当前位置:文档之家› 三相异步电动机的设计计算-修订版

三相异步电动机的设计计算-修订版

三相异步电动机的设计计算-修订版
三相异步电动机的设计计算-修订版

Equation Chapter 2 Section 1.

题目:Y160-M4型三相异步电动机设计

姓名 ___ __ _ __

学号_ __ __

年级 ____ _

专业 _电气工程及其自动化

目录

目录 ......................................................................................................................................... I 摘要 ..............................................................................................................................................II 第一章异步电动机的概述 . (1)

1.1异步电动机的用途及分类 (1)

1-2.定子的结构组成及工作原理 (1)

1.3电机设计的过程 (2)

1.4异步电动机主要性能指标 (3)

第二章电机设计计算准备 (4)

2.1电机主要尺寸,绕组构成和原理 (4)

2.2主磁路 (5)

2.3电抗 (6)

2.4损耗与效率 (7)

2.5通风散热 (8)

2.6电机设计要求 (8)

第三章电机设计计算程序 (11)

3.1额定数据和主要尺寸 .............................................................................. 错误!未定义书签。

3.2磁路计算 .................................................................................................. 错误!未定义书签。

3.3参数的计算 .............................................................................................. 错误!未定义书签。

3.4启动性能的计算 ...................................................................................... 错误!未定义书签。

3.5电机设计的分析比较 .............................................................................. 错误!未定义书签。第四章总结 . (36)

参考文献 (37)

摘要

三相异步电动机又称为三相感应电动机。感应电动机是基于气隙旋转磁场与转子绕组中感应电流相互作用产生电磁转矩,从而实现能量转换的一种交流电动机。由于转子绕组电流是感应产生的,因此称为感应电动机。与其它电动机相比,感应电动机具有结构简单,制造、使用、维护方便,运行可靠及重量轻成本低等优点。此外,感应电动机还还便于派生各防护型式以使用不同环境条件的需要,也有较高的效率和较好的工作特性。由于感应电动机具有上述许多优点,它是工业领域中应用最广泛。在中小型轧钢设备、矿山机械、机床、起重运输机械、鼓风机、水泵和农副产品加工机械大多采用三相异步电动机来拖动。

三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。

相比于单相异步电动机,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。

关键词:三相异步电机感应电动机电机设计

第一章异步电动机的概述

1.1异步电动机的用途及分类

根据电机的可逆原理,异步电机既可用作电动机,也可用作发电机。但其作发电机运行时性能较差,故很少采用。而用作电动机时具有较好的工作特性,故其主要用作电动机。异步电动机结构简单,价格低廉,运行可靠,坚固耐用,易于控制,因而是电动机中应用得最为广泛的一种。异步电动机是一种交流电机,主要用作电动机,拖动各种生产机械,广泛应用于交通运输、农业生产以及国防、文教、医疗和日常生活中。

异步电动机具有较高的运行效率和较好的工作特性,从空载到满载范围内接近恒速运行,能满足大多数工农业生产机械的传动要求。异步电动机还便于派生成各种防护型式,以适应不同环境条件的需要。随着电力电子器件以及交流变频调速技术的发展,由异步电动机和变频调速器组成的交流调速系统的调速性能以及经济性已可与直流调速系统相媲美,且使用维护简便,因而应用愈来愈广泛。

由于异步电动机在运行过程中必须从电网吸收感性无功功率,因此其功率因素较差,总是小于1,此外,异步电动机空载电流大,起动和调速性能都不够理想,是异步电机的主要缺点[2]。

异步电动机的种类很多,从不同的角度考虑,有不同的分类方法。

按照相数来分,有单相异步电动机,三相异步电动机。大功率机械拖动时,一般都用三相异步电动机,日常生活和工业控制装置则多用单相异步电动机。

按转子结构分,有鼠笼试异步电动机和绕线式异步电动机两种,其中,鼠笼式异步电动机,又包括单鼠笼式异步电动机、双鼠笼式异步电动机和深槽式异步电动机。

按机壳的保护方式分,有防护式异步电动机、封闭式异步电动机,以及防爆式异步电动机[3]。

1-2.定子的结构组成及工作原理

三相异步电动机由定子和转子两个基本部分构成。转子按其结构可分为鼠笼型和绕线型两种。

定子由定子铁心、机座、定子绕组等部分组成,定子铁心是异步电动机磁路的一部分,一般由0.5毫米厚的硅钢片叠压而成,用压圈及扣片固紧,各片之间相互绝缘,以减少涡流损耗。

定子绕组是由带有绝缘的铝导线或铜导线绕制而成的,小型电机采用散下线

圈或称软绕组,大中型电机采用成型线圈,又称为硬绕组。

转子由转子铁心、转子绕组、转子支架、转轴和风扇等部分组成,转子铁心和定子铁心一样,也是由0.5毫米硅钢片叠压而成。鼠笼型转子的绕组是由安放在转子铁心槽内的裸导条和两端的环形端环连接而成,如果去掉转子铁心,绕组的形状象一个笼子;绕线型转子的绕组与定子绕组相似,做成三相绕组,在内部星型或三角型。

当定子绕组接至三相对称电源时,流入定子绕组的三相对称电流,在气隙内产生一个以同步转速n

1

旋转的定子旋转磁场,设旋转磁场的转向为逆时针,当旋

转磁场的磁力线切割转子导体时,将在导体内产生感应电动势e

2

,电动势的方向根据右手定则确定。N极下的电动势方向用⊕表示,S极下的电动势用⊙表示,

转子电流的有功分量i

2a 与e

2

同相位,所以⊕和⊙既表示电动势的方向,又表示

电流有功分量的方向。转子电流有功分量与气隙旋转磁场相互作用产生电磁力

f

em

,根据左手定则,在N极下的所有电流方向为⊕的导体和在S极下所有电流流

向为⊙的导体均产生沿着逆时针方向的切向电磁力f

em

,在该电磁力作用下,使转

子受到了逆时针方向的电磁转矩M

em

的驱动作用,转子将沿着旋转磁场相同的方向转动。驱动转子的电磁转矩与转子轴端拖动的生产机械的制动转矩相平衡,转子将以恒速n拖动生产机械稳定运行,从而实现了电能与机械能之间的能量转换,这就是异步电动机的基本工作原理。

