测量仪表及性能指标基本知识
- 格式:ppt
- 大小:567.00 KB
- 文档页数:54
热⼯测量仪表知识点《热⼯测量仪表》知识点第1章:基础知识难点测量误差的表⽰形式误差产⽣的原因误差的种类掌握测量的基本概念误差的分类仪表的组成及其性能指标仪表的基本误差和允许误差仪表的引⽤误差仪表的精度等级仪表的防爆和防护了解检测技术与仪表的作⽤及发展测量的不确定度第2章:温度测量掌握温标与测温⽅法热电偶测温原理热电偶基本定律(推导和应⽤)热电偶测温补偿原因、原理和⽅法热电阻测温原理热电阻测温引线误差和消除⽅法了解膨胀式与压⼒温度计⼯作原理接触测温误差和对策⾮接触式测温原理和⽅法新型温度传感器第3章压⼒和压差测量掌握:压⼒的基本概念分类液柱式压⼒计⼯作原理(U形管、单管式、斜管式)弹性元件测压原理,各种弹性元件测压类型和范围弹簧管压⼒计测量压⼒特点和应⽤领域压⼒表量程选择⽅法、范围了解:了解其它弹性元件测量压⼒⽅法和原理第4章:机械量测量掌握电容式传感器灵敏度和⾮线性误差计算分析(变极距、变⾯积、变介电常数、差动式)电感式位移传感器⼯作原理(灵敏度、⾮线性误差计算分析)差动式、互感、⾃感式、差动变压器(⼯作原理)零点残余电压产⽣的原因和消除⽅法直流电桥和交流电桥的测量特点调制解调的基本概念电涡流传感器的基本⼯作原理、类型和应⽤场合光敏电阻、光敏晶体管⼯作原理和应⽤场合绝对式和增量式码盘的⼯作原理和区别第5章:流量测量掌握:流量测量现状及其原因分析常见的流量传感器类型节流式流量计的基本结构和⼯作原理和相关系数修正节流式流量计对流体要求常见的标准节流件性能常见的⾮标节流件标准节流装置的计算(两类命题、迭代流程)⽪托管和均速管流量计的基本⼯作原理电磁流量计的基本⼯作原理涡街、科⾥奥利、涡轮、转⼦、靶式流量计⼯作原理第6章:物位测量直读式、静压式、差压式、浮⼒式、称重式液位计⼯作原理汽包⽔位测量的重要意义汽包⽔位测量的难点重量⽔位、实际⽔位、虚假⽔位、⽰值⽔位概念引起汽包虚假⽔位的原因云母⽔位计的基本⼯作原理、引起误差的原因、缺点双⾊⽔位计的⼯作原理、引起误差的原因、信号远传的⽅法电接点⽔位计的⼯作原理和误差分析差压式⽔位计的基本⼯作原理(消除误差的改进⽅式,单室平衡、双室平衡容器)压⼒校正原理和⽅法第7章成分分析炉烟成分分析的重要性和分析⽅法热导式CO2分析仪的基本原理和实现⽅法氧化锆氧量计⼯作原理直插式和抽⽓式的优缺点第8章:检测新技术虚拟仪器基本概念软测量技术概念模糊传感器概念多传感器数据融合概念仪表习题⼀⼀、填空题1.绝对误差在理论上是指和被测量的之间的差值;仪表量程范围内最⼤的绝对误差和量程之⽐称为仪表的,将其去掉%的数值圆整后的数的数值为仪表的。
仪表基础知识仪表基础知识⼀、DCS----分布式控制系统1、什么是DCS?DCS是分布式控制系统的英⽂缩写(Distributed Control System),在国内⾃控⾏业⼜称之为集散控制系统。
2、DCS有什么特点?DCS是计算机技术、控制技术和⽹络技术⾼度结合的产物。
DCS通常采⽤若⼲个控制器(过程站)对⼀个⽣产过程中的众多控制点进⾏控制,各控制器间通过⽹络连接并可进⾏数据交换。
操作采⽤计算机操作站,通过⽹络与控制器连接,收集⽣产数据,传达操作指令。
因此,DCS的主要特点归结为⼀句话就是:分散控制集中管理。
3、DCS的结构是怎样的?上图是⼀个较为全⾯的DCS系统结构图,从结构上划分,DCS包括过程级、操作级和管理级。
过程级主要由过程控制站、I/O 单元和现场仪表组成,是系统控制功能的主要实施部分。
操作级包括:操作员站和⼯程师站,完成系统的操作和组态。
管理级主要是指⼯⼚管理信息系统(MIS系统),作为DCS更⾼层次的应⽤,⽬前国内纸⾏业应⽤到这⼀层的系统较少。
4、DCS的控制程序是由谁执⾏的?DCS的控制决策是由过程控制站完成的,所以控制程序是由过程控制站执⾏的。
