初三数学 圆的性质
- 格式:pptx
- 大小:1.07 MB
- 文档页数:12
初中数学知识归纳圆的概念及性质圆是初中数学中的一个重要概念,它具有独特的性质和应用。
本文将对圆的概念及其性质进行归纳总结,以帮助读者更好地理解和掌握这一数学知识点。
一、圆的定义与基本概念圆是由平面上与一个确定点的距离相等的所有点组成的图形。
这个确定点称为圆心,距离称为半径。
圆可以用符号表示为O(A,r),其中O为圆心,A为圆上的任意一点,r为半径。
二、圆的性质1. 圆的直径圆上的任意两点连线,经过圆心,则称为圆的直径。
直径的长度是半径的两倍,用符号表示为d=2r。
2. 圆的弦圆上的任意两点连线,不经过圆心,则称为圆的弦。
圆的直径是一条特殊的弦,它同时也是最长的弦。
3. 圆的弧圆上的部分曲线,是由两个弦之间的交点所夹的部分,称为圆的弧。
同一个圆上的两个弧可以互补称为对称弧。
4. 圆的周长圆的周长是圆上所有点与圆心的距离之和,也就是圆的一周的长度。
圆的周长公式为C=2πr,其中π取约等于3.14。
5. 圆的面积圆的面积是圆内部的所有点与圆心的距离之和,也就是圆所围成的区域的大小。
圆的面积公式为A=πr²。
6. 圆的切线与切点从圆外一点引一条直线与圆相交,该直线在圆上的切点和与圆相切的直线称为圆的切线。
7. 圆的切圆两个圆相切于一点,称为圆的切圆。
8. 圆的切线定理如果一条直线与一个圆相切,那么与这条直线相垂直的半径也是与这条直线相切的。
9. 圆的相交性质两个圆相交于两个点,这两个点到各自的圆心的距离相等,且此两点不在任一圆内部。
10. 弧长与弧度圆的弧长是指圆心角所对应的弧的长度。
弧度是表示弧长与半径之比,记作θ,弧度大小等于圆心角大小的弧长除以半径,即θ=弧长/半径。
11. 弧长公式圆的弧长公式为L=θr,其中L表示弧长,θ表示圆心角的大小(弧度制),r表示半径。
12. 扇形的面积公式扇形是由圆心角和半径所夹的弧围成的区域,扇形的面积公式为S=1/2θr²,其中S表示扇形的面积。
九年级下册数学圆的知识点【九年级下册数学圆的知识点】数学是一门以逻辑严谨和推理为基础的学科,而数学的各个分支中,圆是一个重要且基础的概念。
在九年级下册数学学习中,圆的知识点是必须掌握的内容。
本文将为大家介绍九年级下册数学中关于圆的重要知识点。
一、圆的定义与性质1. 圆的定义:圆是平面上所有与圆心距离相等的点的轨迹。
2. 圆的元素:圆心、半径和直径。
圆心是平面上距离圆上任意一点的距离都相等的点;半径是连接圆心和圆上任意一点的线段;直径是通过圆心的,并且两个端点在圆上的线段,直径是半径的两倍。
3. 圆的性质:每条半径都相等;直径是任意圆周上两点的最长线段;圆的半径垂直于圆的弧上的切线;相交于圆上同一条弧的两条弦相等;圆心角所对的弧和该角度所在的圆弧的长度成正比。
二、圆的相关计算1. 圆的周长:圆的周长公式是C=2πr,其中C表示周长,π是一个常数(约等于3.14),r是圆的半径。
2. 圆的面积:圆的面积公式是S=πr²,其中S表示面积,π是常数,r是圆的半径。
3. 弧长和扇形面积:给定圆心角的度数θ和圆的半径r,可以利用公式计算弧长L和扇形面积A。
弧长公式为L=2πr(θ/360°),扇形面积公式为A=πr²(θ/360°)。
三、圆的位置关系与定理1. 圆内切和外切:当两个圆的内部或外部只有一点重合时,称这两个圆内切或外切。
2. 弦的性质:圆内任意两点可连成一条弦,弦的性质有:等长的弦所对的圆心角相等;垂直于半径的弦是半径所对的圆心角的平分线。
3. 切线的性质:切线与半径垂直;切线与切点间的半径是切线的切点处的切线角的平分线。
4. 切线与圆的位置关系:切线与圆的位置关系有内切、外切和相离三种情况。
内切时切线只与圆的内部相切;外切时切线只与圆的外部相切;相离时切线与圆没有交点。
四、圆的相关定理1. 余弦定理:在任意三角形ABC中,设AB=c、AC=b、BC=a,则有c²=a²+b²-2abcos∠C。
数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。
在九年级的数学学习中,我们将更加深入地学习圆的相关知识。
本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。
一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。
其中,距离固定点最远的点称为圆的半径,固定点称为圆心。
圆心与圆上任意一点之间的线段称为半径。
二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。
2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。
3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。
等弦对应的弦长相等,而不等弦对应的弦长不相等。
4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。
三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。
2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。
四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。
2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。
3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。
4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。