1.3电机设计的过程

按照一般工业界的编程电机设计的过程可分为三个阶段:准备阶段、电磁设计与结构设计。

准备阶段:通常抱过两方便内容:首先是熟悉国家标准,收集相近电机的产品样本和技术资料,并听取生产和使用单位的意见与要求;然后在国家标准有关规定及分析相应资料的基础上,编制技术任务或技术建议书。

电磁设计:本阶段的任务是跟据技术任务书的规定,参相生产实践经验,通过计算和方案比较,来确定与所设计电机电磁性有关的尺寸和数据,选定有关材料,并核算电磁性能。

结构设计:结构设计的任务是确定电机的机械结构,零部件尺寸,加工要求与材料的规格及性能要求,包括必要的机械计算及通风和升温计算。

1.4异步电动机主要性能指标

异步电动机性能指标有:

(1)效率:电动机输出机械功率与输入电功率之比。

(2)功率因素:电动机输入有效功率与视在功率之比。

(3)起动电流:电动机在额定电压、额定频率和转子起动时从供电回路输入的最大稳态方均根电流。

(4)起动转矩:电动机在额定电压、额定频率和转子起动时说产生的转矩的最小测得值。

(5)最小转矩:电动机在额定电压、额定频率下,在零转速与对应于最大转矩的转速之间所产生的稳态异步转矩的最小值。

(6)最大转矩:电动机在额定电压、额定频率下说能产生的最大稳态异步转矩。

(7)噪声:电动机在空载稳态运行时A计权声功率级(dB),以及在额定负载运行是时超过空载运行的噪声声功率级增量。

(8)振动;电动机在空载稳态运行时振动速率有效值。

第二章 电机设计计算准备

首先应根据产品通用标准、技术条件设计原始数据,然后进行电磁设计和结构设计。电磁设计是根据设计技术要求确定电机的电磁负荷,计算转子、定子冲片和铁心各部分尺寸及绕组数据,进而核算电机各项参数及性能,并对设计数据做必要的调整,直到达到要求,提出电磁设计单。结构设计是根据设计技术要求及电磁设计确定的有关数据,确定电机总体结构、零部件尺寸、材料及加工要求,绘制总装图及零部件图,进行必要的机械计算及热计算,提出全套生产图样。

电机设计要进行多种方案的分析、比较,或采用优化设计方法,以权衡电机性能、运行费用、制造成本、运行可靠性等因素,决定最优的设计。中小型电机生产量大,使用面广,品种规格繁多,一般都成系列设计及制造。设计时,应充分考虑到标准化、通用化、系列化的要求。

2.1电机主要尺寸,绕组构成和原理

主要尺寸指定子铁心外径1D 、内径1i D 以及铁心长度。在已知电机的视在功率及转速情况下,可借助利用系数的经验值或通过适当地选择电磁负荷,由式(2.1)计算的21i ef D l 分别求得主要尺寸1i D 与ef l 。参照定子内外径比的经验值可估算定子外径1D 。

21ef '

N 6.1

p Nm dq D l n P K K AB δ

α= (2.1)

对应于系列电机的每一机座中心高,根据合理利用机座径向空间及考虑硅钢片的合理套裁等要求,确定合理的定子冲片外径1D 。设计时按1D 估算值或直接按电机功率及转速,选定某一中心高的机座及与之相适应的外径。

电机绕组要求各并联支路具有相同的电动势及阻抗。三相交流绕组要求各相相轴在空间互差0120电角度,并有相同的有效匝数,以保正各相电动势对称(即大小相等、相位互差0120电角度)。同时要求绕组感应电动势和产生磁动势的基波分量尽可能大,而谐波分量尽可能小。

交流绕组有多种分类方法,按绕组布置分类,有集中绕组及分布绕组;按相带分类,有0120、060、030相带绕组及混相绕组;按每极每相槽数q 分类,有整数槽绕组及分数槽绕组(q 为整数或分数);按槽内线圈边层数分类,有单层绕组、双层绕组及单双层绕组;按线圈形状和端部连接方式分类,有叠绕组、波绕组以及同心式、链式、交叉式绕组。

直流电枢绕组一般按绕组元件与换向片之间连接规律不同而分为叠绕组、波绕组和蛙绕组。绕组由多个按一定规律连接的线圈构成,每一线圈包括置于于槽中的有效部分及端接部分。若各相带的某些槽的线圈有规则地改属另一相,即为混相绕组。

双层绕组每槽分上下两层放两个线圈边,双层绕组所有线圈的形状、几何尺寸相同,端部排列整齐,可选择有利节距以改善电动势和磁动势波形。

2.2主磁路

空载气隙磁场在直流电机和同步电机中由磁极绕组的直流励磁磁动势建立,而在异步电机中则由定子绕组的交流磁动势建立。

直流电机主极极弧形状通常可分为以下三种: (1)均匀气隙;

(2)偏心气隙,极弧与电枢外圆不同心,使气隙从中心至极尖逐渐增大; (3)极尖削角的均匀气隙,气隙从极弧两端约1/6长度处至极尖逐渐增大。后两种电枢形状可抑制电枢反应所引起的气隙磁场畸变。

凸极同步电机的磁极极弧形状大致有两种:

(1)沿极弧范围内气隙是变化的,得到接近正弦的磁场分布; (2)气隙均匀,得到近似矩形的磁场分布。

磁路计算是按给定的电机端电压求得每极磁通,进而求取磁路各部分磁通密度(磁密)和磁位降,计算所需的磁动势、励磁电流以及空载特性。磁路计算方法的 依据是全电流定律,即总磁动势为磁场强度的线积分。实际计算是通过求各段磁路,如气隙、齿、轭、极身等部分磁位降的总和代替积分求得总磁动势。

气隙的一边或两边有齿和槽,因此,实际的气隙磁密分布是不均匀的,气隙磁位降较假定气隙光滑时的大,它的影响用气隙系数k δ对气隙长度δ加以修正,设齿宽为t,槽口宽为0b ,则气隙系数

t

k t δγδ

=

- (2.2)

式中 γ——对开口槽,2

002/5b b γδδ????=+ ? ?????

