镍基复合材料
- 格式:ppt
- 大小:1.46 MB
- 文档页数:16
《镍基复合材料的制备及其摩擦学性能研究》一、引言随着现代工业技术的快速发展,材料科学在工程应用中的地位日益凸显。
其中,镍基复合材料因其优异的物理、化学及机械性能,被广泛应用于航空、航天、能源、汽车等关键领域。
其制备工艺的优化和摩擦学性能的研究,对于提升材料的使用性能及延长使用寿命具有极其重要的意义。
本文将就镍基复合材料的制备方法及摩擦学性能进行研究探讨。
二、镍基复合材料的制备(一)原料与设备制备镍基复合材料的主要原料包括镍基合金粉末、增强相材料(如碳化硅、氧化铝等)、添加剂等。
制备设备主要包括混合设备、烧结设备、热处理设备等。
(二)制备工艺镍基复合材料的制备主要采用粉末冶金法,其基本步骤包括配料、混合、压制、烧结及热处理等。
具体过程如下:1. 配料:根据所需材料的成分比例,将原料按比例混合。
2. 混合:采用机械混合或化学混合的方式,使各组分充分混合均匀。
3. 压制:将混合后的粉末放入模具中,通过压力机进行压制,形成预成形坯。
4. 烧结:将预成形坯放入烧结炉中,在一定的温度和压力下进行烧结,使材料致密化。
5. 热处理:烧结后的材料进行热处理,以提高材料的性能。
(三)制备过程中的影响因素在制备过程中,影响镍基复合材料性能的因素主要包括粉末粒度、压制压力、烧结温度和时间等。
这些因素对材料的致密度、成分分布及机械性能等有着重要的影响。
三、镍基复合材料的摩擦学性能研究(一)摩擦学性能的基本概念及测试方法摩擦学性能是衡量材料在摩擦过程中所表现出的性能,主要包括摩擦系数、磨损率等。
测试摩擦学性能的方法主要有摩擦试验机测试、磨损试验等。
(二)镍基复合材料的摩擦学性能特点镍基复合材料具有优异的摩擦学性能,其摩擦系数低,磨损率小。
这主要得益于其良好的硬度、耐磨性及抗高温氧化性能。
此外,增强相的加入也提高了材料的硬度和耐磨性,进一步优化了材料的摩擦学性能。
(三)影响镍基复合材料摩擦学性能的因素影响镍基复合材料摩擦学性能的因素主要包括材料成分、组织结构、表面处理等。
金属基复合材料应用举例金属基复合材料是指以金属为基体,添加一种或多种增强相(如纤维、颗粒、片材等)来改善金属材料的性能和功能的一类材料。
金属基复合材料具有高强度、高韧性、高温稳定性等优点,因此在航空航天、汽车、船舶、电子等领域得到广泛应用。
以下是十个金属基复合材料的应用举例:1. 铝基复合材料:铝基复合材料由铝基体和增强相(如陶瓷颗粒、碳纤维等)构成,具有低密度、高强度、耐磨损等特点。
在航空航天领域,铝基复合材料被用于制造飞机机身、航天器传动系统等部件。
2. 镁基复合材料:镁基复合材料具有低密度、高比强度和良好的导热性能,广泛应用于航空航天、汽车、电子等领域。
例如,在汽车行业中,镁基复合材料被用于制造车身结构和发动机零部件,可以减轻车重,提高燃油效率。
3. 钛基复合材料:钛基复合材料由钛基体和增强相(如陶瓷颗粒、纤维等)构成,具有高强度、低密度和良好的耐腐蚀性能。
在航空航天领域,钛基复合材料被用于制造飞机发动机叶片、航天器外壳等高温部件。
4. 镍基复合材料:镍基复合材料由镍基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温强度和良好的耐腐蚀性能。
在航空航天领域,镍基复合材料被用于制造航空发动机涡轮叶片、燃烧室等高温部件。
5. 铜基复合材料:铜基复合材料由铜基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高导电性和高热导率。
在电子领域,铜基复合材料被用于制造高性能散热器、电子封装材料等。
6. 钨基复合材料:钨基复合材料由钨基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高密度、高熔点和高强度。
在核工业领域,钨基复合材料被用于制造核反应堆材料、高温组件等。
7. 铁基复合材料:铁基复合材料由铁基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高强度和良好的耐磨性。
在机械制造领域,铁基复合材料被用于制造高性能齿轮、轴承等零部件。
8. 锆基复合材料:锆基复合材料由锆基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温稳定性和良好的耐腐蚀性能。
对镍基WC复合材料熔覆的研究自从20世纪80年代开始,随着激光器技术的发展,新型高功率激光器的不断出现,激光熔覆技术在工业应用上不断深入,激光熔覆技术得到了迅猛的发展,目前已成为国内外激光表面改性研究的热点。
其应用领域不断拓宽,它可以用于机械制造与维修、汽车制造、纺织机械、航海与航天和石油化工等领域。
在刀具、模具、阀体等机械部件已获得了广泛的应用。
激光熔覆技术是随着激光器技术的发展而不断壮大,因此对于激光熔覆设备中所使用的激光器就是其关键部件。
目前国内多数的生产企业主要使用的有CO2气体激光器,灯泵YAG 固体激光器。
其中CO2气体激光器,功率大,一般数千瓦甚至更高,但体积庞大,维护成本高;且CO2激光器由于结构庞大,其波长为10.6um 的激光不能通过光纤传导,灵活性受到极大限制,不容易实现三维零件复杂曲面的熔覆加工。
国内传统灯泵YAG 固体激光器,功率较小,都是百瓦级别,价格便宜,体积也相对较小,维护相对简单,但每隔段工作时间需要更换泵浦灯。
由于功率不大,其加工的效率和应用范围都受限。
目前国外流行大功率光纤耦合输出半导体激光和整形聚焦直接输出的半导体激光器来做激光熔覆工艺,其具有电光转换效率高、体积小等优势。
但存在技术门槛高,激光器成本价位昂贵等局限。
而高功率的全固态激光器是采用半导体激光阵列作为泵浦源,以YAG晶体为工作物质,综合半导体激光的高效率与YAG激光成熟技术优势,具有输出功率大(1~5kW)、光束质量好(BP值8~40mm*mrad)、输出稳定性好,电光转换效率好(~20%),柔性好,光纤传输可灵活匹配机器人与数控加工机床实现三维加工等诸多优点(如图1所示)。
3kW全固态激光器机器人熔覆加工系统图1、3kW全固态激光器机器人加工系统装备激光熔覆由于其极高的能量密度,几乎能够熔化所有的合金和陶瓷。
为进一步提高零件表面的耐磨耐蚀性能,目前国内外广泛开展了在铁、镍、钴基合金溶剂熔镶WC、TiC、SiC及B4C等陶瓷硬质相的复合涂层研究。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。