空间插值方法对比整理版 (1).
- 格式:ppt
- 大小:1.59 MB
- 文档页数:56
ArcGIS 中几种空间插值方法1. 反距离加权法(IDW)ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。
可表示为:1111()()n nip p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。
2.多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。
在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。
前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。
3.样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。
样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。
4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。
这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。
这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。
地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。
Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。
空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。
克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。
克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。
3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。
用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。
最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。
使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。
4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。
前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。
即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。
(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。
即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。
从而空间统计学应用而生。
➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。
常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。
严格来说趋势面分析并不是在一种空间数据插值法。
它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。
⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。
精度以最小二乘法进行验证。
对地理信息系统空间数据分析中的空间数据插值方法从广义的角度分为点的插值和面的插值。
随着GIS和计算机技术的不断发展,以及人们在研究工作中对空间高质量数据的要求,空间数据插值应用越来越广,受到人们的高度重视。
空间数据的插值即对一组已知空间数据,可以是离散点的形式,也可以是分区数据的形式,要从这些数据中找到一个函数关系式,使该关系式最好地逼近已知的空间数据,并能根据该函数关系式推求出区域范围内其它任意点或任意分区的值。
1、什么情况下要用到空间插值(1)现有的离散曲面的分辨率,像元大小或方向与所要求的不符,需要重新插值。
(2)现有的连续曲面的数据模型与所需的数据模型不符,需要重新插值.如将一个连续的曲面从一种空间切分方式变为另一种空间切分方式,从TIN到栅格、栅格到TIN或矢量多边形到栅格。