对半闭口或半开口槽,2

002/[4.40.75]b b γδδ????=+ ? ?????

径向通风道使磁通通过气隙的轴向长度减小,计算气隙磁密时的实际长度为铁心的有效长度ef t v v v l l k N b =-,式中t l 为铁心总长,v N 及v b 为通风道数及其宽度, /(5/)

v v v b k b δ

δ=

+。

如定转子均有通风道,两者交错时应分别考虑;两者对齐且相等时,v k 式中应以2v b 代替v b 。

沿齿部磁路不同位置的齿宽t b 一般是变化的,不同截面处磁密及磁场强度是不同的。计算齿磁位降时,沿齿高分段越多,计算结果也越准确。实际计算时常加以简化,取靠近齿部最窄的1/3齿高处的磁场强度为t H 。若齿宽不连续变化,则应在不连续处分段计算。

根据不同电机的磁路结构,由各部分磁位降之和求取所需的励磁磁动势。 隐极同步电机及异步电机

1122t j t j F F F F F F δ=++++

(2.3)

式(2.3)中,tc F 为主极补偿齿磁位降,j F δ为磁极装配间隙磁位降。对直流励磁的电机,励磁绕组匝数为f W 时,空载励磁电流F

If Wf

=(A )对异步电动机,励磁电流

2m dp

pF

I mWK π

=

(A )

(2.4)

2.3电抗

与初、次级交链的基波互感主磁通在绕组中感应电动势,直接参与能量转换,与基波主磁场相对应的电抗称为主电抗。多相交流绕组的每相主电抗

2

0ef

's ef

()4()dp m WK f l Xm p K μτπδ=?Ω

(2.5)

式中:'s K ——电机磁路总磁位降与气隙磁位降之比;

0μ——气隙磁导率。

对异步电机,主电抗即为励磁电抗;对同步电机,主电抗为电枢反应电抗。

/N N U I 为基准值的主电抗标么值

0*'2dp m s ef

K A

X K B δ

μτ

πδ=

?

(2.6)

从上式可知,主电抗与

A

B δ

成正比,而气隙长度增大,则主电抗减小。 漏磁通是绕组产生总磁通的一部分,一般只与初、次级中一侧交链,不参与能量转换。它能在绕组中感应电动势,该电动势频率与产生该磁通的电流频率相同,通常用漏抗压降表示,因而每种漏抗都与某一部分漏磁通相对应,相应的有槽漏抗、端部漏抗、齿端漏抗。设计中常把某种与初、次级都交链的互感磁通也归入漏抗,如谐波漏抗。

不同的漏抗有不同的来源。例如槽漏抗由横向穿过槽壁的漏磁通引起;端部漏抗由端部漏磁通引起,与绕组端部结构及尺寸有关,端部越长,和附近的磁性金属构件越靠近,则端部漏磁导愈大。

齿端漏抗是由齿端漏磁通引起,它是从一个齿顶出发,沿气隙到相邻的另一个齿顶的漏磁通,齿端漏抗随槽口宽度与气隙长度比值的增大而减小。对气隙较小的电机,如异步电机可忽略齿端漏抗。谐波漏抗由气隙中高次谐波磁通引起。有时把谐波漏抗划分为齿谐波漏抗及相带谐波漏抗。

2.4损耗与效率

损耗包括铜耗、铁耗、铜耗、风摩损耗和杂散损耗等。其中铜耗是电流流过绕组产生的焦耳热损耗,按我国标准规定绕组电阻应折算到与绕组绝缘等级相对应的基准工作温度。若电流通过电刷与集电环或换向器,则应包括电刷接触损耗。对直流电机,除电枢绕组的电阻损耗外,还应包括与之串联的换向极绕组及补偿绕组的电阻损耗。对带励磁绕组的同步电机或直流电机,应计入励磁绕组的电阻损耗。

基本铁损耗是铁心中主磁通交变引起磁滞及涡流损耗。计算时应分别计算定子或电枢铁心的齿、轭部铁损耗,然后相加。正常运行时,同步电机的磁极主磁通不变,异步电机转子的磁通变化频率也很低,基本铁耗均可忽略。

风摩损耗包括风扇及通风系统的损耗,电机转子表面与冷却介质的摩擦损耗、轴承摩擦损耗、电刷摩擦损耗等。

杂散损耗包括表面损耗和脉振损耗。前者是由气隙谐波磁通相对与齿或磁极铁心表面移动而在其表面产生的涡流损耗;后者是该谐波磁通相对于齿移动,使进入齿中的谐波磁通脉动,因而在齿中产生的涡流及磁滞损耗。

效率由输出功率2P 及在该功率下各种损耗总和P ∑求得

2

1P P P

η=-

+∑∑ (2.7)

一般考核在额定输出功率N P 下的额定效率,当电机运行在不变损耗和可变损耗相等的负载时,电机运行效率最高。

2.5通风散热

电机冷却过程是把电机损耗产生的热量首先传递给一次冷却介质,已升高温度的一次冷却介质,由新的低温冷却介质不断替换,或者通过某种形式的冷却器由二次冷却介质加以冷却。常用冷却方式有:表面冷却、通风冷却、循环冷却、管道通风冷却等。

风扇常作为驱使冷却介质循环所需要的动力,它应能产生足够的压力以克服电机冷却通道中的压力降落,并输送足够的介质流量通过电机。常用的风扇有离心式和轴流式两种。

电机绝缘结构按其耐热性分为A 、E 、B 、F 、H 五个等级,不同耐热等级的极限温度如下表: 耐热等级

A

E B

F H 极限温度(℃) 105

120

130

155

180

电机绕组温升限值基本上取决于其绝缘结构耐热等级及环境温度,同时与温度测量方法有关,常用的方法有电阻法、温度计法及埋置检温法[4]。

2.6电机设计要求

Y 系列电动机为全封闭自扇冷式笼型三相异步电动机,是按照国际电工委员会(IEC)标准设计的,具有国际互换性的特点。用于空气中不含易燃、易炸或腐蚀性气体的场所。适用于无特殊要求的机械上,如机床、泵、风机、运输机、搅拌机、农业机械等。也用于某些需要高起动转矩的机器上,如压缩机。通用Y 系列的设计数据如表2-1所示。