5、过程控制站的组成如何?DCS的过程控制站是⼀个完整的计算机系统,主要由电源、CPU(中央处理器)、⽹络接⼝和I/O组成6、什么是DCS的开放性?DCS的开放性是指DCS能通过不同的接⼝⽅便地与第三⽅系统或设备连接,并获取其信息的性能。
这种连接主要是通过⽹络实现的,采⽤通⽤的、开放的⽹络协议和标准的软件接⼝是DCS开放性的保障。
7、什么是系统冗余?在⼀些对系统可靠性要求很⾼的应⽤中,DCS的设计需要考虑热备份也就是系统冗余,这是指系统中⼀些关键模块或⽹络在设计上有⼀个或多个备份,当现在⼯作的部分出现问题时,系统可以通过特殊的软件或硬件⾃动切换到备份上,从⽽保证了系统不间断⼯作。
通常设计的冗余⽅式包括:CPU冗余、⽹络冗余、电源冗余。
测量的基本知识目录一、测量的基本概述 (2)1.1 测量的定义与重要性 (2)1.2 测量的基本目标 (4)1.3 不同领域下的测量应用 (4)二、测量的历史发展 (6)2.1 古代测量技术 (7)2.2 中世纪至近现代测量领域的突破 (8)2.3 现代测量技术的发展态势 (10)三、测量的基本工具与仪器 (11)3.1 精密测量仪器的种类与选择 (13)3.2 常规计量工具的介绍与应用 (14)3.3 现代科技在测量工具中的应用 (15)四、测量的基本理论与方法 (16)4.1 测量的基本数学与统计理论 (18)4.2 校准与校验的基本方法 (20)4.3 误差分析与控制技术 (21)五、测量的实施与过程 (23)5.1 测量计划与准备 (24)5.2 测量实施过程中的质量控制 (25)5.3 测量结果的评估与报告 (26)六、测量的先进技术 (27)6.1 激光干涉测量 (29)6.2 动态测量技术 (30)6.3 纳米级测量技术 (32)七、测量的质量保证与管理体系 (34)7.1 测量系统评定与认证 (35)7.2 质量管理标准介绍与运用 (37)7.3 实验室管理的最佳实践 (38)八、案例分析与实际应用 (39)8.1 测量在工程项目中的应用 (41)8.2 测量在医学诊断中的应用 (43)8.3 测量在环境监测中的应用 (44)九、未来展望 (45)9.1 测量技术的新趋势与挑战 (47)9.2 人工智能与测量的结合 (49)9.3 可持续性与测量技术的发展方向 (50)一、测量的基本概述测量是一个系统地确定某一具体量的大小,并通过数量关系来表达其属性的过程。
它是几乎所有科学技术和工程领域中的一项基础活动,用于获取和比较信息以支持决策和实践。
测量具有两个基本要素:“标准”和“量度”。
标准是用于定义和表示量值的特定参考,它可以是实物样本、数学模型或标准结果。
量度则是将某个量与标准进行比较,确定其量值的过程。
电子测量仪器主要性能指标
测量仪表是指将被测量的参数转换成可供直接观察的指示值的器具,包括各类指示仪器、比较仪器、记录仪器、传感器和变送器等。
利用电子技术对各种待测量进行测量的设备,统称为电子测量仪器。
为了正确地选择测量方法、使用测量仪器和分析测量结果,本节将对电子测量仪器的主要性能指标和分类作一概括。
电子测量仪器的主要性能指标
电子测量仪器的主要性能指标包括频率范围、准确度、稳定性、灵敏度和输入阻抗等。
1.频率范围
频率范围是指保证测量仪器其他指标正常工作的有效频率范围。
2.测量准确度
测量准确度又称测量精度,它是指测量仪器的读数或测量结果与被测量真实值相一致的程度。
对精度目前还没有一个公认的、定最的数学表达式,因此常作为一个笼统的概念来使用,其含义是:精度越高,表明误差越小;精度越低,表明误差越大。
因此,精度不仅用来评价测量仪器的性能.同时也是评定测量结果最主要、最基本的指标。
3.稳定性
稳定性是指在规定的时间内,其他外界条件恒定不变的情况下,保证仪器示值不变的能力。
造成示值变化的原因主要是仪器内部各元器件的特性、参数不稳定和老化等因素。
4.输入阻抗
测量仪表的输入阻抗对测量结果会产生一定的影响。
如电压表、示波器等仪表,测虽时并联接于待测电路两端,如图1-1所示。
