东城区2011-2012二模试题理定稿 (修复的)
- 格式:doc
- 大小:1.14 MB
- 文档页数:10
北京市东城区2011届高三二模理综化学试题可能用到的相对原子质量:H 1 C 12 N 14 O 166.下列说法不正确...的是A.淀粉可以制得葡萄糖和酒精B.铝合金的熔点和硬度均高于纯铝C.玻璃、塑料、金属、纸类均是可回收的物品D.硬化油不易被空气氧化而便于储存和运输7.下列做法正确的是A.用无色试剂瓶盛放新制的氯水B.用10 mL量筒量取3.24 mL稀硫酸C.用蒸馏水鉴别溴蒸气和二氧化氮气体D.用氨水清洗做过银镜反应的试管内壁8.下列叙述正确的是A.NH4Cl只含共价键,所以它是共价化合物B.Al(OH)3是两性氢氧化物,所以它能溶解于盐酸或氨水中C.硅胶多孔,吸附水份能力强,所以常用作袋装食品的干燥剂D.元素周期表中氢原子半径最小,所以氢是最活泼的非金属元素9.下列各组物质不能..按“”所示关系实现转化的是(“”表示反应一步完成)A.B.C.D.10.加热聚丙烯废塑料可以得到碳、氢气、甲烷、乙烯、丙烯、苯和甲苯。
用图所示装置探究废旧塑料的再利用。
下列叙述不正确...的是A.聚丙烯的链节是—CH2—CH2—CH2—B.装置乙的试管中可收集到芳香烃C.装置丙中的试剂可吸收烯烃以制取卤代烃D.最后收集的气体可做燃料11.有X、Y、Z三种物质。
常温下分别用Y或Z与X混合时,反应速率几乎相同的是12.下列溶液中各微粒的浓度关系正确的是A.0.1 mol·L-1 Na2S溶液中:2c(Na+)=c(S2-)+c(HS-)+c(H2S)B.0.1 mol·L-1 pH=9的NaNO2溶液中:c(Na+)>c(NO2-)>c(OH-) >c(H+)C.等pH的氨水、NaOH溶液、Ba(OH)2溶液中:c(NH4+)=c(Na+)=c(Ba2+)D.向NH4HCO3溶液中滴加NaOH溶液至pH=7:c(NH4+)+c(Na+)= c(HCO3-)+c(CO32-)25. 苯酚是一种重要的化工原料。
2011东城二模试题读表1,完成1、2题。
表1 我国某地天气变化A .暖锋B .冷锋C .高压D .低压 2.表中所示期间A .天安门广场升旗时间越来越晚B .伦敦正午太阳高度变小C .南极附近极夜范围扩大D .地球公转速度变快 近年来,台湾省已成为大陆游客的旅游热点地区。
读图1,完成3-6题。
3.游客出发前观察图1,判断图示地区的河流流向特点是A .多数从西流向东B .从中部流向四周C .多数从南流向北D .从四周流向中部4.游客从M 走到N ,其所经地区地势起伏与图2所示剖面线对应的是 A .① B .② C .③ D .④ 5.图1中七星山和大屯山的旅游价值主要体现在A .美学价值、历史价值B .科学价值、历史价值C .美学价值、文化价值D .科学价值、经济价值6.到野柳地质公园游览的游客,多去欣赏海边奇岩怪石的自然景观,最著名的如女王头、烛台石、龙头石等。
形成这些奇岩怪石的主要作用是A.流水堆积 B .风力堆积 C .风力侵蚀 D .海浪侵蚀图2图1 台北市局部地区图等高线地质公园图 例火山0 5km读图3,完成7、8题。
7.1992年以来中国具有比较优势的产业类型是A .资源密集型B .劳动密集型C .资本密集型D .技术密集型 8.从图中变化趋势看,目前我国应积极发展的产业类型有①资本密集型 ②资源密集型 ③劳动密集型 ④技术密集型 A .①②③ B .②③④ C .①③④ D .①②④读图4,完成9-11题。
9.图中四地位于非季风区且参与海陆间水循环的是A .甲B .乙C .丙D .丁10.影响甲、丙两地发生洪涝灾害的主要因素分别是A .气温、降水B .降水、气温C .地形、气温D .降水、地形11.图中我国沿30°纬线适宜发展的农业部门自西向东依次为A .乳畜业、果林业、灌溉农业B .混合农业、游牧业、果林业C .林业、种植业、畜牧业D .畜牧业、林业、种植业图4 我国部分区域简图 40°30° 80°90°100°110°120°甲 乙丙丁 内、外流域界线 季风区与非季风区界线图3 中国不同类型产业比较优势指数变化(大于1表示具有比较优势)0.511.522.531992年1997年2002年2007年2008年资源密集型产业劳动密集型产业资本密集型产业技术密集型产业36.(36分)阅读图文资料,完成下列问题。
北京市东城区2011—2012学年度第二学期高三综合练习(一)理科综合能力测试本试卷共300分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
以下数据可供解题时参考:可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Ca 40第一部分(选择题,共120分)本部分共20小题,每小题6分,共120分。
在每小题无出的四个选项中,选出最符合题目要求的一项。
1.将番茄和马铃薯通过体细胞杂交技术培育成杂种植株,此过程不涉及...A.植物细胞的全能性B.灭活病毒诱导融合C.酶解法去除细胞壁D.染色体数目变异2.右图表示细胞分裂过程中染色体的形态变化,由图分析可知A.甲→乙的过程中细胞内染色体数目加倍B.观察染色体形态和数目通常在丙时期C.丙→戊的过程中可发生同源染色体的分离D.戊阶段细胞中染色体数是DNA分子数的两倍3.假设在某一个群体中,AA、Aa、aa三种基因型的个体数量相等,A和a的基因频率均为50%。
右图表示当环境发生改变时,自然选择对A或a 基因有利时其基因频率的变化曲线。
下列有关叙述正确的是A.有利基因的基因频率变化如曲线甲所示,该种群将进化成新物种B.曲线甲表示当自然选择对隐性基因不利时显性基因频率变化曲线C.图中甲、乙曲线变化幅度不同主要取决于生物生存环境引起的变异D.自然选择直接作用的是生物个体的表现型而不是决定表现型的A或a基因4.科学家为研究激素水平与水稻穗、粒发育的关系,将水稻幼穗分化及灌浆结实过程划分为不同阶段,测定了水稻穗分化过程中内源激素含量的动态变化,测定结果如下图。
下列叙述不正确...的是A.若生长素在Ⅰ期起促进作用而Ⅱ期表现出抑制作用,说明其生理作用具有两重性B.Ⅲ~V期生长素含量降低有利于花粉形成,此阶段生长素含量与结实率呈正相关C.由于脱落酸能抑制细胞的分裂,因此在Ⅲ期~Ⅳ期脱落酸含量逐渐降低D.赤霉素含量在Ⅴ期后急剧增加,由此推测它可能与籽粒的结实密切相关5.科学家R.L.Smith研究了不同种类动物的能量变化情况,部分结果如下表所示。
北京市东城区2011届高三二模理综化学试题可能用到的相对原子质量:H 1 C 12 N 14 O 16的是6.下列说法不.正确..A.淀粉可以制得葡萄糖和酒精B.铝合金的熔点和硬度均高于纯铝C.玻璃、塑料、金属、纸类均是可回收的物品D.硬化油不易被空气氧化而便于储存和运输7.下列做法正确的是A.用无色试剂瓶盛放新制的氯水B.用10 mL量筒量取3.24 mL稀硫酸C.用蒸馏水鉴别溴蒸气和二氧化氮气体D.用氨水清洗做过银镜反应的试管内壁8.下列叙述正确的是A.NH4Cl只含共价键,所以它是共价化合物B.Al(OH)3是两性氢氧化物,所以它能溶解于盐酸或氨水中C.硅胶多孔,吸附水份能力强,所以常用作袋装食品的干燥剂D.元素周期表中氢原子半径最小,所以氢是最活泼的非金属元素9.下列各组物质不.能.按“”所示关系实现转化的是(“”表示反应一步完成)A.B.C.D.10.加热聚丙烯废塑料可以得到碳、氢气、甲烷、乙烯、丙烯、苯和甲苯。
用图所示装置探究废旧塑料的再利用。
下列叙述的是不.正确..A.聚丙烯的链节是—CH2—CH2—CH2—B.装置乙的试管中可收集到芳香烃C.装置丙中的试剂可吸收烯烃以制取卤代烃D.最后收集的气体可做燃料11.有X、Y、Z三种物质。
常温下分别用Y或Z 与X混合时,反应速率几乎相同的是12.下列溶液中各微粒的浓度关系正确的是A.0.1 mol·L-1 Na2S溶液中:2c(Na+)=c(S2-)+c(HS-)+c(H2S)B.0.1 mol·L-1 pH=9的NaNO2溶液中:c(Na+)>c(NO2-)>c(OH-) >c(H+)C.等pH的氨水、NaOH溶液、Ba(OH)2溶液中:c(NH4+)=c(Na+)=c(Ba2+)D.向NH4HCO3溶液中滴加NaOH溶液至pH=7:c(NH4+)+c(Na+)= c(HCO3-)+c(CO32-)25. 苯酚是一种重要的化工原料。
北京市东城区2011—2012学年度第二学期高三综合练习(一)语文试题本试卷150分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(27分)一、本大题共5小题,每小题3分,共15分。
1.下列词语中,字形和加点的字读音全都正确的一项是A.钉书机根深蒂固机械.(jiè)蓦.(mò)然回首B.全天候如毛饮血汗.(hán)毛痴.(chī)心妄想C.贴标签误入其途粳.(gēnɡ)米退避三舍.(shè)D.路由器知书达理矫.(jiǎo)正股肱.(ɡōnɡ)之臣2.下列句子中,加点的成语使用不正确...的一项是A.当代雷锋、优秀共产党员郭明义同志的微博能够从众多的名人微博中脱颖而出....,确实是一件令人欣喜的事情。
B.具有艺术气质的人,能够从“书写”中领略到生命的稍纵即逝....,把每一笔划、每一个字都看作生命与情感状态的记录。
C.在人生的道路上,即使一切都失去了,只要一息尚存....,你就没有丝毫的理由绝望,因为失去的可能在新的层次上复得。
D.只有懂得世上没有免费的午餐的道理,不贪图蝇头小利,不轻信犯罪分子的花言巧语....,才能避免上当受骗。
3.下列句子中,没有语病的一句是A.一家心理卫生研究所对使用手机的人群进行抽样调查,结果显示超过50%以上的人有“手机依赖症”,总在期待自己能收到最新信息。
B.奥斯卡金像奖设立以来,不仅对世界许多国家的电影艺术有着不可忽视的影响,而且反映美国电影艺术的发展进程,一直享有盛誉。
C.北京地铁公司宣布,自3月13日起,地铁1号线中午平峰时段的列车运行间隔缩短至3分钟,晚高峰列车运行间隔缩短至2分05秒。
D.行业新标准的出台将加快大气污染防治工作的真正落实,煤电行业、钢铁行业、水泥行业以及工业生产都将成为减排重点监管对象。
4.下列文学形象与其作者对应正确的一项是①窦娥②哈姆莱特③芦柴棒④大堰河A.①关汉卿②塞万提斯③茅盾④徐志摩B.①马致远②莎士比亚③茅盾④艾青C.①关汉卿②莎士比亚③夏衍④艾青D.①马致远②塞万提斯③夏衍④徐志摩5.下列依次在①②③④⑤处填入的词语和句子,衔接最恰当的一项是20世纪的中国文学从古老的历史中走来,它①过与传统母体文化断裂的痛苦,更②到降生的喜悦。