表2—1 Y 系列电动机的技术数据

电动机型号

额定功率 KW

满载转速(r/min )

堵转转矩/额定转矩 最大转矩/额

定转矩

同步转速1500r/min ,4极 Y801-4

Y802-4 Y90S-4

0.55 0.75 1.1 1390 1390 1400

2.2

2.2 2.2 2.2 2.2 2.2

Y90L-4

Y100L

1

-4

Y100L

2

-4 Y112M-4 Y132S-4 Y132M-4 Y160M-4 Y160L-4 Y180M-4 Y180L-4 Y200L-4 Y225S-4

1.5

2.2

3

4

5.5

7.5

11

15

18.5

22

30

37

1400

1420

1420

1440

1440

1440

1460

1460

1470

1470

1470

1480

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.0

2.0

2.0

1.9

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.2

此外,国际电工委员会还设计的相应的安装代号,如表2-2所示。

表2—2Y系列电动机安装代号

安装型式基本安装型由B3派生安装型

B3 V5 V6 B6 B7 B8

示意图

中心高

(mm)

80~280 80~160

安装型式基本安装型由B5派生安装型基本安装型由B35派生安装型B5 V1 V3 B35 V15 V36

示意图

中心高

(mm)

80~225 80~280 80~160 80~280 80~160

综上所述,本文设计的Y160-M4型三相异步电动机基本数据如下:

额定功率P

N

=4kW(似乎没有对上,下文应当以11KW的额定功率重新计算)(若待设计电机的额定功率为4KW,Y112M-4型中心高112mm,推荐气隙为0.3mm

而非下文的0.5mm),额定相电压U

N =380V,相数m=3,额定频率f

N

=50Hz,极对

数p=2,额定转速n=1460r/min,B级绝缘,连续运行,封闭自冷式。输出功电流(相): KW

I=3.51A。下文将根据标准确定定转子铁芯主要尺寸。

由《Y系列(IP44)三相异步电动机技术条件(H80-280毫米)》(JB3074-82),待设计电机型号是Y160M-4。Y系列的这种三相异步电动机中心高H是160mm[1]。

查表知道定子外径D

1=260mm,内径D

il

=170mm。转子内径D

i2

=60mm,气隙长度

g=0.5mm。定、转子槽配合Q1/Q2为36/28,绕组形式是单层绕组【1】

第三章 电机设计计算程序

3.1额定数据和主要尺寸

1. 额定功率:KW P N 0.4=

2. 额定电压:V U U N N 380==Φ (?接)

3. 功电流:A A mU P I N N kW

51.3380

3100.43=??==Φ 4. 效率:效率标准值84.0=η

5. 功率因素:功率因素标准值82.0cos =?

6. 极对数:2=p

7. 定转子槽数

定子槽数Q 1=36 转子槽数Q 2=26 8. 定转子每极槽数 1823611===

p Q Q p 132

2622===

p Q Q p 9.确定电机电机主要尺寸 定、转子冲片尺寸

定子外径D 1 =260mm=26cm 定子内径1i D =170mm=17cm

转子外径=-=-=5.0*217*212g D D i 16cm 转子内径D i2=6cm

z s

1

R1

bs1

bs2

h s 12

b01

hs0

图3—1 三相异步电动机的定子槽型[1]

中小型异步电机定子槽型通常采用半闭口梨形槽。较小的槽开口可以减少铁芯表面损耗和齿部脉振损耗,并使气隙系数较小,以减小励磁电流;同时使得槽面积利用率高,冲模寿命较长;槽绝缘的弯曲程度较小,不易磨损,如图3-1所示。

定子槽尺寸有 01b =0.32cm cm h s 08.00= 301=s Z

cm b s 51.01=

cm b s 73.02= cm h s 29.112=

br2

br1

z s 2

hr12

b02

hr0

图3—2 三相异步电动机的转子圆底槽型[1] 转子槽尺寸有

cm b 1.002= cm h r 05.00= 302=s Z cm b r 57.01= cm b r 22.02=

cm h r 75.112=

R

H ’s

bs1

h

图3—3 槽绝缘结构示意图[1]

10.气隙的确定

气隙长度g =0.5mm=0.05cm 11.极距 cm p

D i p 70.262

17

1

=?=

=

ππτ

12.定子齿距 cm Q D t i 48.136

17

1

1

1=?=

=

ππ

转子齿距 cm Q D t 93.126

16

2

2

2=?=

=ππ

13.绕组节距

定子绕组采用单层绕组,交叉式,节距1-9,2-10,18-11 故绕组节距67.73/)788(=++=y

通常,绕组节距y 的取值根据绕组的类型(单层或者双层)确定。 对于本题的单层绕组,在计算时绕组短距系数1p K 时去整数,即1p K =1.0 14.转子斜槽度

为了削弱齿谐波磁场的影响,转子采用斜槽,一般斜一个定子齿距1t , 转子斜槽度SK b 一般以与定子齿距t 1的比值来表示,转子斜槽尺寸SK B 如下: cm t b B SK SK 07.248.14.11=?=?= 15.定子绕组每槽导体数

并联支路11=a .对于单层绕组,此题每槽导体数521=Z

16. 每相串联导体数 6241

352

3611111=??==?Φa m Z Q Z 17.绕组线规设计

根据经验,一般按照类比法选取线规。当不合适时,应进行多次选取,直至所选取的线规满足效率,启动性能和满槽率的要求等。计算本例所选取的线规为0.11Φ-。 18.槽满率的计算 先计算槽面积

2

2

2

121885.02365.0)2.029.1(251.0365.022)(22cm R h h b R S s s s =?+

-?+?=+

-?+=ππ 式中,槽楔高度按表选取的,h=0.2cm 。 对于单层绕组,槽绝缘所占面积

2

120931.0)365.029.12(025.0)2(cm R h C S s i i =?+??=+=ππ 式中,槽绝缘厚度按表选取,cm C i 025.0=

槽满率 %59.79100

7919.008.15212

211=???=?=

?e f S d Z N S 19.铁心长

铁心有效长cm g L L eff 1.1205.02122=?+=+= 净铁心长cm L K L Fe Fe 4.111295.0=?==? 20.绕组系数

对于单层绕组,其绕组的短距系数1p K 恒等于1,即 11=p K

96.02)20sin(3)

2203sin()2sin()2sin(11=?=??= ααq q K d 其中

2036

360221=?==Q p πα

所以绕组系数 96.00.196.0111=?=?=p d dp K K K 每相有效串联导体数

3689598.0384111=?=?=ΦΦN K N dp 21.每相有效串联导体数

59996.06241111=?=?=ΦΦdp dp K Z K Z

3.2磁路的计算

22. 满载电势

设设负载电势系数初值9061.01'

'1=-=L

e k ε

Wb

Wb k Z f U k dp e 58

1

18

1110175.59598.06245022.2103809061.022.210?=?????=????=

ΦΦ

通常从这里开始进行负载电势系数的循环计算,一般需要进行多次的循环。 23. 每极下齿部截面积

定子齿截面积1T S :

22114.962

36

4.11471.0cm p Q L b S Fe T T =??=?