(3)现有的数据不能完全覆盖所要求的区域范围需要插值如将离散的采样点数据内插为连续的数据表面。
2、空间插值方法的主要目的(1)对不足或缺失数据的估计。
由于观测台站分布的密度及分布位置的原因,不可能任何空间地点的数据都能实测得到,需要用到插值,以了解区域内观测变量的完整空间分布。
(2)数据的网格化。
规则格网能够更好地反映连续分布的空间现象,并对他们的变化作出模拟。
对已知观测台站的观测数据进行空间内插,便可得到格网化数据。
(3)内插等值线。
以等值线的形式直观地显示数据的空间分布。
(4)对不同分区未知数据的推求。
3、进行空间插值的一般过程(1)空间插值数据源的获取。
(2)对数据进行分析,找出源数据的分布特性、统计特性,便于选择最恰当的插值方法。
(3)插值方法的选择并进行插值计算。
(4)对插值结果的评价。
(5)运用多种插值方法进行计算,对各种方法的插值结果进行比较、分析并选择最佳的插值方法。
4、不同插值法的分析(1)样条函数插值(SPLINE)样条函数是数学上与灵活曲线规对等的一个数学等式,是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续。
空间插值方法1.反距离权重插值:通过与样本点距离大小赋予权重,距离近的样本点被赋予较大的权重,受该样本点的影响越大,同时可以限制插值点的个数、范围,通过幂值来决定样本点对插值点的影响程度,灵活性大,准确性高,但不太适用规则排列的插值点2.克里金插值:克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。
它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。
使用克里金插值需确定半变异函数的类型、步长、步数。
对于这种方法,原始的输入点可能会发生变化。
在数据点多时,结果更加可靠。
该插值方法对规则排列、较密集的点插值较适用,而离散的插值点则需进行多次调试才可达到较为理想的效果3.自然邻域插值:原理是构建voronoi多边形,也就是泰森多边形。
首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。
该方法不是通过数据模型来进行插值,不需要设置多于的参数,简便但不灵活,不适合离散点进行插值,因为会形成不规则插值边界,但插值结果相对符合实际数值、准确,适合规则排列、较密集的点插值。
4.样条函数插值:这种方法使用样条函数来对空间点进行插值,它有两个基本条件:1.表面必须完全通过样本点2.表面的二阶曲率是最小的。
插值主要受插值类型(Regularized 或Tension)和weight值的影响,一般Regularize 插值结果比Tension插值结果光滑,在Regularized Spline 插值中,weight 值越高生成的表面越光滑,Tension Spline 插值则相反;适合那些空间连续变化且光滑的表面的生成。
该方法虽可生成平滑的插值结果,但其结果会在原有样点值进行数值延伸,产生于实际不符的结果,不建议一般插值使用。
空间插值方法汇总在GIS的地理空间信息采集过程中,我们对某种地理空间现象或特征进行地理空间测量,都是基于一种离散的样本测量,利用这些有限的采样点数据,而对研究区域内其他未知区域的特征数据进行地理空间信息的推理和估计,从而构建一个连续的地理特征表面分布,我们把这种地理空间推理计算和估计的方法称为地理空间插值。
空间插值主要有如下类别:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modifi ed Shepard’s Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点:1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为 0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
如何进行测绘数据的空间插值与可视化概述:在进行测绘工作时,我们通常会收集大量的测量数据,这些数据可以帮助我们理解和分析地球表面的各种现象和特征。
然而,原始的测量数据通常是离散的,我们需要对其进行空间插值,以便更好地理解和可视化空间分布的规律和趋势。
本文将介绍如何进行测绘数据的空间插值与可视化的方法和技巧。
一、空间插值方法:1. IDW插值:反距离加权插值(Inverse Distance Weighted Interpolation,简称IDW插值)是一种常用的空间插值方法。
它基于离测点越近的数据点对估计值的贡献越大的原理,通过计算每个测点周围邻近点的权重来进行插值。
IDW插值方法简单易懂,适用于各种类型的测绘数据,但对异常值比较敏感。
