节约里程法典型实例
- 格式:doc
- 大小:55.50 KB
- 文档页数:3
节约里程法应用案例:
由配送中心P向A〜I等9个用户配送货物。
图中连线上的数字表示公
路里
程(km)。
靠近各用户括号内的数字,表示各用户对货物的需求量(心备有
2t和4t载重量的汽车,且汽车一次巡回走行里程不能超过到时间均符合用
户要求,求该配送中心的最优送货方案。
计算配送中心至各用户以及各用户之间的最短距离,列表得最短距离表:
P A B C D E F G H I P \^1110 9 6 710 10 8 7
A 5 10 14 18 2121 136
B 5 9 1520 20 1811
C 4 1019 19 17 16
D 6 15 16 14 13
E 9 17 15 14
F 14 18 17
G 12 17
H \ 7
由最短距离表,利用节约法计算出各用户之间的节约里程,编制节约里程表:
t )。
配送
中
A B c D E F G H I
A 16 10 3 0 0 0 6 12
B14 7 2 0 0 0 6
C 11 6 0 0 0 0
D 7 10 0 0
E -8 0 00
F 6 00
G 6 0
H8
1
根据节约里程表中节约里程多少的顺序,由大到小排列,编制节约里程顺序表,以便尽量使节约里程最多的点组合装车配送。
束条件,渐进绘出配送路径:
6
A
B
6
D
o
- 1
E
6
6
c
9
A
径 B
径 c
径
1 1
9) a。
物流方案设计(最优运输路线决策-节约里程法)典型实例:已知配送中心P O向5个用户P j配送货物,其配送路线网络、配送中心与用户的距离以及用户之间的距离如下图与表所示:图中括号内的数字表示客户的需求量(单位:吨),线路上的数字表示两结点之间的距离,配送中心有3台2t卡车和2台4t两种车辆可供使用,1、试利用节约里程法制定最优的配送方案?2、设卡车行驶的速度平均为40公里/小时,试比较优化后的方案比单独向各用户分送可节约多少时间?第(1)步:作运输里程表,列出配送中心到用户及用户间的最短距离。
得初始方案配送距离=39X 2=78KM第(5)步:根据载重量约束与节约里程大小,将各客户结点连接起来,形成二个配送路线。
即A B 两配送方案。
序号 路线 节约里程 序号 路线 节约里程1 P 2P 3 10 6 P i F 52 2 P 3P 4 8 7 P i P3 1 3 P 2P4 6 8 F 2F5 0 4 P 4P 5 5 9 F 3F 5 0 5P l P 2410P i F 4第(2)步:由运输里程表、按节约里程公式,求得相应的节约里程数,如上表( 第(3)步:将节约里程 sij 进行分类,按从大到小顺序排列第(4)步:确定单独送货的配送线路)内。
(1.5)①配送线路A:P0-P2-P3-P4- P 0 运量q A= q 2+q3+q4 = 1.7+0.9+1.4 = 4t 用一辆4t 车运送节约距离S A =10 +8 = 18km②配送线路B: P 0-P5 -P 1-P0 运量q B =q 5+q1=2.4+1.5=3.9t<4t 车用一辆4t 车运送节约距离S B=2km第(6)步:与初始单独送货方案相比,计算总节约里程与节约时间总节约里程:△ S= S A+S B= 20 km与初始单独送货方案相比,可节约时间:△T = △ S/V=20/40=0.5小时。
物流方案设计(最优运输路线决策-节约里程法)典型实例:已知配送中心P O向 5 个用户 P j配送货物,其配送路线网络、配送中心与用户的距离以及用户之间的距离如下图与表所示:图中括号内的数字表示客户的需求量(单位:吨),线路上的数字表示两结点之间的距离,配送中心有 3 台 2t 卡车和 2 台 4t 两种车辆可供使用,1、试利用节约里程法制定最优的配送方案?2、设卡车行驶的速度平均为40 公里 / 小时,试比较优化后的方案比单独向各用户分送可节约多少时间?( 0.9)P3 4( 1.7)5P2 6128( 1.4)12 P4 7 P0 1312 10 8P5 16P1 ( 1.5)需要量P0( 2.4)1.5 8 P11.7 8 12 P20.9 6 13 4 P31.4 7 15 9 5 P42.4 10 16 18 16 12 P5第( 1)步:作运输里程表,列出配送中心到用户及用户间的最短距离。