北京东城区示范校2011届高三第二学期第二次联考数学(理)2011年3月学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)若集合{} 1A x x =>,{} 0B x x =≥,全集U =R ,则()RA B 等于( )(A ){}11x x -≤≤ (B ){}0x x ≥ (C ){}01x x ≤≤ (D )∅(2)“1m =”是“直线0x y -=和直线0x my +=互相垂直”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(3)已知各项不为0的等差数列{}n a 满足22712220a a a -+=,数列{}n b 是等比数列,且77b a =,则311b b 等于 ( )(A )16 (B )8 (C )4 (D )2(4)某程序框图如图所示,现输入如下四个函数:2()f x x =,1()f x x=,()e xf x =,()sin f x x =,则可以输出的函数是 ( ) (A )2()f x x = (B )1()f x x=(C )()e xf x = (D )()sin f x x =(5)如果三位正整数如“abc ”满足,a b b c <>,则这样的三位数称为凸数(如120,352) 那么,所有的三位凸数的个数为 ( )(A )240 (B )204 (C )729 (D )920(6)一个几何体的三视图如图所示,则这个几何体的体积为 ( )(A) 1 (B) 23(C) 56 (D) 13(7)已知向量()2,1x x +a =,()1,x t -b =,若函数()f x =⋅a b 在区间()1,1-上是增函数,则实数t 的取值范围是 ( ) (A )[)5,+∞ (B )()5,+∞ (C )(],5-∞ (C )(),5-∞(8) 定义函数()y f x =,x D ∈.若存在常数c ,对任意1x D ∈,存在唯一的2x D ∈,使得()()122f x f x c +=,则称函数()f x 在D 上的算术平均数为c .已知()ln f x x =,[]2,8x ∈,则()ln f x x =在[]2,8上的算术平均数为 ( )(A )ln 2 (B )ln 4 (C )ln 5 (D )ln 8第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分. (9)复数2i1iz -=+= ;其所确定的点Z 位于复平面的第______象限. (10)右图是样本容量为200的频率分布直方图. 根据样本的频率分布直方图估计,样本数据落在[)6,14内的频数为 ;数据落在[)2,14内的概率约为 .(11)若抛物线()20y ax a =>的焦点与双曲线22172x y -=的一个焦点相同,则该抛物线的方程为______________. (12)已知在极坐标系下,点π2π1,,3,,33A B O ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭是极点,则,A B 两点间的距离 AB = _____________; AOB ∆的面积等于_______.(13)如图,已知AB 是圆O 的直径,4AB =,C 为圆上任意一点,过C 点做圆的切线分别与过,A B 两点的切线交于,P Q 点,则CP CQ ⋅=________________.(14)如图,在正方体1111ABCD A BC D -中,E ,F ,G ,H ,M 分别是棱AD ,1DD ,111,D A A A AB ,的中点,点N 在四边形EFGH 的四边及其内部运动,则当N 只需满足条件________时,就有11MN AC ⊥;当N 只需满足条件________时,就有MN ∥平面11B D C .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)已知函数()22cos cos f x x x x a =++,且π46f ⎛⎫= ⎪⎝⎭. (Ⅰ)求a 的值; (Ⅱ)当ππ43x -≤≤时,求函数()f x 的值域.(16)(本小题共13分)某单位在2011新年联欢会上举行一个抽奖活动:甲箱中装有3个红球,2个黑球,乙箱中装有2个红球4个黑球,参加活动者从这两个箱子中分别摸出1个球,如果摸到的都是红球则获奖.(Ⅰ)求每个活动参加者获奖的概率;(Ⅱ)某办公室共有5人,每人抽奖1次,求这5人中至少有3人获奖的概率.(17)(本小题共14分)如图,在四棱柱1111ABCD A BC D -中,底面ABCD 是正方形,侧棱与底面垂直,点O是正方形ABCD 对角线的交点,124AA AB ==,点E ,F 分别在1CC 和1A A 上,且1CE A F =.(Ⅰ)求证:1B F ∥平面BDE ; (Ⅱ)若1AO BE ⊥,求CE 的长; (Ⅲ)在(Ⅱ)的条件下,求二面角1A BE O --的余弦值.(18)(本小题共13分)已知函数()ln (mf x x m x=-∈R ). (Ⅰ)求函数()f x 的定义域,并讨论函数()f x 的单调性;(Ⅱ)问是否存在实数m ,使得函数()f x 在区间[]1,e 上取得最小值3?请说明理由.(19)(本小题共14分)已知椭圆的的右顶点为A ,离心率12e =,过左焦点()1,0F -作直线l 与椭圆交于点P ,Q ,直线AP ,AQ 分别与直线 4x =-交于点,M N . (Ⅰ)求椭圆的方程;(Ⅱ)证明以线段MN 为直径的圆经过焦点F .(20)(本小题共13分)对数列{}n a ,规定{}n a ∆为数列{}n a 的一阶差分数列,其中1(n n n a a a n +∆=-∈N *).对正整数k ,规定 {}kn a ∆为{}n a 的k 阶差分数列,其中()1111k k k k n n n n a a a a ---+∆=∆-∆=∆∆.(Ⅰ)若数列{}n a 的首项11a =,且满足212n n n n a a a +∆-∆+=-,求数列{}n a 的通项公式; (Ⅱ)对(Ⅰ)中的数列{}n a ,若数列{}n b 是等差数列,使得12311231n nn n n n nn n n bC b C b C b C b C a --+++⋅⋅⋅++= 对一切正整数n ∈N *都成立,求n b ;(Ⅲ) 在(Ⅱ)的条件下,令()21,n n c n b =-设312123,n n nc c c c T a a a a =+++⋅⋅⋅+若n T m <成立,求最小正整数m 的值.2010-2011学年度东城区示范校综合练习答案高三数学 (理科)一、选择题1.C2.C3.A4.D5.A6.C7.A8.B二、填空题 9.13i 22-,4 10.136;0.76 11. 212y x = 1213.4CP CQ ⋅= 14.点N 在EG 上;点N 在EH 上 (填空题,第一空3分,第二空2分)三、解答题 15.解:(Ⅰ)由π46f ⎛⎫=⎪⎝⎭,可得21242a ⨯+=⎝⎭,—————————2分 ∴ 1a =. ——————————4分(Ⅱ)()22cos cos 1f x x x x =++cos23sin 22x x =++ π2sin 226x ⎛⎫=++ ⎪⎝⎭.——————————————8分 ∵ ππ43x -≤≤,∴ππ5π2336x -≤+≤, ∴ 3πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,—————————————11分 ∴ ()234f x -≤≤,所以,函数()f x 的值域为23,4⎡⎤-⎣⎦.—————————13分16. 解:(Ⅰ)设事件1A 表示从甲箱中摸出红球,事件2A 表示从乙箱中摸出红球.因为从甲箱中摸球的结果不影响从乙箱中摸球的结果,所以1A 和2A 相互独立.()()12321,,563p A p A ===所以 121231()()()0.253P P AA P A P A ===⨯=(获奖).————7分 (Ⅱ)设X 为5人中获奖的人次,则(5,0.2)XB , —————————9分(3)(3)(4)(5)P X P X P X P X ≥==+=+=33244555550.2(10.2)0.2(10.2)0.2C C C =⋅⋅-+⋅⋅-+⋅1813125=. 所以,5人中至少有3人获奖的概率为1813125. ————————13分 17.解:(Ⅰ)证明:取1BE CE =,连结1EE 和1AE ,∴1EE BC =,1EE ∥BC ,BC AD =,BC ∥AD , ∴1EE AD =,1EE ∥AD . ∴四边形1AE ED 为平行四边形, ∴1AE ∥DE ,在矩形11A ABB 中,11A F BE =, ∴四边形11B FAE 为平行四边形. ∴1B F ∥1AE ,1B F ∥DE .∵DE ⊂平面BDE ,1B F ⊄平面BDE ,∴1B F ∥平面BDE . ————————4分 (Ⅱ)连结OE ,在正四棱柱1111ABCD A BC D -中, 1AA ⊥平面ABCD , ∴1AA BD ⊥,BD AC ⊥, ∴BD ⊥平面1A AO , ∴1BD AO ⊥.由已知1AO BE ⊥,得1AO ⊥平面BDE . ∴190AOE ∠=,190AOA EOC ∠+∠=, 在△1A AO 与△OCE 中, 1EOC OA A ∠=∠,1ECO OAA ∠=∠, ∴△1A AO ∽△OCE ∴1A A AO OC CE =,12CE =.—————————9分 (Ⅲ)以A 为原点,AB ,AD ,1AA 所在直线为x ,y ,z轴,建立空间直角坐标系.11(2,0,0),(2,2,),(0,0,4),(1,1,0)2B E A O .1117(1,1,4),(2,0,4),(2,2,)2OA A B A E =--=-=-,由(Ⅱ)知1OA 为平面OBE 的一个法向量, 设(,,)x y z =n 为平面1A BE 的一个法向量,则 1100A B A E ⎧⋅=⎪⎨⋅=⎪⎩n n ,即 24072202x z x y z -=⎧⎪⎨+-=⎪⎩, 令1z =,所以 1(2,,1)4=-n .∴12cos ,6OA <>=n ,∵二面角1A BE O --的平面角为锐角,∴二面角1A BE O --的余弦值为26. —————————13分18. 解:(Ⅰ)函数()f x 的定义域为()0,+∞,且 ()'221m x m f x x x x+=+=. 令()'0fx =,得x m =-. ——————————————2分当0m ≥时,0x m +>,()'20x mf x x+=>,函数()f x 在()0,+∞上是增函数;当0m <时,在区间()0,m -上()'0f x <,函数()f x 在()0,m -上是减函数;在区间(),m -+∞上()'0fx >,函数()f x 在(),m -+∞上是增函数.———6分(Ⅱ)由(Ⅰ)知()'2x mfx x +=, (1)若1m ≥-,则在区间[]1,e 上()'0f x ≥,函数()f x 在[]1,e 上是增函数,此时,()f x 取最小值()1f ,由()13f m =-=,得[)31,m =-∉-+∞;————————8分 (2)若e,m ≤-则在区间[]1,e 上()'0f x ≤,函数()f x 在[]1,e 上是减函数,此时,()f x 取最小值()e f ,由()e 13emf =-=,得(]2e ,e m =-∈-∞-;———————10分 (3)若e 1m -<<-,则在区间[)1,m -上()'0f x ≤,函数()f x 在[)1,m -上是减函数,在区间(),m -+∞上()'0fx ≥,函数()f x 在(),m -+∞上是增函数,此时,()f x 取最小值()f m -,由()()ln 13f m m -=-+=,得2e m =∉()e,1--;——————12分综上所述,存在实数2e m =-,使得()f x 在区间[]1,e 上取得最小值3.——————————13分19. (Ⅰ)解: 由已知 11,,2c c a == ∴2,a b ==,∴ 椭圆方程为22143x y +=.——————————————5分 (Ⅱ) 设直线l 方程为 ()1y k x =+,由 ()221,1,43y k x x y ⎧=+⎪⎨+=⎪⎩ 得()22223484120k x k x k +++-=.设()()1122,,,P x y Q x y ,则221212228412,3434k k x x x x k k-+=-=++.