1:n*1000r1=b-A*x1;d1=r1;a=(r1'*d1)/(d1'*A*d1);x1=x1+a*d1;r2=b-A*x1;if(norm(x1)<=eps)breakendbb=-(r2'*A*d1)/(d1'*A*d1);d1=r2+bb*d1;enddisp([x1])四.结果矩阵A100阶的结果200阶的结果400阶的结果。
共轭梯度法对于任意形式的目标函数()f X ,在极值点*X 附近展开成泰勒级数,且取前三项,有()()()****2**1()...2TT f X f Xf X X X X X f X X X ⎡⎤⎡⎤⎡⎤⎡⎤≈+∇-+-∇-⎣⎦⎣⎦⎣⎦⎣⎦因在极值点*X 处()*0f X ∇=,而()2**()f X H X ∇=为()f X 在*X 的二阶偏导数矩阵,即Hessian 矩阵,故()****1().().2T f X f X X X H X X X ⎡⎤⎡⎤≈+--⎣⎦⎣⎦ 对于二次函数来说,若令()()()2*2*2*221122,,f X f X f X a b c x x x x ∂∂∂===∂∂∂∂则()**1(),a b H X f X d b c ⎡⎤==⎢⎥⎣⎦而—常数 则,得到()()()()()()()()()()()()()()11221212121122*1**112*2**12**112**1222****11122-1()+--2---1=+--2--1-2---2x x a b f X d x x x x b c x x a x x b x x d x x x x b x x c x x d a x x b x x x x c x x ⎡⎤⎡⎤⎢⎥⎡⎤≈⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦⎡⎤+⎢⎥⎡⎤⎣⎦⎢⎥+⎣⎦⎡⎤=+++⎢⎥⎣⎦由上式可知,当12*1**2x x X X x x ⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦时,得到目标函数的极小值()*1()f X f X d ==,当22(),,...f X d d =时,则有等值线族。
令2()f X d =,代入上式,则有()()()()112222****2111221()-2---2f X d d a x x b x x x x c x x ⎡⎤=≈+++⎢⎥⎣⎦所以目标函数()f X 在*X 点附近的等值线方程为()()()()112222****1122-2---0a x x b x x x x c x x d +++=式中,122()d d d =-=常数。