综合评价方法参考数学建模介绍
- 格式:ppt
- 大小:936.00 KB
- 文档页数:49
数学建模综合评价与决策方法数学建模综合评价与决策方法是指在数学建模的过程中,采用合适的评价方法对建模结果进行评估,并基于评估结果做出决策。
这是一个重要的环节,能够帮助我们判断建模的合理性、有效性,为决策提供科学依据。
本文将介绍几种常用的数学建模综合评价与决策方法。
一、灰色关联度分析灰色关联度分析是一种综合评价方法,适用于多指标、多层次的决策问题。
其基本思想是通过灰色关联度指标来衡量不同因素与目标之间的关联程度,从而评估各个因素对目标的贡献程度。
具体步骤如下:(1)确定评价因素和目标;(2)进行数据归一化,将各个指标转化为单位化的变量;二、层次分析法(AHP)层次分析法是一种量化分析方法,用于处理多准则决策问题。
该方法将决策问题层次化,通过构建判断矩阵对各层次的因素进行定量分析,从而得出最终的决策结果。
具体步骤如下:(1)确定层次结构,将决策问题层次分解为上、下级层次;(2)构建判断矩阵,通过专家评分或经验判断,构造各层次因素之间的重要性判断矩阵;(3)计算权重,通过特征向量法计算各个因素的权重;(4)一致性检验,通过判断矩阵的一致性指标和一致性比例判断判断矩阵的可靠性;(5)计算综合权重,通过将各个层次的权重相乘得到综合权重;(6)进行评价和排序,根据综合权重对各个决策方案进行评价和排序,从而得到最终的决策结果。
三、模糊综合评判法模糊综合评判法是一种适用于部分信息不确定的评价方法。
该方法通过建立模糊综合评判模型,将不确定的信息转化为模糊数,并通过模糊数的运算进行综合评价。
具体步骤如下:(1)确定评价指标和权重;(2)进行数据模糊化,将具体数值转化为模糊数;(3)构建模糊关系矩阵,将模糊数代入模糊关系矩阵中;(4)进行模糊数的运算,通过模糊数的运算得到各个因素的评价结果;(5)进行评价和排序,根据评价结果对各个决策方案进行评价和排序。
综合评价与决策方法是数学建模的重要环节,可以帮助我们对建模结果进行客观、科学的评估,并基于评估结果做出决策。
数学建模综合评价与决策方法讲义一、综合评价方法1. 层次分析法(Analytic Hierarchy Process, AHP)-建立层次结构模型,将问题分解为若干层次的子目标。
-设定评价指标,确定各级指标的权重。
-进行判断矩阵的构建和归一化处理,计算各指标的相对重要性。
-计算得到各评价对象的综合得分。
2.评价函数法-建立指标体系,确定评价指标及其权重。
-设定评价函数,将指标的具体取值代入评价函数中计算得分。
-对各个评价对象进行综合评价,得到最终得分。
3.灰色关联分析法-将评价对象的指标数据进行标准化处理。
-计算各指标与评价对象的关联度,并对其进行等级排序。
-综合各指标的关联度得到评价对象的综合得分。
4.主成分分析法-将指标变量进行标准化处理。
-计算相关系数矩阵,并求取其特征值和特征向量。
-选择主成分,计算得到各指标的主成分系数。
-根据主成分系数计算各评价对象的得分。
二、决策方法1.线性规划-建立数学模型,确定决策变量和目标函数。
-设定约束条件,包括线性约束和非负约束等。
-进行优化求解,得到最优解。
2.整数规划-在线性规划的基础上,限制决策变量为整数。
-利用启发式算法(如分支定界法、遗传算法等)求解整数规划问题。
3.动态规划-将问题划分为若干个阶段,设计状态变量和状态转移方程。
-确定决策变量和目标函数。
-利用递归的方式,从最后一个阶段开始向前推导,得到最优解。
4.决策树-建立决策树模型,将问题划分为若干个决策节点和叶节点。
-根据数据集的属性值进行分割,选择最优的分割属性。
-递归地构建决策子树,对新样本进行分类。
5.模拟退火算法-建立数学模型,确定决策变量和目标函数。
-设定初始解和目标函数的初始值。
-迭代过程中,通过接受非优解的概率来避免陷入局部最优解,以找到全局最优解。
以上是数学建模中常用的综合评价和决策方法,在实际问题中可以根据具体情况选择合适的方法进行分析和求解。
数学建模的综合评价和决策方法能够帮助我们在不确定和复杂的问题中做出合理的决策,并找到最优解。