—————7分 设()()4,,4,M N M y N y --,则由,,A P M 共线,得1111,42M y y y x x -=--- 有 1162M y y x =--.同理 2262N y y x =--. ∴ ()()()()2121212121212361362224M N k x x x x y y y y x x x x x x +++⎡⎤⎣⎦==---++.——————9分()()()()212121212222222222223,3,9361 92441283613434936 990.412836243434M N M N FM FN y y y y k x x x x x x x x k k k k k k k k k k k ⋅=-⋅-=++++⎡⎤⎣⎦=+-++⎡⎤--+⎢⎥++⨯⎣⎦=+=-=-++++∴FM FN ⊥,即FM FN ⊥,以线段MN 为直径的圆经过点F ;————12分当直线l 的斜率不存在时,不妨设()()4,3,4,3M N ---.则有()()3,33,3990FM FN ⋅=-⋅--=-=,∴ FM FN ⊥,即FM FN ⊥,以线段MN 为直径的圆经过点F .综上所述,以线段MN 为直径的圆经过定点F . ———————————14分 20. 解:(Ⅰ)由212n n n n a a a +∆-∆+=-及21n n n a a a +∆=∆-∆,得 2n n n a a ∆-=, ∴122,n n n a a +-= ∴111,222n n n n a a ++-= ———————————————2分 ∴数列2n na ⎧⎫⎨⎬⎩⎭是首项为1,2公差为12的等差数列, ∴()111,222n n a n =+-⨯ 12n n a n -=⋅.————————4分 (Ⅱ)∵ 12311231n nn n n n n n n n bC b C b C b C b C a --+++⋅⋅⋅++=,∴ 1231112312n nn n n n n nn n bC b C b C b C b C n ---+++⋅⋅⋅++=⋅.∵11 k k n n kC nC --=,()()123101211111121111112312.n n n n n n n n n n n n n n n n n n C C C n C nC nC nC nC nC n CCCCn ------------∴+++⋅⋅⋅+-+=+++⋅⋅⋅+=+++⋅⋅⋅+=⋅∴ n b n =.————————————9分(Ⅲ)由(Ⅱ)得 21135211222n n n T --=+++⋅⋅⋅+, ① 有 2311352122222n nn T -=+++⋅⋅⋅+, ②①-② 得 2322111112112111322222222n n n n n n n T ----=+++++⋅⋅⋅+-=--, ∴311216622n n n n T ---=--<, ——————————10分又21135211222n n n T --=+++⋅⋅⋅+,∴10n n T T +->,∴{}n T 是递增数列,且6351116522T =-->, ∴ 满足条件的最小正整数m 的值为6.————————13分。
2011-北京东城高三二模英语(无听力修订word文档)DA.The terrible weather.B.The loss of the sunglasses.C.The injury of the team members.D.The unexpected height of the mountain.57.How did the writer break his leg?A.The road was covered with snow.B.His companion knocked into him.C.The heavy clouds blocked his view.D.The avalanche caused a fall for him.58.How did the writer feel while waiting for help?A.Anxious.B.Crazy.C.Sorry.D.Annoyed.59.What do we learn from the passage?A.Mary was the leader of the team.B.The team was upset about their failure.C.It was several hours before the rescue team arrived .D.The writer was excited thinking of climbing Mount Blanc.“You will never walk again.You will have to use a wheelchair.” I heard his36 fall heavily on my ears, numbing my soul.If I had never felt hopeless before, I felt hopeless then.The car accident has left me unconscious.When 37 , I found both legs in casts(石膏).While I had other serious injuries, my 38 were my first concern.Working as a special needs teacher and busy and active by nature, I couldn’t imagine being39 in a wheelchair.Lying in my bed, I wondered how I 40 give my ten-year-old son hope that mom would 41 . He’d been cheerful on every visit, but I saw 42 in his eyes. He needed the ray of hope that I would not be in a wheelchair forever.Just maybe, I thought, I could use this experience to teach him what to do when misfortune43 .It didn’t take me long to become44 with my limited movements and even with the pace the doctors were willing to go with me.I was determined to learn everything they showed me.Every night in my private room, as soon as I knew I wouldn’t be 45 or discovered, I would move myself from the bed to the floor, 46 on to the bed rail(床栏杆)for dear life, and slowly putting my weight 47 my feet.After several weeks of such difficult 48 , my strength and confidence continued to 49 .It came the time to share my accomplishments with the person most 50 to me.One night, when I heard my son greet the nurses at the station, I 51 myself up.As he opened the door, I took a few small steps.52 , he could only watch as I turned and started back to bed.All of the pain, the fear, and the struggle 53 as I heard the words I had longed to hear, “Mommy, you can walk!”I am now able to walk alone, sometimes using a stick.I am able to take public transportation to shop and visit friends.My life has been blessed with many 54 of which I am proud.But none has ever brought me the satisfaction and joy 55 by those four little words of my son.36.A.words B.report C.explanations D.decision37.A.hit B.awakened C.asked D.discovered38.A.legs B.parents C.activities D.surroundings39.A.placed B.caught C.carried D.stuck40.A.might B.should C.could D.must41.A.change B.recover C.adjust D.succeed42.A.curiosity B.surprise C.fear D.puzzle43.A.strikes B.passes C.continues D.remains44.A.familiar B.strict C.discouraged D.impatient45.A.punished B.interrupted C.accepted D.protected46.A.falling B.setting C.holding D.ping47.A.through B.in C.at D.on48.A.efforts B.lessons C.acts D.cures49.A.appear B.survive C.build D.add50.A.useful B.important C.popular D.pleasant51.A.opened B.dressed C.woke D.dragged 52.A.Disappointed B.Embarrassed C.Frightened D.Shocked53.A.faded B.spread C.backed D.sank54.A.expectations B.challenges C.achievements D.supportsBThis is an open letter to the three people who stole my handbag from the department store I am employed as a shop assistant .When you took my bag, I don't know what you thought you were going to get. With my wages, there's not much