?= 转子齿截面积

22220.902

264.11607.0cm p Q L b S Fe T T =??=?

?= 24.定子、转子轭部磁路计算高度 定子轭部计算高度

cm

cm R

h D D h s i C 89.23365.0735.1217263211'1=+--=+--=

转子轭部计算高度

cm

r h D D h r i C 13.3311.091.126163

22

22'2=+

--=+--=

25. 轭部导磁截面积

定子轭部导磁截面积21'195.324.1189.2cm L h S Fe C C =?=?= 转子轭部导磁截面积22'268.354.1113.3cm L h S Fe C C =?==? 26. 一极下空气隙截面积

2207.3231.1270.26cm m L S eff p g =?=?=τ 27. 波幅系数

从这里开始进行饱和系数的循环计算,一般需进行多次的循环。先假定饱和系数30.1'=T F ,则波幅系数查表为【2】 451.1=s F 28. 气隙磁密计算

2324.02.232407.32310175.5451.15

==??=?=Gs Gs S F B g s g φ

29. 定子齿部磁密:

T

Gs Gs S F B T s T 7789.03.77894.9610175.5451.15

11==??=?=φ 30.转子齿部磁密 T Gs Gs S F B T s T 8343.03.83430

.9010175.5451.1522

==??=?=φ

31. 定子轭磁密T Gs Gs S B C C 7853.08.785295.3210175.55.0215

11==??=Φ?=

32. 转子轭磁密T Gs Gs S B C C 7253.09.725168

.3510175.55.0215

22==??=Φ?=

33. 各部分磁路所需单位安匝数:

根据上述计算出的B T1、B T2、B C1、B C2,按所采用硅钢片DR510牌号的磁化曲线分别查取各部分磁路每厘米单位长度所需的安匝数 at T1和at T2即为【3】 64.271=T at 92.262=T at 0.121=C at 17.102=C at 34. 有效气隙长度

定子为半闭口槽,其卡式系数为

618

.132.0)32.075.005.04.4(48.1)

32.075.005.04.4(48.1)75.04.4()

75.04.4(2

2

01

0110111=-?+???+??=

-++=b b g t b g t K C

转子为半开口槽,其卡式系数为

0179

.11

.0)1.075.005.04.4(93.1)1.075.005.04.4(93.1)75.04.4()

75.04.4(2

2

02

0220222=-?+???+??=

-++=b b g t b g t K C

有效空气气隙长度

0823.00179.1618.105.021=??=??=C C e K K g g 35.齿部磁路计算长度 定子齿部磁路计算长度1'T h

cm

cm R h h h s s T 41.1365.031

235.1055.031211'=?++=++=

转子齿部磁路计算长度2

'T h

三相异步交流电机的设计_毕业设计

学生毕业设计(毕业论文) 系别:机电工程 专业:数控技术 设计(论文)题目:三相异步交流电机

毕业设计(论文)任务书 一、课题名称:三相异步电机的设计 二、主要技术指标: 1.内部由定子和转子构成。 2. 外壳有机座、端盖、轴承盖、接线盒、吊环等组成。 3. 技术要求:采用电压AC380,可以实现正反转。 三、工作内容和要求: 1.设计磁路部分:定子铁心和转子铁心。 2 设计电路部分:定子绕组和转子绕组以及电路图。 3 设计机械部分:机座、端子、轴和轴承等。 4.设计电路的正反转和安全控制部分。 5.按照“毕业设计规格”设计毕业报告。 四、主要参考文献: 1.[1]王世琨.《图解电工入门》[M].中国电力出版社.2008.

2.[2]满永奎.《电工学》[M].清华大学出版社.2008. 3.[3]乔长君.《电机绕组接线图册》[M].化学工业出版社.2012. 4.百度文库 学生(签名)年月日 指导教师(签名)年月日 教研室主任(签名)年月日 系主任(签名)年月日

毕业设计(论文)开题报告

摘要

在费拉里斯和特斯拉发明多相交流系统后,19世纪80年代中期,多沃罗沃尔斯基发明了三相异步电机,异步电机无需电刷和换向器三相异步电机(Triple-phase asynchronous motor)是靠同时接入380V三相交流电源(相位差120度)供电的一类电动机,由于三相异步电机的转子与定子旋转磁场以相同的方向、不同的转速成旋转,存在转差率,所以叫三相异步电机。 作电动机运行的三相异步电机。三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用。 Reese and Tesla invented in AC system. At the mid of 1880s, 多沃罗沃尔Chomsky invented the three-phase asynchronous motors, asynchronous motors without brushes and commutate. Three-phase asynchronous motors (Triple-phase asynchronous motor) is by simultaneously accessing 380V three-phase AC power supply of a class of motors, three-phase asynchronous motor as the rotor and the stator rotating in the same direction, to rotate at different speeds, there turn slip, so called three-phase asynchronous motors. For three-phase asynchronous motors motor is running. Three-phase asynchronous motor rotor speed is lower than the speed of the rotating magnetic field, the magnetic field due to the rotor windings relative motion exists between the induced electromotive force and current, and the magnetic field generated by the interaction with the electromagnetic torque and achieve energy conversion. Compared with single-phase induction motor, Three- phase asynchronous motor running properties, and save a variety of materials. According to the different structure of the rotor, three-phase cage induction motor and the winding can be divided into two kinds. Cage rotor induction motor, simple structure, reliable operation, light weight, cheap, has been widely used