建模参考资料综合评价方法一、对于评论指标所谓指标就是用来评论系统的参量.比如,在校学生规模、教课质量、师资构造、科研水同等,就能够作为评论高等院校综合水平的主要指标.一般说来,任何—个指标都反应和刻画事物的—个侧面.从指标值的特色看,指标能够分为定性指标和定量指标.定性指标是用定性的语言作为指标描绘值,定量指标是用详细数据作为指标值.比如,旅行景区质量等级有 5A 、 4A 、3A 、 2A 和 1A 之分,则旅行景区质量等级是定性指标;而景区年游客招待量、门票收入等就是定量指标.从指标值的变化对评论目的的影响来看,能够将指标分为以下四类:(1)极大型指标 ( 又称为效益型指标 ) 是指标值越大越好的指标;(2)极小型指标 ( 又称为成本型指标 ) 是指标值越小越好的指标;(3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标;(4)区间型指标是指标值取在某个区间内为最好的指标.比如,在评论公司的经济效益时,收益作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理花费作为指标,其值越小,经济效益就越好,所以管理花费是成本型指标.再如建筑工程招标中,招标报价既不可以太高又不可以太低,其值的变化范围一般是( 10%, 5%) ×标的价,超出此范围的都将被裁减,所以招标报价为区间型指标.招标工期既不可以太长又不可以很短,就是居中型指标.在实质中,无论按什么方式对指标进行分类,不一样种类的指标能够经过相应的数学方法进行互相变换1评论指标的办理方法一般状况下,在综合评论指标中,各指标值可能属于不一样种类、不一样单位或不一样数目级,进而使得各指标之间存在着不行公度性,给综合评论带来了诸多不便.为了尽可能地反应实质状况,除去因为各项指标间的这些差异带来的影响,防止出现不合理的评论结果,就需要对评论指标进行必定的预办理,包含对指标的一致化办理和无量纲化办理.1.指标的一致化办理所谓一致化办理就是将评论指标的种类进行一致.一般来说,在评论指标系统中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都拥有不一样的特色.如产量、收益、成绩等极大型指标是希望取值越大越好;而成本、花费、缺点等极小型指标则是希望取值越小越好;对于室内温度、空气湿度等居中型指标是既不希望取值太大,也不希望取值太小,而是居中为好.若指标系统中存在不一样种类的指标,一定在综合评论之前将评论指标的种类做一致化办理.比如,将各种指标都转变为极大型指标,或极小型指标.一般的做法是将非极大型指标转变为极大型指标.可是,在不一样的指标权重确立方法和评论模型中,指标一致化办理也有差异.(1)极小型指标化为极大型指标对极小型指标x j,将其转变为极大型指标时,只要对指标x j取倒数:x j 1x j,或做平移变换:x j M j x j,此中M j max{ x ij } ,即1 i nn 个评论对象第j项指标值x ij最大者.(2)居中型指标化为极大型指标对居中型指标 x j,令M j max{ x ij } , m j min{ x ij } ,取1 i n 1 i n就能够将 x j转变为极大型指标.(3)区间型指标化为极大型指标对区间型指标x j, x j是取值介于区间[a j , b j ] 内时为最好,指标值离该区间越远就越差.令M j max{ x ij } ,1 i n m j min{ x ij }1 i n,c j max{a j m j, M j b j }, 取就能够将区间型指标x j转变为极大型指标.近似地,经过适合的数学变换,也能够将极大型指标、居中型指标转变为极小型指标.2.指标的无量纲化办理所谓无量纲化,也称为指标的规范化,是经过数学变换来除去原始指标的单位及其数值数目级影响的过程.所以,就有指标的实质值和评论值之分.—般地,将指标无量纲化办理此后的值 称为指标评论值.无量纲化过程就是将指标实质值转变为指标评论值的过程.