空间插值方法对比整理版 (1)
- 格式:ppt
- 大小:1.59 MB
- 文档页数:56
空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。
克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。
克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。
3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。
用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。
最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。
使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。
4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。
前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。
即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。
(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。
即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。
从而空间统计学应用而生。
➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。
常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。
严格来说趋势面分析并不是在一种空间数据插值法。
它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。
⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。
精度以最小二乘法进行验证。
一、空间数据的插值用各种方法采集的空间数据往往是按用户自己的要求获取的采样观测值,亦既数据集合是由感兴趣的区 域内的随机点或规则网点上的观测值组成的。
但有时用户却需要获取未观测点上的数据,而已观测点上的数 据的空间分布使我们有可能从已知点的数据推算岀未知点的数据值。
在已观测点的区域内估算未观测点的数据的过程称为内插;在已观测点的区域外估算未观测点的数据的 过程称为外推。
空间数据的内插和外推在 GIS 中使用十分普遍。
一般情况下,空间位置越靠近的点越有可能获得与 实际值相似的数据,而空间位置越远的点则获得与实际值相似的数据的可能性越小。
下面介绍一些常用的内 插方法。
1、边界内插使用边界内插法时,首先要假定任何重要的变化都发生在区域的边界上,边界内的变化则是均匀的、同质的。
边界内插的方法之一是泰森多边形法。
泰森多边形法的基本原理是,未知点的最佳值由最邻近的观测值产生。
如图4-6-1所示。
泰森多边形的生成算法见§ 5.7。
2、趋势面分析趋势面分析是一种多项式回归分析技术。
多项式回归的基本思想是用多项式表示线或面,按最小二乘法原理对数据点进行拟合, 拟合时假定数据点的空间坐标 X 、Y 为独立变量,而表示特征值的Z 坐标为因变 量。
当数据为一维时,可用回归线近似表示为:-其中,Sb 、a i 为多项式的系数。
当n 个采样点方差和为最小时,则认为线性回归方程与被拟合曲线达工(N -乳〕之-min到了最佳配准,如图4-6-2左图所示,即: 一当数据以更为复杂的方式变化时,如图 4-6-2右图所示。
在这种情况下,需要用到二次或高次多项式:在GIS 中,数据往往是二维的,在这种情况下,需要用到二元二次或高次多项式:£ 二 % + a x X + a^X(二次曲线)7 1= +O,JV 2 +a 4J¥y4多项式的次数并非越高越好,超过 3次的多元多项式往往会导致奇异解,因此,通常使用二次多项 式。
空间曲线插值
空间曲线插值是指通过一系列已知的空间点,推导出两个或多个点之间的中间位置,从而形成一条平滑的曲线。
这种插值方法广泛应用于计算机图形学、计算机辅助设计以及三维动画等领域。
在空间曲线插值中,常用的方法包括线性插值、贝塞尔曲线插值和样条曲线插值。
1. 线性插值:线性插值是最简单的插值方法,它假设两个点之间的曲线段为一条直线。
通过计算两个点之间的距离和方向,可以得到中间点的位置。
线性插值适用于需要简单粗暴的连接两个点的情况,但不能提供更复杂的曲线形状。
2. 贝塞尔曲线插值:贝塞尔曲线插值是通过控制点来定义曲线形状的一种方法。
贝塞尔曲线可以通过调整控制点的位置和权重来改变曲线的形状。
常见的贝塞尔曲线包括二次贝塞尔曲线和三次贝塞尔曲线,它们分别由2个和3个控制点定义。
贝塞尔曲线插值可以提供更加自由和灵活的曲线形状。
3. 样条曲线插值:样条曲线插值是一种基于局部控制的插值方法,它通过一系列的支撑点和控制点来定义曲线。
样条曲线可以保持平滑,并且可以通过调整控制点的位置来改变曲线的形状。
常见的样条曲线包括B样条曲线和NURBS曲线。
样条曲线插值适用于需要精确控制曲线形状的情况,例如在计算机辅助设计中绘制曲线路径。
总之,空间曲线插值是一种通过已知点推导出中间点位置的方法,可以通过线性插值、贝塞尔曲线插值和样条曲线插值等方法实现。
选
择合适的插值方法取决于需要的曲线形状和应用场景。
常用插值方法比较简表
插值方法要求优缺点适用性
IDW 1.距离预测单元中心越近的
点,影响权重越大
2.权重取为距离某次幂的倒数
3.影响因素:幂、搜索半径、
搜索方式、中断线
1.简单方便
2.没有考虑数据变化
趋势
3.插值数值范围不会
超过样本点的范围
1.样本点较多
2.分布均匀
Spline 1.插值表面的整体曲率为最小
2.正则化样条插值中,权重越
高,表面越光滑
3.张力样条插值中,权重越高,
表面越粗糙1.光滑、渐变的拟合
面
2.插值结果可能超过
样本点的取值范围
1.适用于样本
点没有包含极
值时的情况
2.渐变曲面(高
程、水位、污染
浓度...)
Kriging 1.利用给已知的样本点赋权重
计算预测值
2.权重与距预测位置的距离,
样本点的空间分布特征有关
3.需要进行变异估计(结构性
分析)1.基于地统计学(自
相关)的一种方法
2.给出预测结果的精
度
1.变量在空间
分布上具备结
构性和随机性
特征
2.应用广泛。
空间插值方法汇总(2010-08-05 21:13:33)在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。
1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。