需要量0 P1.5 8 P11.7 8 ( 4)P12 20.9 6 (1)( 10)P3 13 41.4 7 (0)(6)(8)4 15 9 5 P2.4 10(2)(0)(0)(5)16 18 16 P512第( 2)步:由运输里程表、按节约里程公式,求得相应的节约里程数,如上表()内。
第( 3)步:将节约里程sij 进行分类,按从大到小顺序排列序号路线节约里程序号路线节约里程1 P2P3 10 6 P1 P5 22 P P 8 7 P P 13 4 1 33 P P 6 8 P P 02 4 2 54 P4P5 5 9 P3 P5 05 P1P2 4 10 P1 P4 0第( 4)步:确定单独送货的配送线路(0.9)P3 ( 1.7 )P268( 1.4)P4 7P0108P5P1(1.5)(2.4 )得初始方案配送距离 =39× 2=78KM第( 5)步:根据载重量约束与节约里程大小,将各客户结点连接起来,形成二个配送路线。
配送路径优化节约里程法事例一、配送的困扰说起配送这事儿,大家都有点经验吧?那种看似简单、实则复杂的送货过程,光是坐车的时间都能让人崩溃。
有时候就算是个小小的东西,送到手里的时间也不一定那么准时。
你看,那些送货员的车,东绕西绕的,绕了半天,回头一看,距离目的地明明就不远,怎么感觉走了好几条弯路,浪费了不少油,吃了不少时间。
说得通俗点,那就是配送路径没优化好!你说,谁家不想节省点里程呢?这不仅能省钱,还能节省油费,最重要的是,减少了送货员心里的压力。
所以啊,这个配送路径优化的事儿,真的得好好琢磨一番。
二、路径优化的作用那这优化到底是个啥意思呢?如果送货员每次都能按照最短的路程走,不用左拐右绕,不用在每个交叉路口犹豫半天,效率自然就高了。
这种“少走弯路”的办法,不仅能节省时间,车辆油耗也会降低,大家的心情也能轻松点。
你想想,不再碰到那种“导航指路,车却走偏”的尴尬局面,不再在车里等个十几分钟,真的是大大的爽。
再加上现在的技术那么先进,有了路径优化,送货员的负担轻了,企业的运营成本也降低了,一举两得,岂不是美滋滋?但是,如何优化呢?这可不是那么简单的事儿,得好好分析。
得从每一个配送的起点和终点开始算,合理规划每一条路线。
有的配送中心本来就不远,但因为道路复杂、交通状况不好,结果走了许多不必要的冤枉路。
你要知道,那种高峰期的交通,光是堵个红绿灯,差不多就得半小时过去。
再加上,某些路段的繁忙程度,早高峰、晚高峰的时候可不是闹着玩的。
那种时间上的浪费,实在是让人心烦。
你能想象吗?你本来预计一个小时就能到的地方,结果送了两小时才到,最后客户也没了耐心,甚至还得打个电话投诉。
那场面可真是尴尬死了。
三、具体实施路径优化说到这里,很多人可能就会问了,那要怎么实施路径优化呢?其实现在有很多高效的系统,可以根据实际情况帮你算出最短路径。
比如,根据每条道路的交通状况、道路的宽窄程度、甚至是天气情况来优化路线。
你要知道,不是所有的道路都能通行,尤其在一些小巷子里,车子一进去了,根本就转不过来。
算例:节约里程法以上一个二维码扫描算法算例为例,用节约里程法计算配送线路的安排。
解:① 首先根据上一个二维码扫描算法算例中的距离矩阵表计算出各点间的节约值矩阵表,如表1所示。
表1 节约值矩阵表② 从表1中选出节约值最大值为23,其对应的两个顶点为5、6。
5、6两处的需求量之和为8,未超过一辆车的运输能力14,因此,连接5、6成回路,即0—5—6—0。
再将顶点5与6的节约值赋为0,结果如表2所示。
表2 节约矩阵表计算过程1③ 从表2中再选出节约值最大值为20,其对应的两个顶点为7、8。
7、8两处的需求量之和为7,未超过一辆车的运输能力14,因此,连接7、8成回路,即0—7—8—0。
再将顶点7与8的节约值赋为0,结果如表3所示。
表3 节约矩阵表计算过程2④ 从表3中再选出节约值最大值为16,其对应的两个顶点为5、8或6、8。
如果连接5与8,则上述两条回路合并,其总需求量为15,超过一辆车的运输能力14,因此,5与8不能连接,同样6和8也不能连接,则将顶点5、8和6、8的节约值赋为0,结果如表4所示。
