数学建模中综合评价模型(改进)分解
- 格式:ppt
- 大小:1.84 MB
- 文档页数:52
数学建模之综合评价问题综合评价是数学建模中的一类常见的问题,在国赛和美赛中都经常出现,例如国赛05年长江水质的综合评价、2010年上海世博会影响力的定量评估问题、2014年美赛“最好大学教练“问题、2015年的“互联网+”时代的出租车资源配等,这些都属于综合评价类问题。
综合评价问题是数学建模问题中思路相对清晰的一类题目,从每学期的综合测评、旅游景点的选择到挑选手机,评价类问题在生活中也是处处存在。
今天小编和大家一起梳理一下综合评价类问题的一般思路。
首先,综合评价模型一般步骤为:1. 明确评价目的;2. 确定被评价对象;3. 建立评价指标体系(包括评价指标的原始值、评价指标的若干预处理等);4. 确定与各项评价指标相对应的权重系数;5. 选择或构造综合评价模型;6. 计算各系统的综合评价值,并给出综合评价结果。
1. 选择恰当的评价指标选取合理的评价指标是综合评价问题的第一步,要考虑四个准则——代表性、确定性、独立性、区别能力。
•代表性:各层次指标能最好地表达所代表的层次;•确定性:指标值要确定、可量化,高低在评价中有确切的含义;•独立性:选定的指标要互相独立,不能相互替代;•区别能力/灵敏性:指标有一定的波动范围。
当建模过程中需要确定评价指标时,我们首先要将赛题中给出的指标考虑进来,然后再从不同维度确定评价指标,这个时候我们应该大量查阅相关文献,看看类似问题前人都选取了哪些指标,在全面考虑问题的基础上,尽可能选择被广泛利用的指标。
例如在05年国赛题目《长江水质的综合评价》中,题目中给出了评价水环境的指标:溶解氧、高锰酸盐指数、氨氮、PH值四项指标;例如当我们选择一个旅游景点时,可能选取的指标有景色、费用、居住环境、饮食、旅途等指标。
2. 评价指标的规范化处理在我们选取的众多评价指标中,有些指标数值越大越好(“极大型”指标),有些指标越小越好(“极小型”指标),有些指标是在一定范围内(“区间型”指标)。
数学建模中的模型评价数学建模是一种以数学方法和技巧解决实际问题的过程。
在实际应用中,我们往往需要选取和评价不同的模型,以确定最适合解决问题的模型。
本文将介绍数学建模中常用的模型评价方法,并分析其优缺点。
一、模型评价方法在数学建模中,常用的模型评价方法有以下几种:1. 残差分析法残差分析法是通过对模型的预测值与实际观测值之间的偏差进行统计分析,以评估模型的拟合程度。
残差是指模型的预测值与实际观测值之间的差值,利用残差可以判断模型是否存在系统误差或者随机误差。
2. 相对误差法相对误差法是通过计算模型预测值与实际观测值之间的相对误差,来评估模型的准确性。
相对误差是指模型预测值与实际观测值之间的差值与实际观测值的比值。
相对误差越小,说明模型的预测能力越强。
3. 决定系数法决定系数是通过计算模型预测值和实际观测值之间的相关性来评估模型的拟合优度。
决定系数的取值范围在0到1之间,越接近1表示模型的拟合效果越好。
4. 参数估计法参数估计法是利用统计学方法对模型中的参数进行估计,以评估模型的可靠性。
参数估计法主要通过最小二乘法来求解最佳参数值,使得模型的拟合误差最小化。
二、模型评价的优缺点每种模型评价方法都有其独特的优缺点,我们需要根据具体问题和模型的特点来选择合适的方法。
残差分析法的优点是可以直观地观察模型预测值和实际观测值之间的差异,可以发现模型中存在的问题,便于模型的改进。
然而,残差分析法也存在一些局限性,比如无法判断模型中存在的误差类型以及无法量化模型的拟合程度。
相对误差法的优点是可以量化模型的准确性,通过计算相对误差可以对比不同模型的预测能力。
然而,相对误差法没有考虑到误差的方向,只是简单地计算模型预测值与实际观测值之间的比值,可能忽略了误差值的正负。
决定系数法是一种常用的模型评价方法,可以直接判断模型的拟合优度,其计算简单直观。
然而,决定系数只考虑了模型预测值与实际观测值之间的相关性,没有考虑到其他可能的误差来源。
数学建模中的常见模型数学建模综合评价模型是一种通过对各个评价指标进行量化,并将它们按照权重进行加权,最终得到一个综合评价值的方法。
这个模型可以应用于多指标决策问题,用于对被评价对象进行排名或分类。