left on a Tuesday. I hope the£5 was useful to you. I have informed the social security office so you won't be able to cash the child benefit next week. I hope that won't leave you too short. But if you really need a couple of pounds, I suppose you could cash one of the two checks left in my check book. Of course, I phoned the bank right away and the check-cashing card is no longer valid, so it won’t be much use to you .Actually I don't mind about the money too much. We single parents who work to support our families understand only too well what it means to be short of cash. However, I don’t suppose it went very far among the three of you.Sorry about that!I wish you had left the bag behind and just taken the wallet and check book. There were all kinds of papers in it, and notes and things that I really need.I really think that was very inconsiderate of you.I mean, how would you like something like that to happen to you?Well, perhaps the bag will turn up. It wasn't even an expensive one. just a plain, old brown leather shoulder bag. You probably dumped it in the nearest rubbish bin or threw it into the bushes. We've looked around, of course, but no one saw which way you went after you left the shop.I'm not really angry with you. I know how the pressures of modern living can affect us, but I am sad at the loss of my personal things.I feel violated and helpless.The police were very icy, and they just shrugged(耸)their shoulders."It happens all the time," they told me.Some small comfort, I suppose.But I've lost just a little more faith in human nature.And as my young son said when I told him what had happened, "Why? Mummy, why us?" I couldn't answer that question.I wonder if you can.60.In writing Paragraph 2, the writer wants to .A. describe the contents of the bag in detailB. give some suggestions to the three thievesC. tell the thieves hardly any money was availableD. state the fact that she was careless with the money61.Which of the following is the most valuable to the writer?A.The cash in her bag.B.The papers and notes in the bag.C.The handbag itself.D.The check books in the bag.62.What can we conclude about the police?A.They have doubts about human nature.B.They show sympathy for the woman.C.They think the case quite common.D.They are unable to find the thieves.63.Why does the author write the letter?A.To give the thieves a serious warning.B.To complain about the fall of morality.C.To call people’s attention to their belongings.D.To express her affection for her valuable bag.DPeople have wondered for a long time how their personalities and behaviors are formed. It is not easy to explain why one person is intelligent and another is not, why one is cooperative and another is competitive.Social scientists are, of course, extremely interested in these types of questions.They want to explain why we possess certain characteristics and exhibit certain behaviors.There are no clear answers yet, but two distinct schools of thought on the matter have developed.As one might expect, the two approaches are very different from one another, and there is a great deal of debate between proponents of each theory.The controversy is often referred to as “nature and nurture”.Those who support the “nature” side of the conflict believe our personalities and behavior patterns are largely determined by biological and genetic factors. That our environment has little to do with our abilities, characteristics, and behavior is central to this theory. Taken to an extreme, this theory maintains that our behavior is predetermined to such a degree that we are almost completely governed by our instincts(本能).Proponents of the “nurture” theory, or, as they are often called, behaviorists, claimed that our environment is more important than our biologically based instincts in determining how we will act.A behaviorist, Skinner, sees humans as beings whose behavior is almost completely shaped by their surroundings. The be haviorists’ view of the human being is quite mechanistic; they maintain that, likemachines, humans’ respond to environmental stimuli(刺激)as the basis of their behavior.Socially and politically, the consequences of these two theories are far-reaching.In the US, blacks often score below whites on standardized intelligence tests.This leads some “nature” proponents to conclude that blacks are genetically lower in status than whites. Behaviorists, on the contrary, say that the differences in scores are due to the fact that blacks are often robbed of many of the educational and other environmental advantages that whites enjoy, and that, as a result, they do not develop the same responses that whites do.Either of these theories cannot yet fully explain human behavior.In fact, it is quite likely that the key to our behavior lies somewhere between these two extremes.That the controversy will continue for a long time is certain.67.This passage is mainly concerned with .A.relation