总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。
掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。
通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。
初中数学知识归纳圆的概念与性质圆是初中数学中的重要概念,在本文中将对圆的概念与性质进行归纳和总结。
文章将从圆的定义开始,逐步介绍圆的基本要素、圆心角、内接外接等重要性质,并辅以相关的定义、公式和图示,以便读者更好地理解和掌握。
1. 圆的定义圆是由平面上所有距离固定点(圆心)的点构成的集合。
圆的平面被称为圆面,圆上的每一个点到圆心的距离都相等,这个相等的距离被称为圆的半径。
2. 圆的基本要素(1)圆心:圆心是圆的中心点,通常用字母O表示。
(2)半径:圆心到圆上任一点的距离为圆的半径,通常用字母r表示。
(3)直径:直径是通过圆心且两端在圆上的线段,直径的长度为半径的两倍。
(4)弦:连接圆上两点的线段被称为弦,弦的长度可以小于或等于直径。
3. 圆的性质(1)圆的周长:圆的周长是圆上一周的长度,用C表示,可通过公式C = 2πr计算,其中π是一个常数,近似值为3.14。
(2)圆的面积:圆的面积是圆内部的所有点构成的区域,用S表示,可通过公式S = πr²计算。
(3)圆心角:以圆心为顶点的角被称为圆心角,圆心角所对的弧称为圆心角所对的弧。
(4)弧长:弧长是圆的一部分,通常通过弧度来度量,弧长的计算公式是L = rθ,其中θ是圆心角的弧度数。
(5)切线和法线:切线是与圆相切于一点并且与圆的切点的切线垂直的直线,而法线是与切线垂直的直线。
4. 圆的内接和外接(1)内接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为内接多边形,内接多边形的顶点都落在圆上。
(2)外接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为外接多边形,外接多边形的每个顶点都在圆上。
综上所述,圆是一种特殊的几何图形,其定义、基本要素、性质和内接外接等概念是初中数学中必须掌握的内容。
通过对圆的学习,我们可以应用圆的性质解决实际问题,如计算圆的周长、面积,进行内接外接多边形的相关计算等。
深入理解和掌握圆的概念和性质能够夯实数学基础,为进一步学习和应用提供坚实的基础。
初中数学内切圆的性质有哪些内切圆是指一个圆与一个多边形的所有边都相切于圆的内部,且圆心与多边形的内心重合的圆。
内切圆具有以下性质:1. 圆心与多边形的内心重合:内切圆的圆心与多边形的内心重合,即内切圆的圆心就是多边形的内心,也是多边形对称中心。
2. 圆与多边形的边相切:内切圆与多边形的每一条边都相切,切点分别位于多边形的边上。
这意味着内切圆的半径等于切点到多边形边的距离。
3. 内切圆的半径与多边形的边长有关:对于正多边形,内切圆的半径等于多边形边长的一半。
对于任意凸多边形,可以通过计算内切圆的半径来求解多边形的面积。
4. 内切圆的面积与多边形的面积有关:对于正多边形,内切圆的面积等于多边形面积的一部分。
对于任意凸多边形,可以通过计算内切圆的面积来求解多边形的面积。
5. 内切圆的半径与外接圆的半径有关:对于正多边形,内切圆的半径等于外接圆的半径乘以一个常数。
这个常数与多边形的边数有关。
6. 内切圆的半径与外接圆的半径满足勾股定理:对于任意三角形,内切圆的半径等于三角形的面积除以半周长。
而外接圆的半径等于三角形的边长的一半除以三角形的面积的平方根。
7. 内切圆与多边形的切点连线互相垂直:内切圆与多边形的切点连线在切点处互相垂直,即多边形的边与内切圆的切点连线互相垂直。
8. 内切圆的切点构成正多边形:对于正多边形,内切圆的切点构成一个正多边形,且内切圆的半径等于正多边形的边长的一半。
以上是内切圆的一些基本性质。
在实际问题中,还可以通过引入向量、三角函数等概念来进一步研究内切圆的性质和应用。
希望以上内容能够满足你对内切圆的了解。
初三数学同步训练 圆的有关概念与性质 zhang◆考点链接1.圆上各点到圆心的距离都等于 . 2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 是 对称图形, 是它的对称中心. 3. 垂直于弦的直径平分 ,并且平分 ;平分弦(不是直径)的 垂直于弦,并且平分 .4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 ,那么它们所对应的其余各组量都分别 .5. 同弧或等弧所对的圆周角 ,都等于它所对的圆心角的 .6. 直径所对的圆周角是 ,90°所对的弦是 .◆典例精析例1如图,在Rt △ABC 中,∠C =90°,AB =10,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于( ) A .53 B .5 C .52 D .6例2如图,⊙O 的直径CD =10,弦AB =8,AB ⊥CD ,垂足为M ,则DM 的长为 .例3(贵州贵阳)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,且AB=13,BC=5.(1)求sin∠BAC 的值;(2)如果OD⊥AC,垂足为点D ,求AD 的长;(3)求图中阴影部分的面积.B CD A◆迎考精练一、选择题1.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是( )A.15° B.30° C.45° D.60°2.如图,⊙O的半径为1,AB是⊙O 的一条弦,且AB=3,则弦AB所对圆周角的度数为()A.30°B.60°C.30°或150°D.60°或120°3.