常见的数学建模综合评价模型包括模糊综合评价模型、灰色关联分析模型、Topsis(理想解法)、线性加权综合评价模型、熵值法和秩和比法等。
模糊综合评价模型是一种基于模糊数学理论的方法,它将评价指标的模糊程度考虑在内,得到一个模糊评价结果。
该模型的步骤包括确定评价指标及其权重、构建模糊评价矩阵、进行模糊运算、得到模糊评价结果。
灰色关联分析模型是一种用于分析指标间关联性的方法,它可以帮助我们确定各个指标对被评价对象的影响程度。
该模型的步骤包括确定关联度计算方法、计算各个指标的关联度、得到综合关联度。
Topsis(理想解法)是一种基于距离的方法,它通过计算每个评价对象与理想解的距离,得到一个综合评价值。
该模型的步骤包括确定正负理想解、计算距离、得到综合评价值。
线性加权综合评价模型是一种常用的多指标决策方法,它将各个评价指标的权重与指标值线性组合起来,得到一个综合评价值。
该模型的优点是简单易操作,计算方便,可以对各个指标的重要性进行量化,并将其考虑在评价中。
但是,该模型的权重确定较为主观,且假设指标之间相互独立,不考虑相关性。
熵值法是一种基于信息熵理论的方法,它通过计算每个指标的熵值,得到一个综合评价值。
该模型的步骤包括计算指标的熵值、计算权重、得到综合评价值。
秩和比法是一种用于处理多指标决策问题的方法,它通过计算指标的秩和比,得到一个综合评价值。
该模型的步骤包括编秩、计算秩和比、得到综合评价值。
根据具体的评价需求和问题特点,我们可以选择合适的数学建模综合评价模型来进行评价。
每个模型都有其优点和缺点,需要根据具体情况进行选择和应用。
<span class="em">1</span><spanclass="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [数学建模——评价模型]()[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_sourc e":"vip_chatgpt_mon_search_pc_result","utm_medium":"di stribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_itemstyle="max-width: 100%"] [ .reference_list ]。
数学建模综合评价与决策方法数学建模综合评价与决策方法是指在数学建模的过程中,采用合适的评价方法对建模结果进行评估,并基于评估结果做出决策。
这是一个重要的环节,能够帮助我们判断建模的合理性、有效性,为决策提供科学依据。
本文将介绍几种常用的数学建模综合评价与决策方法。
一、灰色关联度分析灰色关联度分析是一种综合评价方法,适用于多指标、多层次的决策问题。
其基本思想是通过灰色关联度指标来衡量不同因素与目标之间的关联程度,从而评估各个因素对目标的贡献程度。
具体步骤如下:(1)确定评价因素和目标;(2)进行数据归一化,将各个指标转化为单位化的变量;二、层次分析法(AHP)层次分析法是一种量化分析方法,用于处理多准则决策问题。
该方法将决策问题层次化,通过构建判断矩阵对各层次的因素进行定量分析,从而得出最终的决策结果。
具体步骤如下:(1)确定层次结构,将决策问题层次分解为上、下级层次;(2)构建判断矩阵,通过专家评分或经验判断,构造各层次因素之间的重要性判断矩阵;(3)计算权重,通过特征向量法计算各个因素的权重;(4)一致性检验,通过判断矩阵的一致性指标和一致性比例判断判断矩阵的可靠性;(5)计算综合权重,通过将各个层次的权重相乘得到综合权重;(6)进行评价和排序,根据综合权重对各个决策方案进行评价和排序,从而得到最终的决策结果。
三、模糊综合评判法模糊综合评判法是一种适用于部分信息不确定的评价方法。
该方法通过建立模糊综合评判模型,将不确定的信息转化为模糊数,并通过模糊数的运算进行综合评价。
具体步骤如下:(1)确定评价指标和权重;(2)进行数据模糊化,将具体数值转化为模糊数;(3)构建模糊关系矩阵,将模糊数代入模糊关系矩阵中;(4)进行模糊数的运算,通过模糊数的运算得到各个因素的评价结果;(5)进行评价和排序,根据评价结果对各个决策方案进行评价和排序。