between personality and behaviorB.relation between behavior and environmentC.different accounts of patterns of human behaviorD.different theories of the formation of human behavior68.The underlined word " proponents'' in paragraph 2 means .A.creators B.advisors C.advocates D.judges69.In paragraph 5 , the author mainly writes about .A.the considerable influence of the two theories B.differences between the blacks and whitesC.racial discrimination in the United States D.different responds to intelligence tests 70.What's the author's purpose in writing the passage?A.To call our attention to the changes of human behavior.B.To urge scientists to do more research in social science.C.To give us a detailed explanation of human behavior.D.To present an argument in the field of social science.CA new power plant in Nakoso, Japan, might someday change everything for coal plants.Since the new power plant fired up in September, the designer, Mistubishi, is expecting to prove it's possible to burn coal without polluting. This technology is known as integrated gasification combined cycle (IGCC).Proving IGCC works should give Mit's US partner, NRG Energy, the jump other hurdles to building new clean plants.The project promised to solve the problem of the ages for power plants: how to produce cheap, clean, reliable electricity.No existing technology can do all three perfectly.The problem is IGCC isn't there yet.It costs about 20 percent more than traditional plants.And even though it's easier to collect the resulting carbon dioxide from an IGCC plant than a traditional plant, there's no proven way to get rid of the greenhouse gas.One plan is to drill a shaft(通道)to pump the carbon dioxide underground, into saltwater formations.But there's no guarantee it will remain underground forever.NRG administrators think solving the IGCC riddles is worth the trouble because they expect the US.will soon limit the amount of carbon dioxide that power generators may give out."With the additional cost of IGCC, to just voluntarily build something that's 20 percent more expensive, that’s commercial suicide," NRG chief administrator, David Crane said.NRG administrators expect the cost to decline after six or seven plants are built.But other industry experts think it will take about a dozen plants for the price to be competitive with traditional coal plants.Takaya Watanabe, a vice general manager of Mitsubishi, admits that the cost challenges are difficult.“It’s good for a company to say we w ant to be green, but unless someone is willing to pay, it's a dream.It won't keep our family eating rice," he said.64.What is expected of the new technology?A.To make electricity without polluting the air.B.To produce energy without burning coal.C.To keep the use of electricity cheaper.D.To pump carbon dioxide more easily .65.What's the biggest problem the companies are faced with?A.How to pump greenhouse gases.B.How to deal with the high cost.C.How to get along with other partners.D.How to improve the new technology.66.What can be inferred from the passage?A.New technologies are unacceptable to people.B.It's unlikely to build more new power plants.C.The companies are run on a tight budget.D.Going green is easier said than done.EWhen I walked into the house after school, the first thing I noticed was a box with items I recognized from my dad’s office.When he told me that he was laid off, I thought he was joking.Then I noticed his seriousness and realized he was telling the truth.My father has always been a hard worker. He has prided himself on his career. 71 I guess I had taken his work for granted.72 For starters, he was home all the time.It meant my bed had to be made, my room cleaned up, and my homework done right after school.I would come home every day to find him at the computer searching for jobs.73 He seemed down, though he tried to be optimistic.He asked my brother and me to spend less.I gave up my spending money, which wasn’t much.I also found a part-time job.74 He explained that he never wanted to be laid off again, so he was going to start his own business.Day by day, I watched him build it, One evening I asked if he needed help.“Only if it doesn’t affect school,” he said.I showed up at his office the next afternoon, and most afternoons after that for two months.75 The terrible experience for our family taught me how to deal with difficulties.Now I know that through creative problem-solving, I can always find Plan B. I can ask for help and take risks.What I have learned from my dad’s understanding of business and his work ethic(信条)are two of the most important lessons I will ever learn. And they will be my principles for success.A.Providing for our family has been his joy.B.I made every effort to solve his problems.C.I began to notice how losing his job had affected him.D.My father’s unemployment created many changes in our lives.E.After months of searching, my dad decided to go in a totally different direction.F.His courage and determination helped him to become successful in his new career.G.I always knew he was a hard worker, but watching him in action influenced me a lot.假设你是北京某国际学校的学生会主席李华。