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

列管式换热器的设计计算

列管式换热器的设计计算 晨怡热管2008-9-49:49:33 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1)不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3)压强高的流体宜走管内,以免壳体受压。 (4)饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5)被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6)需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2.流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。 此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3.流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。一般来说,设计时可采取冷却水两端温差为5~10℃。缺水地区选用较大的温度差,水源丰富地区选用较小的温度差。 4.管子的规格和排列方法 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有 φ25×2.5mm及φ19×mm两种规格的管子。 管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、3或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第

Y2-160M1-2三相异步电动机电磁设计解读

目录 摘要 ..................................................................... I Abstract................................................................. II 第一章绪论........................................................ - 4 - 1.1 工程背景...................................................... - 4 - 1.2 该课题设计的主要内容.......................................... - 4 - 第二章三相异步电动机................................................ - 6 - 2.1 三相异步电动机结构............................................ - 6 - 2.1.1 异步电动机的定子结构..................................... - 7 - 2.1.2 异步电动机的转子结构..................................... - 8 - 2.1.3 三相异步电动机接线图..................................... - 8 - 2.2 三相异步电动机工作原理........................................ - 9 - 2.3 三相异步电动机的机械特性和工作特性........................... - 12 - 第三章三相异步电机电磁设计......................................... - 14 - 3.1 主要尺寸和空气隙的确定....................................... - 14 - 3.2 定子绕组与铁芯设计........................................... - 14 - 3.2.1 定子绕组型式和节距的选择................................ - 15 - 3.2.2 定子冲片的设计.......................................... - 16 - 3.3 额定数据及主要尺寸........................................... - 17 - 3.4 磁路计算..................................................... - 19 - 3.5 性能计算..................................................... - 22 - 3.5.1 工作性能计算............................................ - 22 - 3.5.2 起动性能计算............................................ - 26 - 第四章电机转动轴的工艺分析......................................... - 28 - 4.1 转动轴的加工工艺分析......................................... - 28 - 4.2 选择设备和加工工序........................................... - 30 - 4.3 成品的最后工序............................................... - 31 - 小结与致谢........................................................... - 32 - 参考文献............................................................. - 33 -

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

列管式换热器设计

列管式换热器设计 第一节推荐的设计程序 一、工艺设计 1、作出流程简图。 2、按生产任务计算换热器的换热量Q。 3、选定载热体,求出载热体的流量。 4、确定冷、热流体的流动途径。 5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。 6、初算平均传热温度差。 7、按经验或现场数据选取或估算K值,初算出所需传热面积。 8、根据初算的换热面积进行换热器的尺寸初步设计。包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。 9、核算K。 10、校核平均温度差D。 11、校核传热量,要求有15-25%的裕度。 12、管程和壳程压力降的计算。 二、机械设计 1、壳体直径的决定和壳体壁厚的计算。 2、换热器封头选择。

3、换热器法兰选择。 4、管板尺寸确定。 5、管子拉脱力计算。 6、折流板的选择与计算。 7、温差应力的计算。 8、接管、接管法兰选择及开孔补强等。 9、绘制主要零部件图。 三、编制计算结果汇总表 四、绘制换热器装配图 五、提出技术要求 六、编写设计说明书 第二节列管式换热器的工艺设计 一、换热终温的确定 换热终温对换热器的传热效率和传热强度有很大的影响。在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。 为合理确定介质温度和换热终温,可参考以下数据: 1、热端温差(大温差)不小于20℃。 2、冷端温差(小温差)不小于5℃。 3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。 二、平均温差的计算 设计时初算平均温差Dtm,均将换热过程先看做逆流过程计算。

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

三相异步电动机的设计说明书

三相异步电动机的设 计说明书 一.三相异步电动机的基本结构 三相异步电动机由两个基本部分构成:固定部分—定子和转子,转子 按其结构可分为鼠笼型和绕线型两种。 1-1.定子的结构组成 定子由定子铁心、机座、定子绕组等部分组成,定子铁心是异步电动机磁路的一部分,一般由0.5毫米厚的硅钢片叠压而成,用压圈及扣片固紧,各片之间相互绝缘,以减少涡流损耗。 定子绕组是由带有绝缘的铝导线或铜导线绕制而成的,小型电机采用散下线圈或称软绕组,大中型电机采用成型线圈,又称为硬绕组。 1-2.转子的结构组成 转子由转子铁心、转子绕组、转子支架、转轴和风扇等部分组成,转子铁心和定子铁心一样,也是由0.5毫米硅钢片叠压而成。鼠笼型转子的绕组是由安放在转子铁心槽的裸导条和两端的环形端环连接而成,如果去掉转子铁心,绕组的形状象一个笼子;绕线型转子的绕组与定子绕组相似,做成三相绕组,在部星型或三角型。 1-3.工作原理 当定子绕组接至三相对称电源时,流入定子绕组的三相对称电流,在气隙产生一个以同步转速n 1 旋转的定子旋转磁场,设旋转磁场的转向为逆 时针,当旋转磁场的磁力线切割转子导体时,将在导体产生感应电动势e 2 ,电动势的方向根据右手定则确定。N极下的电动势方向用?表示,S极下的 电动势用Θ表示,转子电流的有功分量i 2a 与e 2 同相位,所以Θ ?和既表示 电动势的方向,又表示电流有功分量的方向。转子电流有功分量与气隙旋转磁场相互作用产生电磁力f em ,根据左手定则,在N极下的所有电流方向为