综合评价与决策方法是数学建模的重要环节,可以帮助我们对建模结果进行客观、科学的评估,并基于评估结果做出决策。
教师评价模型数学建模师评价模型一、摘要学校是一个充满着评价人的场所,每时每刻都在对各个人进行评价。
毫不夸张地说评价教师是学校里每个人的“日常功课”。
由于教师职业劳动的特殊性,它是复杂劳动。
不能仅仅用工作量来评价教师的劳动,同时评价教师的人员纷繁复杂,方式多种多样。
评价教师的标准往往束缚着学校的教学质量,教师教学的积极性。
所以教师评价的确定就显的很重要。
新课程强调:评价的功能应从注重甄别与选拔转向激励、反馈与调整;评价内容应从过分注重学业成绩转向注重多方面发展的潜能;评价主体应从单一转向多元。
那么如何公正、客观地评价教师的同时,有效地保护教师的教学积极性和帮助提高学校的办学水平呢?此模型的建立改变了以往同类模型的多种弊端,从另一角度更加合理地分析、评价,就是为了更公平,公正地对教师做出合理的评价,从而促进学生发展和教师提高。
本模型主要用了模糊数学模型和对各项评价付权重的方法进行建模分析。
从(1)教师对自己的评价,学生对教师的评价;由专家组对教师的评价的角度出发,(2)(3)通过量化,加权,得出结果。
然后确定三方面的比重来评价教师。
同时通过确定教师自评与他人评价的比值范围,而确定这次评价是否有效。
在各个方面采用的数学模型如下:1、教师对自己的评价:教师对自己的满意度,既体现教师的主人翁意识也保护教师的教学积极性。
(Q表示教师自评的得分P i 表示教师对自己各项符合度而打的分数Di表示对教师自评要求各项所加给的权重)2、学生对教师的评价:表明以学生为主体,体现了模型的客观性,公平、公开的原则。
3、由专家组成通过听课对教师的评价:表明专家对教师指导性,帮助教师提高教学水平。
体现了评价的权威性,真实性。
同时也是作为教师提拔的一个方面。
模型的缺点和推广优点:(1)采用模糊数学建模,充分考虑许多因素。
评价尽量客观,真实,全面(2)采用加权,分等。
使教师之间互相的竞争,同时也保护了教师的积极性(3)模型分为三个方面进行建模,以教师自我评价的主要方面,综合评议。
一、权重的确定方法在统计理论和实践中,权重是表明各个评价指标(或者评价项目)重要性的权数,表示各个评价指标在总体中所起的不同作用。
权重有不同的种类,各种类别的权重有着不同的数学特点和经济含义,一般有以下几种权重。
按照权重的表现形式的不同,可分为绝对数权重和相对数权重。
相对数权重也称比重权数,能更加直观地反映权重在评价中的作用。
按照权重的形成方式划分,可分为人工权重和自然权重。
自然权重是由于变换统计资料的表现形式和统计指标的合成方式而得到的权重,也称为客观权重。
人工权重是根据研究目的和评价指标的内涵状况,主观地分析、判断来确定的反映各个指标重要程度的权数,也称为主观权重。
按照权重形成的数量特点的不同划分,可分为定性赋权和定量赋权。
如果在统计综合评价时,采取定性赋权和定量赋权的方法相结合,获得的效果更好。
按照权重与待评价的各个指标之间相关程度划分,可分为独立权重和相关权重。
独立权重是指评价指标的权重与该指标数值的大小无关,在综合评价中较多地使用独立权重,以此权重建立的综合评价模型称为“定权综合”模型。
相关权重是指评价指标的权重与该指标的数值具有函数关系,例如,当某一评价的指标数值达到一定水平时,该指标的重要性相应的减弱;或者当某一评价指标的数值达到另一定水平时,该指标的重要性相应地增加。
相关权重适用于评价指标的重要性随着指标取值的不同而发生变化的条件下,基于相关权重建立的综合评价模型被称为“变权模型”。
比如评估环境质量多采用“变权综合”模型。
确定权重的方法较多,这里介绍统计平均法、变异系数法和层次分析法,这些也是实际工作种常用的方法。
(一) 统计平均法统计平均数法(Statistical average method)是根据所选择的各位专家对各项评价指标所赋予的相对重要性系数分别求其算术平均值,计算出的平均数作为各项指标的权重。
其基本步骤是:第一步,确定专家。
一般选择本行业或本领域中既有实际工作经验、又有扎实的理论基础、并公平公正道德高尚的专家;第二步,专家初评。