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP.若阴影部分的面积为 9,则弦AB的长为()A.3 B.4 C.6 D.94.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A.28° B.56°C.60° D.62°5.如图,△ABC内接于⊙O,连结OA、OB,若∠ABO=25°,则∠C的度数为()A.55° B.60° C.65° D.70°6.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是().A.0.4米 B.0.5米 C.0.8米D.1米7如图,AB是半圆O的直径,点P从点O出发,沿»OA AB BO--的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是()二、填空题8.已知O⊙的直径8cmAB C=,为O⊙上的一点,30BAC∠=°,则BC=_ cm.9.如图,Oe的半径5cmOA=,弦8cmAB=,点P为弦AB上一动点,则点P到圆心O的最短距离是 cm.10·(北京市)如图,AB为⊙O的直径,弦CD⊥AB,E为»BC上一点,若∠CEA=28o,则∠ABD=°.PAOBstOsO OstOstA.B.C.D.DA BCE三、解答题11.如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB,垂足为E ,BD 交CE 于点F .(1)求证:CF =BF ;(2)若AD =2,⊙O 的半径为3,求BC 的长.12.已知:如图,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 1的纵坐标为5.求⊙O 1的半径.B A O图2 x yA BO 1O13.已知:如图,⊙O 的直径AD =2,»»»BCCD DE ==,∠BAE =90°. (1)求△CAD 的面积;(2)如果在这个圆形区域中,随机确定一个点P ,那么点P 落在四边形ABCD 区域的概率是多少?。
初中数学圆的重要概念性质定理总结与解题技巧1. 圆的对称性圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.2. 垂径定理及其推论垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.3. 圆心角定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 同样还可以得到:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等. 4. 圆周角定理及推论圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.5. 圆内接四边形的性质:圆内接四边形的对角互补.初中数学常见题型解题技巧一、选择题的解法1.直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。
2.特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关。
在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3.淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4.逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略。
每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5.数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法1.数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义。
第六单元圆第21讲圆的基本性质知识点一:圆的有关概念关键点拨与对应举例1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.知识点二:垂径定理及其推论2.垂径定理及其推论定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.延伸根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧BC;②弧AD=弧BD;③AE=BE;④AB⊥CD;⑤CD是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.知识点三:圆心角、弧、弦的关系3.圆心角、弧、弦的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点四:圆周角定理及其推论4.圆周角定理及其推论(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a,∠A=1/2∠O.图a 图b 图c( 2 )推论:①在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b,∠A=∠C.②直径所对的圆周角是直角.如图c,∠C=90°.③圆内接四边形的对角互补.如图a,∠A+∠C=180°,∠ABC+∠ADC=180°.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.例:如图,AB是⊙O的直径,C,D是⊙O上两点,∠BAC=40°,则∠D的度数为130°.数学选择题解题技巧1、排除法。