表4 节约矩阵表计算过程3⑤ 从表4中再选出节约值最大值为15,其对应的两个顶点为4、6。
如连接4与6,则形成:0—5—6—4—0回路,其总需求量为11,未超过一辆车的运输能力14,因此,连接4、6成新回路,即0—5—6—4—0。
再将顶点4与6的节约值赋为0,同时,由于顶点6成为回路的中间点,则与顶点6相关的节约值都赋为0。
表示顶点6不可能再与其他点相连,其结果如表5所示。
表5-33 节约矩阵表计算过程4⑥ 按算法步骤迭代运算,直到节约值矩阵表中的值均为0时,迭代结束。
最终的结果为:0—2—3—0,0—5—6—4—0,0—7—8—1—0这三条线路,其运输量分别为9、11、13,总里程数为93。
一般来说,节约里程法可以得到比较好的结果,但此算法也是一种贪婪启发式算法,对于一些特殊的算例,得不到最优解。
上一个二维码中算例的全局最优解是:选择0—1—3—0,0—2—7—8—0,0—5—6—4—0这三条线路,其运输量分别为11、11、11,总里程数为90。
节约里程法应用案例在当今竞争激烈的商业环境中,物流成本的有效控制对于企业的生存和发展至关重要。
节约里程法作为一种优化配送路线的有效方法,能够显著降低运输成本,提高物流效率。
接下来,让我们通过一个具体的案例来深入了解节约里程法的实际应用。
假设我们有一家位于城市中心的配送中心,需要向位于城市不同区域的五个客户(A、B、C、D、E)配送货物。
每个客户的需求量以及他们之间的距离如下表所示:|客户|需求量(吨)|与配送中心距离(公里)||||||A|5|10||B|8|12||C|3|8||D|6|15||E|4|11||客户|A|B|C|D|E|||||||||A| | 18 | 22 | 25 | 16 ||B| 18 || 10 | 18 | 12 ||C| 22 | 10 || 14 | 9 ||D| 25 | 18 | 14 || 20 ||E| 16 | 12 | 9 | 20 ||首先,我们按照传统的方法,即每个客户单独配送,计算出总运输里程。
配送中心到客户 A 的往返里程为 2×10 = 20 公里。
配送中心到客户 B 的往返里程为 2×12 = 24 公里。
配送中心到客户 C 的往返里程为 2×8 = 16 公里。
配送中心到客户 D 的往返里程为 2×15 = 30 公里。
配送中心到客户 E 的往返里程为 2×11 = 22 公里。
总运输里程为 20 + 24 + 16 + 30 + 22 = 112 公里。
接下来,我们应用节约里程法来优化配送路线。
第一步,计算两两客户之间的节约里程数。
例如,客户 A 和客户 B 之间的节约里程数为:(配送中心到 A 的距离+配送中心到 B 的距离 A 到 B 的距离)× 2 =(10 + 12 18)× 2 = 8 公里。
按照同样的方法,计算出所有两两客户之间的节约里程数,如下表所示:|客户|A|B|C|D|E|||||||||A| | 8 | 6 | 5 | 2 ||B| 8 || 4 | 3 | 4 ||C| 6 | 4 || 2 | 3 ||D| 5 | 3 | 2 || 5 ||E| 2 | 4 | 3 | 5 ||第二步,根据节约里程数的大小对路线进行合并和优化。
节约里程法例题
问题描述
某公司为了降低员工的交通成本,制定了节约里程法,规定员工在每周的通勤过程中,只能行驶一定的里程数。
具体规定如下:
•每位员工每周最多行驶300公里的里程数;
•员工每行驶一公里,公司会额外支付0.5元。
现在需要使用节约里程法计算员工每周的交通费用。
算法设计
节约里程法的核心思想是根据员工的行驶距离来计算交通费用。
算法的基本步骤如下:
1.设置变量total_mileage为员工总行驶里程数,初始值为0;
2.设置变量total_cost为员工总交通费用,初始值为0;
3.循环执行以下步骤:
–输入本次行驶的里程数mileage;
–如果mileage + total_mileage大于300,则将total_cost 增加300 - total_mileage * 0.5,并将total_mileage更新为300;
–否则,将total_cost增加mileage * 0.5,并将