综合评价模型综合评价模块在数学建模⽐赛和数据分析中,综合评价模型的出场率还是⽐较⾼的,实际应⽤也确实⽐较⼴泛。
下⾯是我在学习过程中对综合评价模型的总结。
1 综合评价的⽬的综合评价⽆外乎两种:对多个系统进⾏评价和对⼀个系统进⾏评价。
对多个系统进⾏评价的⽬的基本上有两种:这东西是谁的——分类;哪个好哪个差——⽐较、排序。
对⼀个系统进⾏评价的⽬的基本上就是看它达没达标、及不及格——实现程度。
对⼀个系统的精确评价往往对它进⾏进⼀步的预测起着决定性的参考作⽤。
因为如果我们需要对某⼀系统进⾏预测的话⼀个良好的评价系统也⾮常关键。
2 综合评价的基本要素综合评价模型中的五个基本要素:被评价对象、评价指标、权重系数、综合评价模型和评价者。
2.1被评价对象被评价对象就是综合评价问题中所研究的对象。
这⾥将被评价对象记为2.2评价指标评价指标的选取对系统的综合评价起着⾄关重要的作⽤。
可以说根据不同的评价指标评价出来的结论之间可能⼤相径庭。
评价指标的选取应该主要以下⼏个原则:1. 独⽴性。
尽量减少每⼀个评价指标之间的耦合关系,即每个评价指标中包含的绝⼤部分信息在其他评价指标中应该不存在。
⽐如评价两地之间的交通状况,如果选择了汽车的平均⾏驶速度和公路距离为评价指标后,就不要在选取汽车平均使⽤时间作为评价指标了。
因为它包含的信息在其他的评价指标中能反映出来。
2. 全⾯性。
所有评价指标包含的信息总和应该等于被评价模型的所有信息。
独⽴性和全⾯性可以类⽐古典概型中样本点和样本空间的概念。
3. 量⼦性。
如果⼀个评价指标可以使⽤两个或者多个评价指标表⽰,那么将评价指标的进⼀步细化有助于我们实现指标之间的解耦和对问题的分析。
再分析清楚问题之后,在构建评价模型的时候我们可以通过合适的算法将相关的评价指标进⾏聚合。
4. 可测性。
保证选择的评价指标能直接或者间接的测量也⾮常重要。
评价指标我们⽤.表⽰。
2.3权重系数不同的评价指标的不同重要程度我们可以使⽤权重系数进⾏表⽰。
一,层次分析法以一道例题进行分析:小明同学想出去旅游,在查阅了网上的攻略后,他初步选择了苏杭,北戴河,桂林三个地方请你确定评价指标,形成评价体系为小明同学选择最佳的方案。
第一步:确定模型题中出现“确定评价指标,形成评价体系”这类词眼,确定这是一道层次分析题。
第二步:建立层次结构模型我们从三个问题入手:1.我们评价的目标是什么?答:为小明选择最佳的旅游景点。
2.我们为了达到这个目标有哪几种可选的方案?答:三种。
分别是去苏杭,去北戴河,去桂林。
3.评价的准则或者说指标是什么?答:景色,花费,居住,饮食,交通。
第三个的答案我们可以根据题目中的背景材料,常识,以及网上(知网,百度学术,虫部落-快搜)搜索到的参考资料进行结合,从中筛选合适的指标第三步:构建权重表格我们最终的目标就是要填满这个权重矩阵(同颜色的单元格和为1)重要性表(1)构建指标之间的判断矩阵:两个指标两个指标进行比较,根据重要性表填写两两比较的结果1.比较景色和花费的重要程度答:花费比景色略微重要(景色:花费 = 1:2)2.比较景色和居住的重要程度答:景色比居住要重要一点(景色:居住 = 4 :1)…………总共需要比较次判断矩阵:上面的矩阵就是层次分析法中的正互反矩阵(我们需要知道正互反矩阵的特点)(1)aij表示:与 j 相比,i 的重要程度(例如:和居住相比,景色的重要程度是4)(2)当 i = j 时,两个指标相同,同等重要记为1(3)aij > 0 && aij x aji = 1(2)构建每个指标下,方案之间的判断矩阵1.比较苏杭的花费和北戴河的花费的多少程度答:北戴河的花销要比苏杭的花销要稍多(北戴河:苏杭 = 3 :1)2.比较苏杭的花费和桂林的花费的多少程度答:桂林的花销要比苏杭的花销要贵的多得多(桂林:苏杭 = 8 :1)3.比较北戴河的花花费和桂林的花费的多少程度答:桂林的花销要比北戴河要稍多(桂林:北戴河 = 3 :1)……判断矩阵:第四步:对判断矩阵一致性检验(如果判断矩阵已经是一致矩阵,那么就没必要进行一致性检验)首先介绍一下一致矩阵:在判断矩阵的前提下,如果各行成比例且各列成比例,那么该矩阵就是一致矩阵第一步:计算判断矩阵的最大特征值及一致性指标ci第二步:根据n的大小,按照下表查找平均随机一致性指标ri,计算一致性比例cr 第三步:判断判断矩阵的一致性是否小于0.1结论:如果cr < 0.1, 则可认为判断矩阵的一致性可以接受;否则需要对判断矩阵进行修正。