对于 n个评论对象 S 1, S 2 ,L , S n ,每个评论对象有 m 个指标,其观察值分别为x ij (i 1,2,L ,n; j1,2,L , m) .(1) 标准样本变换法令1n1n2 *此中样本均值 x jx ij ,样本均方差 s j( x ijx j ),x ij 称为标准观察值.n i 1n i 1特色:样本均值为 0 ,方差为 1;区间不确立,办理后各指标的最大值、最小值不同样; 对于指标值恒定 ( s j 0 ) 的状况不合用; 对于要求指标评论值 x ij * 0 的评论方法 ( 如熵值法、几何加权均匀法等 ) 不合用.(2) 线性比率变换法对于极大型指标,令 对极小型指标,令 或该方法的长处是这些变换方式是线性的, 且变化前后的属性值成比率. 但对任一指标来说,变换后的 x ij *1 和 x ij * 0 不必定同时出现.特色:当 x ij 0 x *[0,1];计算简易,并保存了相对排序关系.时, ij(3) 向量归一化法对于极大型指标,令对于极小型指标,令n长处:当 x ij0 时, x ij * [0,1] ,即(x ij * )2 1 .该方法使 0 x ij *1,且变换i 1前后正逆方向不变;弊端是它是非线性变换,变换后各指标的最大值和最小值不同样.(4) 极差变换法对于极大型指标,令对于极小型指标,令其长处为经过极差变换后,均有 0 x ij * 1 ,且最优指标值 x ij * 1,最劣指标值 x *ij 0 .该方法的弊端是变换前后的各指标值不行比率,对于指标值恒定( s j 0) 的状况不合用.(5) 功能系数法令此中 c, d 均为确立的常数. c 表示“平移量”,表示指标实质基础值, d 表示“旋转量”,即表示“放大”或“减小”倍数,则x ij*[ c, c d ] .往常取 c 60,d 40 ,即则 x ij*实质基础值为 60 ,最大值为 100,即 x ij*[60,100] .特色:该方法能够当作更广泛意义下的一种极值办理法,取值范围确立,最小值为 c ,最大值为c d .3.定性指标的定量化在综合评论工作中,有些评论指标是定性指标,即只给出定性地描绘,比如:质量很好、性能一般、靠谱性高、态度恶低等.对于这些指标,在进行综合评论时,一定先经过适合的方式进行赋值,使其量化.一般来说,对于指标最优值可赋值10.0 ,对于指标最劣值可赋值为0.0 .对极大型和极小型定性指标常按以下方式赋值.(1)极大型定性指标量化方法对于极大型定性指标而言,假如指标能够分为很低、低、一般、高和很高等五个等级,则能够分别取量化值为,,,和,对应关系如图 2 所示.介于两个等级之间的能够取两个分值之间的适合数值作为量化值.很低低一般高很高图 2 极大型定性指标量化方法(2)0极小型定性指标量化方法对于极小型定性指标而言,假如指标能够分为很高、高、一般、低和很低等五个等级,则能够分别取量化值为,,,和,对应关系如图 3 所示.介于两个等级之间的能够取两个分值之间的适合数值作为量化值.很高高一般低很低二、对于模糊综合评论方法在客观世界中,存在着很多不确立性现象,这类不确立性有两大类:一类是随机性现象,即事物对象是明确的, 因为人们对事物的因果律掌握不够,使得相应结果拥有不行预知性,比如晴日、下雨、下雪,这是明确的,但出现规律不确立;另一类是模糊性现象,即某些事物或观点的界限不清楚,使得事物的差异之间存在着中间过渡过程或过渡结果,比如年青与年迈、高与矮、美与丑等,这类不确立性现象不是人们的认识达不到客观实质所造成的,而是事物的一种内在构造的不确立属性,称为模糊 性现象.模糊数学就是用数学方法研究和办理拥有“模糊性”现象的一个数学分支.而模糊综合评论就是以模糊数学为基础,应用模糊关系合成的原理,将一些界限不清、不易定量的要素定量化,进行综合评论的一种方法.. 1 隶属度函数确实定方法隶属度的思想是模糊数学的基本思想, 确立切合实质的隶属函数是应用模糊数学方法成立数学模型的重点,但是这是到现在还没有完整解决的问题.下边介绍几种常用确实定隶属函数的方法.⑴ 模糊统计法模糊统计法是 利用概率统计思想确立隶属度函数的一种客观方法, 是在模糊统计的基础上依据隶属度的客观存在性来确立的. 