北京市东城区2010-2011学年度综合练习(二)高三数学 (文科)2011.5一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
18、(本小题共13分)已知函数x a x x f ln )(2-=(R a ∈).(Ⅰ)若2=a ,求证:)(x f 在(1,)+∞上是增函数; (Ⅱ)求)(x f 在[1,)+∞上的最小值. 19、(本小题共14分)已知椭圆的中心在原点O ,离心率e =,点M 为直线12y x =与该椭圆在第一象限内的交点,平行于OM 的直线l 交椭圆于,A B 两点. (Ⅰ)求椭圆的方程;(Ⅱ)求证:直线MA ,MB 与x 轴始终围成一个等腰三角形. 20、(本小题共14分)已知b a ,为两个正数,且a b >,设,,211ab b ba a =+=当2≥n ,*n ∈N 时,1111,2----=+=n n n n n n b a b b a a . (Ⅰ)求证:数列{}n a 是递减数列,数列{}n b 是递增数列; (Ⅱ)求证:)(2111n n n n b a b a -<-++; (Ⅲ)是否存在常数,0>C 使得对任意*n ∈N ,有C b a n n >-,若存在,求出C 的取值范围;若不存在,试说明理由.北京市东城区2010-2011学年度第二学期综合练习(二)高三数学参考答案 (文科) 2011.5一、选择题(本大题共8小题,每小题5分,共40分) 1、B 2、A 3、C 4、A 5、C 6、B 7、C 8、A 二、填空题(本大题共6小题,每小题5分,共30分) 9、2- 10、4 11、10512、935 13、614、2 53n - 注:两个空的填空题第一个空填对得2分,第二个空填对得3分. 三、解答题(本大题共6小题,共80分)15、(共13分)解:(Ⅰ)因为π04A <<,且πsin()4A +=所以πππ442A <+<,πcos()4A +=. 因为ππcos cos[()]44A A =+-ππππcos()cos sin()sin 4444A A =+++45== 所以4cos 5A =. ……………………6分 (Ⅱ)因为()cos 25cos cos 1f x x A x =++ 22c o s 4c o sx x =+ 22(cos 1)2x =+-,x ∈R .因为cos [1,1]x ∈-,所以,当cos 1x =时,()f x 取最大值6;当cos 1x =-时,()f x 取最小值2-.所以函数()f x 的值域为[2,6]-. …………………13分16、(共13分)(Ⅰ)证明:由34-=n n a S ,1n =时,3411-=a a ,解得11=a .因为34-=n n a S ,则3411-=--n n a S (2)n ≥, 所以当2n ≥时,1144n n n n n a S S a a --=-=-,C 1整理得143n n a a -=. 又110a =≠,所以{}n a 是首项为1,公比为43的等比数列. ……………………6分 Ⅱ、解:因为14()3n n a -=,由*1()n n n b a b n +=+∈N ,得114()3n n n b b -+-=.可得)()()(1231`21--++-+-+=n n n b b b b b b b b=1)34(3341)34(1211-=--+--n n ,(2≥n ), 当1n =时也满足,所以数列{}n b 的通项公式为1)34(31-=-n n b . ……………………13分17、(共13分)证明:(Ⅰ)连结1AC ,与1AC 交于O 点,连结OD . 因为O ,D 分别为1AC 和BC 所以OD ∥1A B . 又OD ⊂平面1AC D ,1A B ⊄平面1AC D ,所以1A B ∥平面1AC D . ……………………6分(Ⅱ)在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,又AD ⊂平面ABC , 所以1BB AD ⊥.因为AB AC =,D 为BC 中点,所以AD BC ⊥.又1BC BB B = , 所以AD ⊥平面11B BCC . 又CE ⊂平面11B BCC ,所以AD ⊥CE .因为四边形11B BCC 为正方形,D ,E 分别为BC ,1BB 的中点, 所以Rt △CBE ≌Rt △1C CD ,1CC D BCE ∠=∠. 所以190BCE C DC ∠+∠= .所以1C D ⊥CE .又1AD C D D = ,所以CE ⊥平面1AC D . ……………………13分18、(共13分)(Ⅰ)证明:当2=a 时,x x x f ln 2)(2-=,当),1(+∞∈x 时,0)1(2)(2>-='xx x f , 所以)(x f 在),1(+∞上是增函数. ……………………5分(Ⅱ)解:)0(2)(2>-='x xax x f , 当0a ≤时,'()0f x >,()f x 在[1,)+∞上单调递增,最小值为(1)1f =.当0a >,当)2,0(ax ∈时,)(x f 单调递减; 当),2(+∞∈ax 时,)(x f 单调递增. 若12≤a,即02a <≤时,)(x f 在),1[+∞上单调递增, 又1)1(=f ,所以)(x f 在),1[+∞上的最小值为1. 若12>a ,即2>a 时,)(x f 在)2,1[a 上单调递减; 在),2(+∞a上单调递增.又ln 222a a a f =-, 所以)(x f 在),1[+∞上的最小值为ln 222a a a-. 综上,当2a ≤时,()f x 在[1,)+∞上的最小值为1;当2a >时,()f x 在[1,)+∞上的最大值为ln 222a a a-.………13分 19、(共14分)解:(Ⅰ)设椭圆方程为22221(0)x y a b a b+=>>,则2c a b ⎧=⎪⎨⎪=⎩解得a = 所以椭圆方程为22182x y +=. ……………………5分(Ⅱ)由题意(2,1)M ,设直线l 的方程为12y x m =+. 由221,21,82y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩ 得222240x mx m ++-=, 设直线MA ,MB 的斜率分别为12,k k , 设1122(,),(,)A x y B x y ,则11112y k x -=-,22212y k x -=-. 由222240x mx m ++-=,可得122x x m +=-,21224x x m =-,12122112121211(1)(2)(1)(2)22(2)(2)y y y x y x k k x x x x ----+--+=+=----12211211(1)(2)(1)(2)22(2)(2)x m x x m x x x +--++--=--121212(2)()4(1)(2)(2)x x m x x m x x +-+--=--21224(2)(2)4(1)(2)(2)m m m m x x -+----=-- 2212242444(2)(2)m m m m x x --+-+=--0=.即120k k +=.故直线MA ,MB 与x 轴始终围成一个等腰三角形.………………14分20、(共13分)(Ⅰ)证明:易知对任意*n ∈N ,0>n a ,0>n b .由,b a ≠可知,2ab ba >+即11b a >. 同理,11112b a b a >+,即22b a >. 可知对任意*n ∈N ,n n b a >.0221<-=-+=-+nn n n n n n a b a b a a a , 所以数列{}n a 是递减数列.0)(1>-=-=-+n n n n n n n n b a b b b a b b ,所以数列{}n b 是递增数列. ……………………5分(Ⅱ)证明:)(212211n n n n n n n n n n n n b a b b b a b a b a b a -<-+<-+=-++. ……………………10分 (Ⅲ)解:由)(2111n n n n b a b a -<-++,可得1)21()(-⋅-<-n n n b a b a . 若存在常数,0>C 使得对任意*n ∈N ,有C b a n n >-,则对任意*n ∈N ,C b a n >⋅--1)21()(.即C b a n222-<对任意*n ∈N 成立. 即Cb a n 22log 2-<对任意*n ∈N 成立. 设][x 表示不超过x 的最大整数,则有Cba Cb a 22log 1]22[log 22->+-. 即当1]22[log 2+-=C b a n 时,Cba n 22log 2->. 与Cb a n 22log 2-<对任意*n ∈N 成立矛盾. 所以,不存在常数,0>C 使得对任意*n ∈N ,有C b a n n >-. ……14分。
2012年北京市东城区高考数学二模试卷(文科)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 若集合A ={x|x ≥0},且A ∪B =B ,则集合B 可能是( ) A {1, 2} B {x|x ≤1} C {−1, 0, 1} D R2. “a =3”是“直线ax +3y =0和2x +2y =3平行的”( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件3. 执行如图的程序框图,则第3次输出的数为( )A 4B 5C 6D 74. 已知圆x 2+y 2−2x +my =0上任意一点M 关于直线x +y =0的对称点N 也在圆上,则m 的值为( )A −1B 1C −2D 25. 将函数y =sinx 的图象向右平移π2个单位长度,再向上平移1个单位长度,所得的图象对应的函数解析式为( )A y =1−sinxB y =1+sinxC y =1−cosxD y =1+cosx6. 已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( )A α⊥β,且m ⊂αB m // n ,且n ⊥βC α⊥β,且m // αD m ⊥n ,且n // β 7. 设M(x 0, y 0)为抛物线C:y 2=8x 上一点,F 为抛物线C 的焦点,若以F 为圆心,|FM|为半径的圆和抛物线C 的准线相交,则x 0的取值范围是( ) A (2, +∞) B (4, +∞) C (0, 2) D (0, 4)8. 设a ,b ,c 为实数,f(x)=(x +a)(x 2+bx +c),g(x)=(ax +1)(cx 2+bx +1).记集合S =|x|f(x)=0,x ∈R|,T =|x|g(x)=0,x ∈R|,若cardS ,cardT 分别为集合元素S ,T 的元素个数,则下列结论不可能的是( )A cardS =1,cardT =0B cardS =1,cardT =1C cardS =2,cardT =2D cardS =2,cardT =3二、填空题:本大题共6小题,每小题5分,共30分.9. 