数学建模常见评价模型简介HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标与指标比较相对重要性用上述之一数值标度,则指标与指标的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A 显然,A 是正互反阵。
教师评价模型一、 摘要学校是一个充满着评价人的场所,每时每刻都在对各个人进行评价。
毫不夸张地说评价教师是学校里每个人的“日常功课”。
由于教师职业劳动的特殊性,它是复杂劳动。
不能仅仅用工作量来评价教师的劳动,同时评价教师的人员纷繁复杂,方式多种多样。
评价教师的标准往往束缚着学校的教学质量,教师教学的积极性。
所以教师评价的确定就显的很重要。
新课程强调:评价的功能应从注重甄别与选拔转向激励、反馈与调整;评价内容应从过分注重学业成绩转向注重多方面发展的潜能;评价主体应从单一转向多元。
那么如何公正、客观地评价教师的同时,有效地保护教师的教学积极性和帮助提高学校的办学水平呢?此模型的建立改变了以往同类模型的多种弊端,从另一角度更加合理地分析、评价,就是为了更公平,公正地对教师做出合理的评价,从而促进学生发展和教师提高。
本模型主要用了模糊数学模型和对各项评价付权重的方法进行建模分析。
从(1)教师对自己的评价,(2)学生对教师的评价;(3)由专家组对教师的评价的角度出发,通过量化,加权,得出结果。
然后确定三方面的比重来评价教师。
同时通过确定教师自评与他人评价的比值范围,而确定这次评价是否有效。
在各个方面采用的数学模型如下:1、 教师对自己的评价:教师对自己的满意度,既体现教师的主人翁意识也保护教师的教学积极性。
161160iii P Q D ==∑ ( i ∈[1,16])(Q 表示教师自评的得分Pi 表示教师对自己各项符合度而打的分数 Di 表示对教师自评要求各项所加给的权重) 2、 学生对教师的评价:表明以学生为主体,体现了模型的客观性,公平、公开的原则。
9ji ij i d c a ==∑ ija=ijnuija=A (U ,V )( U 为评价的主要因素,V 为评价因素分等。
C i 为学生对教师的各项评价要求所付的权重 N 为填写有效调查表的人数)3、 由专家组成通过听课对教师的评价:表明专家对教师指导性,帮助教师提高教学水平。
数学建模构建指标,对123家企业进行综合评价近年来,随着经济发展的加速和市场竞争的激烈,企业综合评价成为了衡量企业绩效和竞争力的重要指标。
为了对企业进行全面、客观的评价,需要建立一种科学有效的数学模型来构建评价指标。
在构建指标时,可以考虑多个方面的因素,如企业的财务状况、市场地位、创新能力、人力资源等。
首先,财务状况是评价企业绩效的重要指标之一。
可以通过分析企业的利润率、销售额、资产回报率等财务指标来评估企业的盈利能力和资本运营能力。
其次,市场地位也是综合评价的重要考量因素。
可以通过分析企业的市场份额、市场增长率、品牌知名度等指标来评估企业在市场上的地位和竞争力。
此外,创新能力也是一个重要的评价指标。
可以通过分析企业的研发投入、专利申请数量、新产品上市率等指标来评估企业的创新能力和技术实力。
另外,人力资源也是综合评价的重要方面。
可以通过分析企业的员工满意度、员工培训投入、员工流失率等指标来评估企业的人力资源优势和员工管理水平。
为了将以上指标进行综合评价,可以利用数学建模的方法,建立一个综合评价模型。
可以采用层次分析法(AHP)、主成分分析法(PCA)等数学方法,根据不同指标的权重和重要性,对企业进行打分和排序。
通过对企业数据的分析和对不同指标的权重确定,可以得出一个综合评分,用于对企业进行综合评价。
通过数学建模构建指标,可以客观全面地评价企业的综合实力和竞争力。
这种综合评价模型可以帮助企业了解自身的优势和不足,并制定相应的发展战略。
同时,这种评价模型也可以为投资者提供参考,帮助他们在投资决策时选择具有潜力的企业。