下边以确立青年人的隶属函数为例来介绍其主要过程.① 以年纪为论域 X ,在论域 X 中取一固定样本点 x 0 27 .*°*② 设 A 为论域 X 上随机改动的一般会合,A 是青年人在 X 上以A 为弹性界限的模糊集,对 * 的改动拥有限制作用.此中x 0 ° °AA ,或 x 0 A ,使得 x 0对 °A 的隶属关系拥有不确立性. 而后进行模糊统计试验, 若 n 次试验中覆盖 x 0的次数为 m n ,则称 m n°n 为 x 0 对于 A 的隶属频次.因为当试验次数 n 不停增大时,隶属频次趋于某一确立的常数,该常数就是°x 0 属于 A 的隶属度,即比方在论域 X 中取 x 0 27 ,选择若干适合人选,请他们写出各自以为青 年人最适合最适合的年纪区间( 从多少岁到多少岁 ) ,马上模糊观点明确 化.若 n 次试验中覆盖 27 岁的年纪区间的次数为 m ,则称 m为 27 岁对于青n年人的隶属频次,表 4 是抽样检查统计的结果.因为 27 岁对于青年人的隶属频次稳固在0 . 78 邻近,所以可获得x 0 27 属于模糊集°的隶属度AA.°(27) 0.78试验次数 n表 4 27 岁对青年人的隶属频次1020 30 40 50 60 70 80 90 100 110 120 129隶属次数 m 61423313947536268768595101隶属频次 mn③ 在论域 X 中适合的取若干个样本点x 1 , x 2 ,L , x n ,分别确立出其隶属度A i)(i 1,2,L , n),成立适合坐标系,描点连线即可获得模糊集A 的隶属函数°(x°曲线.将论域 X 分组,每组以中值为代表分别计算各组隶属频次,连续地描出图形使获得青年人的隶属函数曲线,见表 5 与图 5 所示.确立模糊会合隶属函数的模糊统计方法,重视实质资猜中包含的信息,采纳了统计剖析手段,是一种应用确立性剖析揭露不确立性规律的有效方法.特别是对一些隶属规律不清楚的模糊会合, 也能较好地确立其隶属函数.表 5 分组计算隶属频次 ( 试验次数 129)分组 频数 隶属频次 分组 频数 隶属频次~ 2 ~ 103 ~ 27 ~ 101 ~ 51 ~ 99 ~ 67 ~ 80 ~ 124 ~ 77 ~ 125 ~ 27 ~ 129 ~ 27 ~ 129 ~ 26 ~ 129 ~ 26 ~ 129 ~ 26 ~129 ~1~128⑵ 三分法三分法也是利用概率统计中思想以随 机区间为工具来办理模糊性的的一种客观方法.比如成立矮个子 ° ° ,高 个1 2A ,中等个子 A°子 A 3 三个模糊观点的隶属函数.设P 3 {矮个子 , 中等个子 , 高个子 } ,论域 X 为身高的会合, 取 X (0,3) ( 单位: 图 5 年青人的隶属函数曲 线 m).每 次模糊试验确立 X 的一次区分,每次划 分 确 定一对数 ( , ) ,此中 为矮个子与中等个子的分界点, 为中等个子与高个子的分界点, 进而将模糊试验转变为以下随机试验: 马上 ( , ) 看作二维随机变量,进行抽样检查,求得°、、 的概率散布 P ( x) 、 P (x) 后,再分别导出 A 1 ° 和 °的隶属函数 ± (x) 、 ±( x) 和 ± ( x) ,相应的表示图如图 6 所示.A 2A 3AA2 A13往常 和 分别听从正态散布 2 ) 和 N ( a 2 2° ° °的隶属N (a 1, 1 , 2),则 A 1 、 A 2 和 A 3 函数分别为x1 t 2此中 ( x)e 2dt.2 图 6 由概率散布确立模糊集隶属函数⑶ 模糊散布法依据实质状况,第一选定某些带参数的函数,来表示某种种类模糊观点的隶属函数(论域为实数域),而后再经过实验确立参数.在客观事物中,最常有的是以实数集作论域的情况.若模糊集定义在实数域 R 上,则模糊集的隶属函数便称为模糊散布.下边给出几种常用的模糊散布,在此后确立隶属函数时,就能够依据问题的性质,选择适合 ( 即切合实质状况 ) 模糊散布,依据丈量数据求出散布中所含的参数,进而就能够确立出隶属函数了.