若向量a →=(1, 0),向量b →=(1, 1),则a →−b →=________,a →−b →与b →的夹角为________. 10. 设a ∈R ,且(a +i)2i 为实数,则a 的值为________.11. 将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n 等于________.12. 在平面直角坐标系xOy 中,将点A(√3,1)绕原点O 逆时针旋转90∘到点B ,那么点B 坐标为________,若直线OB的倾斜角为α,则tan2α=________.13. 已知函数f(x)=x12,给出下列命题:①若x>1,则f(x)>1;②若0<x1<x2,则f(x2)−f(x1)>x2−x1;③若0<x1<x2,则x2f(x1)<x1f(x2);④若0<x1<x2,则f(x1)+f(x2)2<f(x1+x22).其中,所有正确命题的序号是________.14. 已知四棱柱ABCD−A1B1C1D1中,侧棱AA1⊥底面ABCD,AA1=2,底面ABCD的边长均大于2,且∠DAB=45∘,点P在底面ABCD内运动且在AB,AD上的射影分别为M,N,若|PA|=2,则三棱锥P−D1MN体积的最大值为________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. 已知函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,−π2<φ<π2)的部分图象如图所示.(1)求A,ω,φ的值;(2)已知在函数f(x)图象上的三点M,N,P的横坐标分别为−1,1,3,求sin∠MNP的值.16. 某校为了解学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了100名学生,相关的数据如下表所示:(1)用分层抽样的方法从喜欢语文的学生中随机抽取5名,高中学生应该抽取几名?(2)在(1)中抽取的5名学生中任取2名,求恰有1名初中学生的概率.17. 如图,矩形AMND所在的平面与直角梯形MBCN所在的平面互相垂直,MB // NC,MN⊥MB.(1)求证:平面AMB // 平面DNC;(2)若MC⊥CB,求证BC⊥AC.18. 已知函数f(x)=−12x2+2x−ae x.(1)若a =1,求f(x)在x =1处的切线方程;(2)若f(x)在R 上是增函数,求实数a 的取值范围. 19. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1(−1, 0),长轴长与短轴长的比是2:√3.(1)求椭圆的方程;(2)过F 1作两直线m ,n 交椭圆于A ,B ,C ,D 四点,若m ⊥n ,求证:1|AB|+1|CD|为定值.20. 64个正数排成8行8列,如下所示:,其中a ij 表示第i 行第j 列的数.已知每一行中的数依次都成等差数列,每一列中的数依次都成等比数列,且公比均为q ,a 11=12,a 24=1,a 21=14.(1)求a 12和a 13的值;(2)记第n 行各项之和为A n (1≤n ≤8),数列{a n },{b n },{c n }满足a n =36A n,mb n+1=2(a n +mb n )(m 为非零常数),c n =bn a n,且c 12+c 72=100,求c 1+c 2+...+c 7的取值范围;(3)对(2)中的a n ,记d n =200a n(n ∈N ∗),设B n =d 1d 2…d n (n ∈N ∗),求数列{B n }中最大项的项数.2012年北京市东城区高考数学二模试卷(文科)答案1. D2. C3. B4. D5. C6. B7. A8. D9. (0, −1),34π10. ±1 11. 6012. (−1,√3),√3 13. ①④ 14. 13(√2−1)15. 解:(1)由图知,A =1.f(x)的最小正周期T=4×2=8,所以由T=2πω,得ω=π4.又f(1)=sin(π4+ϕ)=1且−π2<ϕ<π2,所以,π4+ϕ=π2,解得ϕ=π4.(2)因为f(−1)=0,f(1)=1,f(3)=0,所以M(−1, 0),N(1, 1),P(3, 0),设Q(1, 0),在等腰三角形MNP中,设∠MNQ=α,则sinα=√5cosα=√5.所以sin∠MNP=sin2α=2sinαcosα=2×√5√5=45.16. 解:(1)由表中数据可知,高中学生应该抽取27×545=3人.…(2)记抽取的5名学生中,初中2名学生为A,B,高中3名学生为a,b,c,则从5名学生中任取2名的所有可能的情况有10种,它们是:(A, B),(A, a),(A, b),(A, c),(B, a),(B, b),(B, c),(a, b),(a, c),(b, c).…其中恰有1名初中学生的情况有6种,它们是:(A, a),(A, b),(A, c),(B, a),(B, b),(B, c).…故所求概率为610=35.…17. 证明:(1)∵ MB // NC,MB⊄平面DNC,NC⊂平面DNC,∴ MB // 平面DNC.∵ AMND是矩形,∴ MA // DN.又MA⊄平面DNC,DN⊂平面DNC,∴ MA // 平面DNC.又MA∩MB=M,且MA,MB⊂平面AMB,∴ 平面AMB // 平面DNC.(2)∵ AMND是矩形,∴ AM⊥MN.∵ 平面AMND⊥平面MBCN,且平面AMND∩平面MBCN=MN,∴ AM⊥平面MBCN.∵ BC⊂平面MBCN,∴ AM⊥BC.∵ MC⊥BC,MC∩AM=M,BC⊥平面AMC.∵ AC⊂平面AMC,∴ BC⊥AC.18. 解:(1)由a=1,则f(x)=−12x2+2x−e x,则f(1)=32−e,所以f′(x)=−x+2−e x.则f′(1)=1−e,所以所求切线方程为y −(32−e)=(1−e)(x −1),即2(1−e)x −2y +1=0.(2)由已知f(x)=−12x 2+2x −ae x ,得f ′(x)=−x +2−ae x .因为函数f(x)在R 上是增函数,所以f ′(x)≥0在实数集上恒成立,即不等式−x +2−ae x ≥0恒成立. 整理得a ≤−x+2e x.令g(x)=−x+2e x,g′(x)=x−3e x.因为e x >0,所以x ,g ′(x),g(x)的变化情况如下表:由此表看出当x =3时函数g(x)有极小值,也就是最小值. 所以a ≤g(3)=−e −3,即a 的取值范围是(−∞, −e −3]. 19. (1)解:由已知得{2a :2b =2:√3c =1a 2=b 2+c 2 解得:a =2,b =√3. 故所求椭圆方程为x 24+y 23=1;(2)证明:由(1)知F 1(−1, 0),当直线m 斜率存在时,设直线m 的方程为:y =k(x +1)(k ≠0).由{y =k(x +1)x 24+y 23=1,得(3+4k 2)x 2+8k 2x +4k 2−12=0.由于△>0,设A(x 1, y 1),B(x 2, y 2), 则有x 1+x 2=−8k 23+4k 2,x 1x 2=4k 2−123+4k 2,|AB|=√(1+k 2)[(x 1+x 2)2−4x 1x 2] =√(1+k 2)[(−8k 23+4k2)2−4×4k 2−123+4k2]=12(1+k 2)3+4k 2.同理|CD|=12(1+k 2)3k 2+4.所以1|AB|+1|CD|=3+4k 212(1+k 2)+3k 2+412(1+k 2)=7(1+k 2)12(1+k 2)=712.当直线m 斜率不存在时,此时|AB|=3,|CD|=4,1|AB|+1|CD|=13+14=712. 综上,1|AB|+1|CD|为定值712. 20. (共14分)解:(1)因为q =a 21a 11=12,所以a 14=a 24q=2.又a 11,a 12,a 13,a 14成等差数列, 所以a 12=1,a 13=32.…(2)设第一行公差为d ,由已知得,a 24=a 14q =(12+3d)×12=1,解得d =12.所以a 18=a 11+7d =12+72=4.因为a n1=a 11⋅(12)n−1=(12)n ,a n8=a 18⋅(12)n−1=4×(12)n−1=8×(12)n .所以A n =a n1+a n82×8=36×(12)n ,所以a n =2n (1≤n ≤8, n ∈N ∗).… 因为mb n+1=2(a n +mb n ), 所以mb n+1=2n+1+2mb n . 整理得b n+12n+1−b n 2n=1m.而c n =b n a n,所以c n+1−c n =1m,所以{c n }是等差数列.… 故c 1+c 2+⋯+c 7=(c 1+c 7)×72.因为1m ≠0,所以c 1≠c 7.所以2c 1c 7<c 12+c 72.所以(c 1+c 7)2=c 12+c 72+2c 1c 7<2(c 12+c 72)=200, 所以−10√2<c 1+c 7<10√2.所以c 1+c 2+...+c 7的取值范围是(−35√2,35√2).… (3)因为d n =200×(12)n 是一个正项递减数列,所以当d n ≥1时,B n ≥B n−1,当d n <1时,B n <B n−1.(n ∈N ∗, n >1) 所以{B n }中最大项满足{d n ≥1d n+1<1即{200×(12)n ≥1200×(12)n+1<1… 解得6+log 121625<n ≤7+log 121625.又0<log 121625<1,且n ∈N ∗,所以n =7,即{B n }中最大项的项数为7.…。
1 111
北京市东城区2011-2012学年度第二学期高三综合练习(二) 数学 (理科) 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第Ⅰ卷(选择题 共40分)
一、本大题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)下列命题中,真命题是 (A)xR,210x (B)0xR,2001xx
(C)21,04xxxR (D)2000,220xxxR
(2)将容量为n的样本中的数据分成6组,若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n的值为 (A)70 (B)60 (C)50 (D)40
(3)41(2)xx的展开式中的常数项为 (A)24 (B)6 (C)6 (D)24
(4)若一个三棱柱的底面是正三角形,其正(主)视图如图所示,则它的体积为 (A)3 (B)2 (C)23 (D)4
(5)若向量a,b满足1a,2b,且()aa+b,则a与b的夹角为 (A)2 (B)23 (C)34 (D)56
(6)已知m和n是两条不同的直线,和是两个不重合的平面,那么下面给出的条件中一定能推出m 的是
(A),且m (B)m∥n,且n (C),且m∥ (D)mn,且n∥ 2
(7)若m是2和8的等比中项,则圆锥曲线221yxm的离心率为 (A)32 (B)5 (C)32或52 (D)32或5
(8)定义:00y,xy)y,x(Fx,已知数列{}na满足:n,F,nFan22()nN,若对任意正整数n,都有knaa()kN成立,则ka的值为 (A)12 (B)2 (C)89 (D)98
第Ⅱ卷(共110分)
二、填空题:本大题共6小题,每小题5分,共30分。
(9) 设aR,且2(i)ia为正实数,则a的值为 .