2. 克里金插值:克里金插值(Kriging Interpolation)是一种基于地理统计学理论的插值方法,它考虑了空间相关性和变异的特性。
克里金插值通过计算测点与周围邻近点之间的空间关系,利用半方差函数来估计未知点的值。
克里金插值具有较好的精度和稳定性,在地质测绘、环境监测等领域得到广泛应用。
3. 样条插值:样条插值是一种基于插值函数的方法,它通过构造连续的函数曲线来拟合原始数据的分布。
样条插值方法可以分为一维和二维样条插值,常见的有线性样条插值、二次样条插值和三次样条插值等。
样条插值具有较高的精度和平滑性,适用于等高线绘制、数字地形模型等领域。
二、可视化方法:1. 等值线图:等值线图是一种常见的测绘数据可视化方法,它通过连接具有相同属性值的点来展示空间分布的规律和趋势。
等值线图可以直观地显示出地形起伏和高低变化,常用于地形图、气象图等领域。
2. 热力图:热力图是一种基于颜色渐变的数据可视化方法,它通过色彩的变化来表示不同数值的密度和分布。
热力图可以清晰地展示出数据的密集区域和稀疏区域,并且可以根据具体需求进行颜色的调整和渐变范围的设置,常用于人口密度、污染分布等领域。
GIS空间插值方法对比分析1.背景各地区经济协调发展是保证国民经济健康持续稳定增长的关键。
GDP是反映各地区经济发展状况的重要指标。
科学准确分析各地区GDP空间分布特征,对制定有效措施,指导经济协调发展具有重要参考价值。
2.目的ArcGIS中提供了三种空间插值方法,每种插值方法在原理上和应用上都大不相同,在此通过具体实例练习如何利用IDW内插方法和Spline内插方法进行GDP空间分布特征的分析,以此来引导读者对空间插值有一个更深刻的认识。
3.数据:某地区的统计GDP数据(GDP.shp),数据范围:4601万元~132630万元。
数据存放于随书光盘的..\Test6\目录下。
4.要求(1)经济的发展具有一定的连带效应和辐射作用。
以该地区各区域年GDP数据为依据,采用IDW和Spline内插方法创建该地区GDP空间分异栅格图;(2)分析每种插值方法中主要参数的变化对内插结果的影响;(3)分析两种内插方法生成的GDP空间分布图的差异性,简单说明形成差异的主要原因;(4)通过该练习,熟练掌握两种插值方法的适用条件。
5.实验流程图(1)IDW内插方法图1 IDW内插试验流程图(2)Spline内插方法图2 Spline内插试验流程图(3)两种方法之间的对比,通过空间分析中Raster Calculate命令来进行分析。
选择IDW(Power=2),Spline(Regularized,Weight=0.01)。
在Raster Calculate中计算Abs(IDW – Spline),比较二者产值变化空间分异特征。
6.操作步骤(1)IDW插值法1)插值步骤:A.运行ArcMap,加载Spatial Analyst模块,如果Spatial Analyst模块未能激活,单击Tools 菜单下的Extensions,选择Spatial Analyst,单击Close按钮;B.单击File菜单下的Open命令,打开加载地图文档对话框,选择E:\Test6\GDP.mxd;C.在Spatial Analyst下拉菜单中选择Options选项,在Options中的General页面中在设置默认工作路径,此处假定为“E:\Test6\Result\”,并设置Analysis mask 为board.shp;D.在Spatial Analyst下拉菜单中选择Interpolate to Raster, 在弹出的下一级菜单中单击Inverse Distance Weighted;E.设置Z value field为GDP;设置Power为2;设置Output cell size为500;输出结果文件名为IDW2;其他参数不变,单击OK。
两种空间插值方法的比较研究摘要:距离倒数加权法算法简单,容易实现,适合分布较均匀的采样点集,但容易出现“牛眼”现象;克里金法是一种无偏最优估计法,精度较高,适合空间自相关程度高的数据,但其算法复杂,实现较难。
这两种方法各有其适用情形,本文比较了这两种方法的优劣并提出算法优化的思路。
关键字:距离倒数加权,克里金,优化1引言空间插值是根据一组已知的离散数据或分区数据,按照某种假设推求出其他未知点或未知区域的数据的过程,简单的说就是由已知空间特性推求未知空间特性。
它是地学研究中的基本问题,也是GIS 数据处理的重要内容。
在利用GIS 处理空间数据的过程中,需要进行空间插值的场合很多,如采样密度不够、采样分布不合理、采样存在空白区、等值线的自动绘制、数字高程模型的建立、区域边界分析、曲线光滑处理、空间趋势预测、采样结果的2.5维可视化等[1]。
通过归纳,空间插值可以简化为以下三种情形:(1)现有离散曲面的分辨率、像元大小或方向与所要求的不符,需要重新插值。