为了选择适合的模糊散布,第一应依据实质描绘的对象给出选择的大概方向.偏小型模糊散布适合描绘像“小”、“冷”、“青年”以及颜色的“淡”等倾向小的一方的模糊现象,其隶属函数的一般形式为偏大型模糊散布适合描绘像“大”、“热”、“老年”以及颜色的“浓”等倾向大的一方的模糊现象,其隶属函数的一般形式为中间型模糊散布适合描绘像“中”、“温暖“、“中年”等处于中间状态的模糊现象,其隶属面数能够经过中间型模糊散布表示.①矩形(或半矩形 )散布(a) 偏小型(b) 偏大型(c) 中间型此类散布是用于切实观点.矩形( 或半矩形 ) 散布相应的表示图如图7 所示.(a) 偏小型(b)偏大型(c)中间型图 7 矩形 ( 或半矩形 ) 散布表示图②梯形 ( 或半梯形 ) 散布(a) 偏小型(b) 偏大型(c) 中间型梯形 ( 或半梯形 ) 散布的表示图如图8 所示.③ 抛物形散布(a) 偏小型(b) 偏大型(c) 中间型(a) 偏小型(b)偏大型(c)中间型图 8 梯形 ( 或半梯形 ) 散布表示图抛物形散布的表示图如图9 所示.(a) 偏小型(b)偏大型(c)中间型图 9 抛物形散布表示图④ 正态散布(a) 偏小型(b) 偏大型(c) 中间型正态散布的表示图如图10 所示.⑤ 柯西散布(a) 偏小型(b) 偏大型(c) 中间型偏小型柯西形散布的表示图如图(a)型偏大型(b)11所示.(c)中间图 10 正态散布表示图⑥型散布(a) 偏小型(b) 偏大型(c) 中间型(a)偏小型(b)图 11偏大型柯西散布表示图(c)中间型此中k0 .型散布的表示图如图12 所示.(a)偏小型(b)图 12偏大型型散布表示图(c)中间型。
一,层次分析法以一道例题进行分析:小明同学想出去旅游,在查阅了网上的攻略后,他初步选择了苏杭,北戴河,桂林三个地方请你确定评价指标,形成评价体系为小明同学选择最佳的方案。
第一步:确定模型题中出现“确定评价指标,形成评价体系”这类词眼,确定这是一道层次分析题。
第二步:建立层次结构模型我们从三个问题入手:1.我们评价的目标是什么?答:为小明选择最佳的旅游景点。
2.我们为了达到这个目标有哪几种可选的方案?答:三种。
分别是去苏杭,去北戴河,去桂林。
3.评价的准则或者说指标是什么?答:景色,花费,居住,饮食,交通。
第三个的答案我们可以根据题目中的背景材料,常识,以及网上(知网,百度学术,虫部落-快搜)搜索到的参考资料进行结合,从中筛选合适的指标第三步:构建权重表格我们最终的目标就是要填满这个权重矩阵(同颜色的单元格和为1)重要性表(1)构建指标之间的判断矩阵:两个指标两个指标进行比较,根据重要性表填写两两比较的结果1.比较景色和花费的重要程度答:花费比景色略微重要(景色:花费 = 1:2)2.比较景色和居住的重要程度答:景色比居住要重要一点(景色:居住 = 4 :1)…………总共需要比较次判断矩阵:上面的矩阵就是层次分析法中的正互反矩阵(我们需要知道正互反矩阵的特点)(1)aij表示:与 j 相比,i 的重要程度(例如:和居住相比,景色的重要程度是4)(2)当 i = j 时,两个指标相同,同等重要记为1(3)aij > 0 && aij x aji = 1(2)构建每个指标下,方案之间的判断矩阵1.比较苏杭的花费和北戴河的花费的多少程度答:北戴河的花销要比苏杭的花销要稍多(北戴河:苏杭 = 3 :1)2.比较苏杭的花费和桂林的花费的多少程度答:桂林的花销要比苏杭的花销要贵的多得多(桂林:苏杭 = 8 :1)3.比较北戴河的花花费和桂林的花费的多少程度答:桂林的花销要比北戴河要稍多(桂林:北戴河 = 3 :1)……判断矩阵:第四步:对判断矩阵一致性检验(如果判断矩阵已经是一致矩阵,那么就没必要进行一致性检验)首先介绍一下一致矩阵:在判断矩阵的前提下,如果各行成比例且各列成比例,那么该矩阵就是一致矩阵第一步:计算判断矩阵的最大特征值及一致性指标ci第二步:根据n的大小,按照下表查找平均随机一致性指标ri,计算一致性比例cr 第三步:判断判断矩阵的一致性是否小于0.1结论:如果cr < 0.1, 则可认为判断矩阵的一致性可以接受;否则需要对判断矩阵进行修正。