total_mileage增加mileage;
–如果total_mileage等于300,则退出循环。
4.输出员工总交通费用total_cost。
算法实现
以下是使用Python语言实现节约里程法的代码示例:
```python def calculate_transport_cost(): total_mileage = 0 total_cost = 0
while total_mileage < 300:
mileage = float(input(\。
节约里程法及举例1当由一个配送中心向多个客户进行共同送货,在一条线路上的所有客户的需求量总和不大于一辆车的额定载重量时,由这一辆车配装着所有客户需求的货物,按照一条预先设计好的最正确路线依次将货物送到每一客户手中,这样既可保证按需将货物及时送交,同时又能节约行驶里程,缩短整个送货时间,节约费用。
节约里程法正是用来解决这类问题的较成熟的方法。
用节约里程法确定配送路线的主要思路是,根据配送中心的运输能力及其到各客户之间的距离和各客户之间的相对距离,来制定使总的配送车辆吨公里数到达或接近最小的配送方案。
节约里程法的根本思路如下图,P 为配送中心所在地,A 和B 为客户所在地,相互之间道路距离分别为a 、b 、c 。
最简单的配送方法是利用两辆车分别为A 、B 客户配送,此时,如图〔b 〕所示,车辆运行距离为2a 2b 。
然而,如果按图〔c 〕所示改用一辆车巡回配送,运行距离为abc 。
如果道路没有什么特殊情况,可以节省的车辆运行距离为2a 2b –abc =ab –c >0,这个节约量“ab –c 〞被称为“节约里程〞。
AAABPPPB(a )物流网络(c )用一辆车配送ac ba cb ab c图 配送中心配送路线的选择1郑克俊仓储与配送管理〔第四版〕科学出版社 修订。
步骤:实际上如果给数十家、数百家客户配送,〔1〕应首先计算包括配送中心在内的相互之间的最短距离,〔2〕然后计算各客户之间的可节约的运行距离,〔3〕按照节约运行距离的大小顺序连结各配送地并设计出配送路线。
下面举例说明节约里程法的求解过程。
例节约里程法举例图为某配送网络,P为配送中心所在地,A~J为客户所在地,共10个客户,括号内的数字为配送量〔单位:吨〕,路线上的数字为道路距离〔单位:千米〕。
现有可以利用的车辆是最大装载量为2吨和4吨的两种厢式货车,并限制车辆一次运行距离在30千米以内。
为了尽量缩短车辆运行距离,试用节约里程法设计出最正确配送路线。
物流方案设计(最优运输路线决策-节约里程法)典型实例:
已知配送中心P O向5个用户P j配送货物,其配送路线网络、配送中心与用户的距离以及用户之间的距离如下图与表所示:图中括号内的数字表示客户的需求量(单位:吨),线路上的数字表示两结点之间的距离,配送中心有3台2t卡车和2台4t两种车辆可供使用,
1、试利用节约里程法制定最优的配送方案?
2、设卡车行驶的速度平均为40公里/小时,试比较优化后的方案比单独向各用户分送可节约多少时间?
(0.9)
第(1)步:作运输里程表,列出配送中心到用户及用户间的最短距离。
第(2)步:由运输里程表、按节约里程公式,求得相应的节约里程数,如上表( )内。
第(4)步:确定单独送货的配送线路
得初始方案配送距离=39×2=78KM
第(5)步:根据载重量约束与节约里程大小,将各客户结点连接起来,形成二个配送路线。
即A 、B 两配送方案。
((2.4)
1.5)
((2.4)
1.5)
①配送线路A:P0-P2-P3-P4- P0
运量q A= q2+q3+q4
= 1.7+0.9+1.4
= 4t
用一辆 4t车运送
节约距离S A =10 +8 = 18km
②配送线路B: P0-P5-P1-P0
运量q B =q5+q1=2.4+1.5=3.9t<4t车
用一辆 4t车运送
节约距离S B=2km
第(6)步:与初始单独送货方案相比,计算总节约里程与节约时间
总节约里程:△S= S A+ S B= 20 km
与初始单独送货方案相比,可节约时间:△T =△S/V=20/40=0.5小时。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。