?的导体和在S极下所有电流流向为Θ的导体均产生沿着逆时针方向的切 向电磁力f em ,在该电磁力作用下,使转子受到了逆时针方向的电磁转矩M em 的驱动作用,转子将沿着旋转磁场相同的方向转动。驱动转子的电磁转矩与转子轴端拖动的生产机械的制动转矩相平衡,转子将以恒速n拖动生产机械稳定运行,从而实现了电能与机械能之间的能量转换,这就是异步电动机的基本工作原理。 二.异步电动机存在的缺点 2-1.笼型感应电动机存在下列三个主要缺点。 (1)起动转矩不大,难以满足带负载起动的需要。当前社会上解决该问题的多数办法是提高电动机的功率容量(即增容)来提高其起动转矩,这就造成严重的“大马拉小车”,既增加购买设备的投资,又在长期的应用中因处于低负荷运行而浪费大量电量,很不经济。第二种办法是增购液力偶合器,先让电动机空载起动,在由液力偶合器驱动负载。这种办法同样要增加添购设备的投资,并因液力偶合器的效率低于97%,因此至少浪费3%的电能,因而整个驱动装置的效率很低,同样浪费电量,更何况添加液力偶合器之后,机组的运行可靠性大大下降,显著增加维护困难,因此不是一个好办法。 (2)大转矩不大,用于驱动经常出现短时过负荷的负载,如矿山所用破碎机等时,往往停转而烧坏电动机。以致只能在轻载状况下运行,既降低了产量又浪费电能。 (3)起动电流很大,增加了所需供电变压器的容量,从而增加大量投资。另一办法是采用降压起动来降低起动电流,同样要增加添购降压装置的投资,并且使本来就不好的起动特性进一步恶化。 2-2.绕线型感应电动机 绕线性感应电动机正常运行时,三相绕组通过集电环短路。起动时,为减小起动电流,转子中可以串入起动电阻,转子串入适当的电阻,不仅可以减小起动电流,而且由于转子功率因数和转子电流有功分量增大,起动转矩也可增大。这种电动机还可通过改变外串电阻调速。绕线型电动机

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

列管式换热器设计

酒泉职业技术学院 毕业设计(论文) 2013 级石油化工生产技术专业 题目:列管式换热器设计 毕业时间: 2015年7月 学生姓名:陈泽功刘升衡李侠虎 指导教师:王钰 班级: 13级石化(3)班 2015 年 4月20日 酒泉职业技术学院 2013 届各专业 毕业论文(设计)成绩评定表

答辩小 组评价 意见及 评分 成绩:签字(盖章)年月日 教学系 毕业实 践环节 指导小 组意见 签字(盖章)年月日 学院毕 业实践 环节指 导委员 会审核 意见 签字(盖章)年月日 一、列管式换热器计任务书 某生产过程中,需用循环冷却水将有机料液从102℃冷却至40℃。已知有机料液的流量为2.23×104 kg/h,循环冷却水入口温度为30℃,出口温度为40℃,并要求管程压降与壳程压降均不大于60kPa,试设计一台列管换热器,完成该生产任务。 已知: 有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度 定压比热容℃ 热导率℃

粘度 循环水在35℃下的物性数据: 密度 定压比热容K 热导率K 粘度 二、确定设计方案 (1)选择换热器的类型 (2)两流体温的变化情况: 热流体进口温度102℃出口温度40℃;冷流体进口温度30℃,出口温度为40℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。 (3)管程安排 从两物流的操作压力看,应使有机料液走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。 三、确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为 T= =71℃ 管程流体的定性温度为 t=℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。对有机料液来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度

滚子链传动的设计计算

滚子链传动的设计计算 (经典设计步骤) 1、已知条件和设计内容 设计链传动的已知条件包括:链传动的工作条件、传动位置与总体尺寸限制,所需传递的功率P,主动链轮转速n1,从动链轮转速n2或传动比i。 设计内容包括:确定链条的型号、链节数Lp和排数,链轮齿数Z1、Z2以及链轮的结构、材料和几何尺寸,链传动的中心距a、压轴力Fp、润滑方式和张紧装置等。 2、设计步骤和方法 (1)选择链轮的齿数z1、z2和确定传动比i 一般链轮齿数在17~114之间。传动比按下式计算 i =z2/z1 (2)计算当量的单排链的计算功率Pca. 根据链传动的工作情况、主动链轮齿数和链条排数,将链传动所传递的功率修正为当量的单排链的计算功率 Pca =K A*K Z*P/Kp 式中:K A——工况系数,见表1 K Z——主动链轮齿数系数,见图1 Kp——多排链系数,双排链时Kp=1.75,三排链时Kp=2.5 P——传递的功率,KW(千瓦)。

表1 工况系数KA 从动机械特性 主动轮机械特性 平稳运动 轻微冲击 中等冲击 平稳运动 1.0 1.1 1.3 轻微冲击 1.4 1.5 1.7 中等冲击 1.8 1.9 2.1 图1 主动链轮齿数系数KZ (3)确定链条型号和节距p 链条型号根据当量的单排链的计算功率Pca 和主动链轮转速

n1由图2得到。然后由表2确定链条节距p。 图2 A系列、单排滚子链额定功率曲线

表2 滚子链规格和主要参数 (4)计算链节数和中心距 初定中心距a0=(30~50)p,按下式计算链节数Lp0 Lp0=(2*a0/p)+(z1+z2)/2+(p/a0)*[(z2-z1)/2π]^2 为了避免使用过渡链节,应将计算出来的链节数Lp0圆整为偶数Lp。链传动的最大中心距为: a=f1*p*[2Lp-(z1+z2)] 式中,f1为中心距计算系数,见表3

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

列管式换热器课程设计

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

三相异步电动机变频调速系统设计及仿真

天津职业技术师范大学 课程设计说明书题目:三相异步电动机变频调速系统设计及仿真 指导老师: 班级:机检1112班 组员

天津工程师范学院 课程设计任务书 机械工程学院机检1112 班学生 课程设计课题: 三相异步电动机变频调速系统设计及仿真 一、课程设计工作日自 2015 年 1 月 12 日至 2015 年 1 月 23 日 二、同组学生: 三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时 间、主要参考资料等): 1、目的和意义 交流调速是一门重要的专业必修课,它具有很强的实践性。为了加深对所学课程(模拟电子技术、数字电子技术、电机与拖动、电力电子变流技术等)的理解以及灵活应用所学知识去解决实际问题,培养学生设计实际系统的能力,特开设为期一周的课程设计。 2、具体内容 写出设计说明书,内容包括: (1)各主要环节的工作原理; (2)整个系统的工作原理(包括启动、制动以及逻辑切换过程); (3)调节器参数的计算过程。 2.画出一张详细的电气原理图; 3.采用Matlab中的Simulink软件对整个调速系统进行仿真研究,对计算得到的调节 器参数进行校正,验证设计结果的正确性。将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。 4、考核方式 1.周五采用口试方式进行考核(以小组为单位),成绩按百分制评定。其中小组分数占60%,个人成绩占40%(包括口试情况和上交材料内容); 2.每天上午8:30--11:30在综合楼226房间答疑。 五、参考文献 1、陈伯时.电力拖动自动控制系统----运动控制系统(第3版).机械工业出版社,2003 指导教师签字:教研室主任签字:

