数形结合法在函数零点问题中的应用(新)

  • 格式:doc
  • 大小:276.00 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合法在函数零点问题中的应用

高三数学组 2017年3月15日

【教学目标】函数的零点一直是近年来全国各地高考卷上的热点,因其综合性强,让很多同学感到困难。本文通过对高考试卷中有关零点问题的研究,来说明如何将数形结合思想运用于函数零点的问题中,使零点问题变得直观形象,从而有效地将问题解决。

1

2

通例1

A. 在区间

1

(,1)

e

,(1,)e内均有零点

B. 在区间

1

(,1)

e

,(1,)e内均无零点

C. 在区间

1

(,1)

e

内有零点,(1,)e内无零点

D. 在区间

1

(,1)

e

内无零点,(1,)e内有零点

解1:113'()33x f x x x -=-=,()f x 在1(,)e e 单调递减,11()103f e e

=+>,1(1)03f =>,()103e f e =-<,由零点存在定理知,区间1(,1)e

内无零点,(1,)e 内有零点。

解2:令()0f x =,得1ln 3x x =,作出函数13

y x =和ln y x =的图象,如右图,显然在区间1(,1)e

内无零点,(1,)e 内有零点。

例2、设1()2,0()222,0

x x f x x x ⎧-≤⎪=⎨⎪->⎩,则()y f x x =-的零点个数是__2____。

解:作出函数()y f x =和y x =的图象,如右图,由图可知直线

y x =与函数()f x 的图象有两个交点,所以()y f x x =-有2个零点。

例3、已知函数2,0()ln(1),0

x ax x f x x x ⎧+≤=⎨+>⎩,()2()F x f x x =-有2个零点,则实数a 的

取值范围是_______________。1(,]2

-∞ 解1: 0x >时,()2()2ln(1)F x f x x x x =-=+-,则21'()111x F x x x

-=-=++ ∴当01x <<,()F x 单调递增;当1x >,()F x 单调递减;

而max (0)0,()(1)0F F x F ==>,(4)2ln540F =-<,此时有1个零点;

0x ≤时,()F x ,只有1个零点 ,则222x ax x +=的根为0或正数,

由22(21)0x a x +-=解得1202a x x -==或,120a ∴-≥,解得12

a ≤。

解2:令()0F x =,得()2x f x =

,作出()y f x =和2

x y =的图象 ∴当0x <时,22x x ax +>恒成立,12a x ∴<-,12a ∴≤

例4、若函数1,0()ln ,0

kx x f x x x +≤⎧=⎨>⎩则当0k >时,函数[()]1y f f x =+的零点个数为( D )

A.1

B.2

C.3

D.4

解:令()f x t =,若[()]10y f f x =+=,则

()1f t =-则1()(,0)f x t =∈-∞,2()(0,1)f x t =∈

对于1()f x t =存在两个零点;

对于2()f x t =存在两个零点;

综上可知,函数[()]1y f f x =+有4个零点。

例5、设2()(2)x x f x x e ae -=-+,()22g x a x =-(e 为自然对数的底数),若关于x 的方程()()f x g x =有且仅有6个不同的实数解,则实数a 的取值范围是( D )

A. 2

(,)21

e e +∞- B. (,)e +∞ C. (1,)e D. 2(1,)21e e - 解:由()()

f x

g x =得2(2)22x x x e ae a x --+=-

即22(2)220x x x e a x e a ---+=

令2()x t x e h x =-=,则2

20t at a -+= (2),2()(2),2x x x e x h x x e x ⎧-≥⎪=⎨-<⎪⎩,(1),2'()(1),2

x x x e x h x x e x ⎧-≥⎪=⎨-<⎪⎩ ()h x 的大致图象如右图:

∴方程220t at a -+=在(0,)e 上有两个不同的解12,t t 时可以满足题意

则24400()20

a a t a e t e e ae a ⎧∆=->⎪<=<⎨⎪=-+>⎩对解得2

121e a e <<-

【归纳小结】

1、解决此类问题的关键是数形结合;

2、还应把握两类知识:

(1) 灵活构造函数;

(2) 图象的各类变换:平移、伸缩、对称、周期性变换等。

【教学反思】数形结合思想是高中数学常用思想方法之一,可以使某些抽象的数学问题直观化、形象化,变抽象思维为形象思维,有利于把握数学问题的本质.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难人微;数形结合百般好,隔离分家万事休”,可见数和形是数学中两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.作为中学数学教师,在函数零点问题教学时渗透数形结合的思想,并在平时的训练中不断领悟和总结,可以促使学生在解决零点问题的能力上得到改善和提高!