例如将一个扫描影像(航空像片、遥感影像)从一种分辨率或方向转换为另一种分辨率或方向的影像。
(2)现有连续曲面的数据模型与所需的数据模型不符,需要重新插值。
如将一个连续曲面从一种空间切分方式变为另一种空间切分方式,从TIN 到栅格、栅格到TIN 或矢量多边形到栅格。
(3)现有数据不能完全覆盖所要求的区域范围,需要插值。
如将离散的采样点数据内插为连续的数据表面[2]。
现有的空间插值方法多种多样,但每一种方法都有其适用情形和无法避免的缺陷,本文分析了距离倒数加权法和克里金法的插值结果,并提出改进的思路。
2方法距离倒数加权法和克里金法都是建立在地理学第一定律之上的,即:空间距离越近,地理事物的相似性越大[3]。
它们都是通过确定待插点周围采样点的权重来求取待插点的估计值,可统一表示。
设n x x ,,1 为区域上的一系列观测点,)(,),(1n x Z x Z 为相应的观测值。
空间内插方法比较一、本文概述空间内插方法是一种在地理信息系统(GIS)和遥感技术中广泛使用的技术,用于根据已知的数据点推测未知区域的值。
这种方法在环境科学、气象学、城市规划、资源管理等众多领域都有着重要的应用。
本文旨在探讨和比较几种常见的空间内插方法,包括反距离权重法(IDW)、克里金插值法(Kriging)、自然邻点插值法(Natural Neighbors)以及多项式插值法等。
我们将首先简要介绍这些空间内插方法的基本原理和实施步骤,然后通过一个具体的案例或数据集来比较它们的性能。
我们将评估插值结果的精度、平滑度以及在不同应用场景下的适用性。
我们还将讨论这些方法的优缺点,以便读者能够根据自己的需求选择合适的空间内插方法。
通过本文的阅读,读者将对空间内插方法有更加深入的理解,能够掌握其基本原理和实施步骤,了解不同方法之间的差异和优缺点,并能够在实践中选择合适的空间内插方法。
二、空间内插方法概述空间内插是一种重要的地理信息系统(GIS)技术,用于估算在已知数据点之间或之外的未知地理位置的值。
它是通过分析和理解空间数据的分布模式,使用数学算法来预测和模拟这些模式在空间上的变化。
这种技术广泛应用于各种领域,包括环境科学、气象学、地质学、城市规划等。
空间内插方法大致可以分为两类:确定性方法和统计性方法。
确定性方法,如反距离权重法(IDW)、样条函数法(Spline)等,主要基于空间数据的物理特性和已知点之间的空间关系进行插值。
这类方法通常假设空间数据具有某种连续性和平滑性,通过最小化插值误差或最大化平滑度来得到预测值。
统计性方法,如克里金插值(Kriging)、协方差法等,则更多地依赖于对空间数据分布模式的统计分析和理解。
这类方法认为空间数据不仅具有空间相关性,而且可能存在某种潜在的随机性。
因此,它们通过构建和拟合空间统计模型,如变异函数或协方差函数,来估算未知位置的值。
每种空间内插方法都有其独特的优缺点和适用范围。
插值算法(一):各种插值方法比较整体拟合利用现有的所有已知点来估算未知点的值。
局部插值使用已知点的样本来估算位置点的值。
确定性插值方法不提供预测值的误差检验。
随机性插值方法则用估计变异提供预测误差的评价。
对于某个数据已知的点,精确插值法在该点位置的估算值与该点已知值相同。
也就是,精确插值所生成的面通过所有控制点,而非精确插值或叫做近似插值,估算的点值与该点已知值不同。
1、反距离加权法(Inverse Distance Weighted)反距离加权法是一种常用而简单的空间插值方法,IDW是基于“地理第一定律”的基本假设:即两个物体相似性随他们见的距离增大而减少。
它以插值点与样本点间的距离为权重进行加权平均,离插值点越近的样本赋予的权重越大,此种方法简单易行,直观并且效率高,在已知点分布均匀的情况下插值效果好,插值结果在用于插值数据的最大值和最小值之间,但缺点是易受极值的影响。
2、样条插值法(Spline)样条插值是使用一种数学函数,对一些限定的点值,通过控制估计方差,利用一些特征节点,用多项式拟合的方法来产生平滑的插值曲线。
这种方法适用于逐渐变化的曲面,如温度、高程、地下水位高度或污染浓度等。
该方法优点是易操作,计算量不大,缺点是难以对误差进行估计,采样点稀少时效果不好。
样条插值法又分为•张力样条插值法(Spline with Tension)•规则样条插值法(Regularized Spline)•薄板样条插值法 (Thin-Plate Splin)3、克里金法(Kriging)克里金方法最早是由法国地理学家Matheron和南非矿山工程师Krige提出的,用于矿山勘探。
这种方法认为在空间连续变化的属性是非常不规则的,用简单的平滑函数进行模拟将出现误差,用随机表面函数给予描述会比较恰当。
(克里金中包括几个因子:变化图模型、漂移类型和矿块效应)克里金方法的关键在于权重系数的确定,该方法在插值过程中根据某种优化准则函数来动态地决定变量的数值,从而使内插函数处于最佳状态。