(10) 若圆C的参数方程为3cos1,3sinxy(为参数),则圆C的圆心坐标为 ,圆C与直线30xy的交点个数为 .
(11)在平面直角坐标系xOy中,将点A(3,1)绕原点O逆时针旋转90到点B,那么点B的坐标为____, 若直线OB的倾斜角为,则sin2的值为 .
(12) 如图,直线PC与O相切于点C,割线PAB经过圆心O, 弦CD⊥AB于点E,4PC,8PB,则CE .
(13) 已知函数sin1()1xxfxx()xR的最大值为M,最小值为m,则Mm的值为__. (14) 已知点(,)Aab与点(1,0)B在直线34100xy的两侧,给出下列说法: ①34100ab; ②当0a时,ab有最小值,无最大值;
③222ab; ④当0a且1a,0b时,1ba的取值范围为53(,)(,)24. 其中,所有正确说法的序号是 . 3
BAM
D
NC
三、解答题:本大题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。 (15)(本小题共13分)
已知函数()sin()fxAx(其中Rx,0A,ππ0,22)的部分 图象如图所示. (Ⅰ)求函数()fx的解析式;
(Ⅱ)已知在函数()fx的图象上的三点,,MNP的横坐标分别为1,1,5,求sinMNP的值.
(16)(本小题共13分) 某公园设有自行车租车点, 租车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、 乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为2141,;一小时以上且不超过两小时还
车的概率分别为4121,;两人租车时间都不会超过三小时. (Ⅰ)求甲、乙两人所付租车费用相同的概率; (Ⅱ)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望E.
(17)(本小题共13分) 如图,矩形AMND所在的平面与直角梯形MBCN所在的平面互相垂直,MB∥NC,MNMB,
且MCCB,2BC,4MB,3DN. (Ⅰ)求证://AB平面DNC; (Ⅱ)求二面角DBCN的余弦值.
(18)(本小题共14分) 已知抛物线C:24xy,M为直线:l1y上任意一点,过点M作抛物线C的两条切线,MAMB,切点分别为A,B. (Ⅰ)当M的坐标为(0,1)时,求过,,MAB三点的圆的方程; (Ⅱ)证明:以AB为直径的圆恒过点M.
yx21011123456 4
(19)(本小题共13分) 已知函数11()()lnfxaxxax(1a). (Ⅰ)试讨论()fx在区间(0,1)上的单调性; (Ⅱ)当3,a时,曲线()yfx上总存在相异两点11(,())Pxfx,22(,())Qxfx,使得曲线
()yfx在点P,Q处的切线互相平行,求证:1265xx.
(20)(本小题共14分) 对于数列na(1,2,,)nm,令kb为1a,2a,,ka中的最大值,称数列nb为na的“创新数列”.例如数列2,1,3,7,5的创新数列为2,2,3,7,7. 定义数列nc:123,,,,mcccc是自然数1,2,3,,(3)mm的一个排列. (Ⅰ)当5m时,写出创新数列为3,4, 4,5,5的所有数列nc; (Ⅱ)是否存在数列nc,使它的创新数列为等差数列?若存在,求出所有的数列nc,若不存在,请说明理由. 5
北京市东城区2011-2012学年度高三综合练习(二) 数学参考答案及评分标准 (理科) 一、选择题(本大题共8小题,每小题5分,共40分) (1)A (2)B (3)D (4)A (5)C (6)B (7)D (8)C 二、填空题(本大题共6小题,每小题5分,共30分)
(9)1 (10)(1,0) 2 (11))3,1( 32
(12)125 (13)2 (14)③④ 注:两个空的填空题第一个空填对得3分,第二个空填对得2分. 三、解答题(本大题共6小题,共80分) (15)(共13分) 解:(Ⅰ)由图可知,1A,最小正周期428T. 由2π8T,得4. „„„„„3分
又π(1)sin()14f ,且ππ22, 所以ππ42, 即4 . „„„„„„5分 所以π()sin()sin(1)444fxxx. „„„„„„6分 (Ⅱ)因为(1)0,(1)1,ffπ(5)sin(51)1,4f 所以(1,0),(1,1),(5,1)MNP. „„„„„„„7分 所以5,20,37MNPNMP. 由余弦定理得520373cos52520MNP. „„„„„11分 因为0,MNP, 所以4sin5MNP. „„„„„13分 (其它解法酌情给分) (16)(共13分)
yx21011123456 6 xyzAD
BMCN
解:(Ⅰ)甲、乙两人所付费用相同即为2,4,6元. „„„„„2分 都付2元的概率为1111428P;
都付4元的概率为2111248P; 都付6元的概率为31114416P; 故所付费用相同的概率为1231115881616PPPP. „„„„„6分 (Ⅱ)依题意,的可能取值为4,6,8,10,12. „„„„„8分 1(4)8P; 11115(6)442216P;
1111115(8)44242416P; 11113(10)442416P;
111(12)4416P.
故的分布列为 4 6 8 10 12
P 18 516 516 316 116 „„„„„11分
所求数学期望155311546810128161616162E. „„„„„13分
(17)(共13分) (Ⅰ)证明:因为MB//NC,MB平面DNC,NC平面DNC, 所以MB//平面DNC. „„„„„2分 因为AMND为矩形, 所以MA//DN. 又MA 平面DNC,DN平面DNC,
所以MA//平面DNC. „„„„„4分 又MAMBM,且MA,MB平面AMB, 所以平面AMB//平面DNC. „„„„„5分 又AB平面AMB, 所以//AB平面DNC. „„„„„6分
(Ⅱ)解:由已知平面AMND平面MBCN,且平面AMND平面MBCNMN,DNMN, 所以DN平面MBCN,又MNNC,故以点N为坐标原点,建立空间直角坐标系Nxyz. „„„„„7分 由已知得23,30MCMCN,易得3MN,3NC.