滚子链传动的设计计算

滚子链传动的设计计算 滚子链传动的主要失效形式 链传动的主要失效形式有以下几种: (1)链板疲劳破坏链在松边拉力和紧边拉力的反复作用下,经过一定的循环次数,链板会发生疲劳破坏。正常润滑条件下,疲劳强度是限定链传动承载能力的主要因素。 (2)滚子套筒的冲击疲劳破坏链传动的啮入冲击首先由滚子和套筒承受。在反复多次的冲击下,经过一定的循环次数,滚子、套筒会发生冲击疲劳破坏。这种失效形式多发生于中、高速闭式链传动中。 (3)销轴与套筒的胶合润滑不当或速度过高时,销轴和套筒的工作表面会发生胶合。胶合限定了链传动的极限转速。 (4)链条铰链磨损铰链磨损后链节变长,容易引起跳齿或脱链。开式传动、环境条件恶劣或润滑密封不良时,极易引起铰链磨损,从而急剧降低链条的使用寿命。 (5)过载拉断这种拉断常发生于低速重载或严重过载的传动中。 2 滚子链传动的额定功率曲线 (1)极限传动功率曲线在一定使用寿命和润滑良好条件下,链传动的各种失效形式的极限传动功率曲线如图1所示。曲线1是在正常润滑条件下,铰链磨损限定的极限功率;曲线2是链板疲劳强度限定的极限功率;曲线3是套筒、滚子冲击疲劳强度限定的极限功率;曲线4 是铰链胶合限定的极限功率。图中阴影部分为实际使用的区域。若润滑不良、工况环境恶劣时,磨损将很严重,其极限功率大幅度下降,如图中虚线所示。 (2)许用传动功率曲线为避免出现上述各种失效形式,图2给出了滚子链在特定试验条件下的许用功率曲线。

试验条件为:z1=19、链节数Lp=100、单排链水平布置、载荷平稳、工作环境正常、按推荐的润滑方式润滑、使用寿命15000h;链条因磨损而引起的相对伸长量Δp/p不超过3%。当实际使用条件与试验条件不符时,需作适当修正,由此得链传动的计算功率应满足下列要求 式中P0--许用传递功率(kW),由图2查取; P--名义传递功率(kW); KA--工作情况系数,见表1。 KZ--小链轮齿数系数,见表2,当工作点落在图1某曲线顶点左侧时(属于链板疲劳),查表中,当工作点落在某曲线顶点右侧时(属于滚子、套筒冲击疲劳)查表中; KL--链长系数,根据链节数,查表3; Kp--多排链系数,查表4。

列管式换热器选型设计计算

第一部分列管式换热器选型设计计算 一.列管式换热器设计过程中的常见问题 换热器设计的优劣最终要以是否适用、经济、安全、负荷弹性大、操作可靠、检修清洗方便等为考察原则。当这些原则相互矛盾时,应在首先满足基本要求的情况下再考虑一般原则。 1.流体流动空间的选择原则 (1)不洁净和易结垢的流体宜走管内,因为管内清洗比较方便。 (2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。(3)压强高的流体宜走管内,以免壳体受压,可节省壳体金属消耗量。 (4)饱和蒸气宜走管间,以便于及时排出冷凝液,且蒸气较洁净,它对清洗无要求。(5)有毒流体宜走管内,使泄漏机会较少。 (6)被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,可以提高对流传热系数。 (8)对于刚性结构的换热器,若两流体的温度差较大,对流传热系数较大者宜走管间,因壁面温度与α大的流体温度相近,可以减少热应力。 在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾。2.流体流速的选择 根据管内湍流时对流传热系数αi∝u0.8,流速增大,则αi增大,同时污垢热阻R si 减小,利于传热,从而可减少传热面积,节约设备费用;但同时又使压降增大,加大了动力消耗,提高了操作费用。可见应全面分析权衡比较适宜的流速。 (1)所选流速要尽量使流体湍流,有利传热。 (2)所选流速应使管长或程数恰当。管子过长,不便于清洗管内污垢;而管子过短,管程数增加,使结构复杂化,传热温差减少,均会降低传热效果。 (3)粘度大的流体,流速应小些,可按滞流处理。 (4)高密度流体(液体),阻力消耗与传热速率相比一般较小,可适当提高流速。 在我们教材及换热器设计手册中均给了出一些经验数据,以供参考。 3.管子规格及排列情况 (1)管径选择:国内换热器系列标准件中管子规格为Φ25×2.5mm、Φ19×2mm,在再沸器中可采用Φ38×3mm。 (2)管长:以清洗方便和合理使用管材为原则,系列标准件中采用1.5m,2m,3 m和6m四种。 (3)管子排列方法 管子在管板上的排列方法有三种:正三角形,正方形直列和正方形错列(见化工原理下册,天大版,P256,图4-25)。 正三角形排列使用最普遍,在同一管板面积上可以排列较多传热管,管外流体搅动较大,对流传热系数较高,但相应阻力也较大,管间不易清洗;正方形直列便于清洗管外表面,但传热系数较小;正方形错列介于上述两者之间,对流传热系数高于正方形直列。 (4)管中心距t 管子与管板采用胀管法连接t=(1.3-1.5)d o,管子与管板采用焊管法连接t=1.25d o,相邻两管外壁间距不应小于6mm。 4.折流挡板 前面已述常用的有圆缺形和盘环形挡板(见化工原理下册,天大版,P257,图4-27),而又以缺口面积为壳体内截面积25%的圆缺形折板用的最广泛。 折流挡板间距h:h=0.2~1D(壳内径),系列标准件中采用的板间距为:固定管板式有150、300、600mm三种,浮头式有150、200、300、480和600mm五种。 5.流体流动阻力

相关主题
文本预览
相关文档 最新文档