不难看出,测量仪表的接。
第一章自动检测技术及仪表概述§1-1 关于测量的概念根据国际通用计量学基本名词的推荐“测量是以确定量为目的的一组操作”。
这里的量值均指物理量而言。
对于每一个物理量仅仅是一些物理对象共有的定性性质, 例如温度、质量、长度等等。
每一物理量代表了一定的物理对象的某一方面性质, 而更具体的说, 每个量又有它的定量性质如温度高低、质量大小、长度长短等等。
测得的物理量值是一个名数, 它由表示物理量的数值和物理量的单位组成。
同一物理量, 由于所选择的单位不同, 得到测量结果的数值也不同。
因此, 在给出测量值大小的同时一定要给出所用的测量单位。
§1-2 测量方法测量方法是完成测量任务所采用的手段。
一般是根据给定的原理规定出在测量中所涉及的运算和实际操作。
在测量过程中由于测量对象、测量环境、测量参数不同, 采用着各式各样的测量仪表和测量方法。
1. 简单测量当选用适当的测量仪表即可直接完成测量任务, 即可测得足够精度的被测物理量的大小时, 常把这种测量称为简单测量。
2. 直接测量任何测量都包含不同的简单测量。
如果在测量过程中只包括一项简单测量和只根据一些已知数据对测量结果运算就可以得到被测物理量的大小, 常把这种测量称为直接测量。
3. 间接测量如果对被测物理量的测量包括两个或两个以上的简单测量, 或包括根据若干直接测量结果来计算出最后测量结果, 这种测量称为间接测量, 也叫非直接测量。
§1-3 测量仪表的性能指标仪表运行特性通常分为静态特性和动态特性两大类。
一、测量仪表的静态特性(一)精确度与精确度有关的指标有三个: 精密度、正确度和精确度等级。
1. 精密度它说明测量仪表表示值的不一致程度。
即对某一稳定的被测量在相同的规定的工作条件下, 由同一测量者用同一仪表在相当短的时间内连续重复测量多次, 其测量结果的不一致程度。
2. 正确度它说明表示值有规律地偏离真值大小值的程度。
3. 精确度它是精密度和正确度两者的总和, 即测量仪表给出接近于被测真值的能力。
检测仪表的品质指标1. 引言在制造过程中,检测仪表的品质是确保产品质量和安全性的重要指标之一。
检测仪表不仅需要准确地测试和测量,还需要稳定可靠,以确保持续的性能和长时间的使用寿命。
本文将介绍一些常见的检测仪表品质指标,并对其进行详细说明和分析。
2. 精准度精准度是评估检测仪表测量结果与实际值之间偏差的能力。
精准度的误差可以是系统性的,即存在常数偏差,也可以是随机的,即存在随机误差。
一个优质的检测仪表应该具有高度的精准度,能够提供稳定而可靠的测量结果。
要评估检测仪表的精准度,可以使用统计方法,如平均偏差和标准偏差。
另外,还可以进行比较试验,将检测仪表与已知准确度更高的标准仪器进行对比。
3. 响应时间响应时间是指检测仪表对测试信号或输入变化的快速反应能力。
在一些需要实时监测和控制的应用中,响应时间可能是至关重要的。
一个优质的检测仪表应该能够在短时间内准确地识别和测量变化。
响应时间可以通过对检测仪表施加测试信号并观察它的响应时间来评估。
较低的响应时间意味着检测仪表具有更高的灵敏度和更快的反应速度。
稳定性是检测仪表保持长期性能的能力。
稳定性的好坏直接影响到检测仪表的可靠性和持久性。
一个优质的检测仪表应该在不同的环境条件下均能提供一致和准确的测量结果。
稳定性的评估可以通过持续性监测和记录检测仪表的测量结果来进行。
还可以对检测仪表进行温度和湿度等环境因素的变化测试,以验证其稳定性。
5. 分辨率分辨率是指检测仪表能够观测和测量的最小变化量。
一个具有高分辨率的检测仪表能够提供更为精细和准确的测量结果。
分辨率可以通过检测仪表的最小可分辨量来评估。
较高的分辨率意味着检测仪表能够检测到更小的变化量。
可靠性是指检测仪表在一段时间内连续工作而无需维修或更换的能力。
一个具有高可靠性的检测仪表能够在长期使用中保持其性能和精准度。
可靠性的评估可以通过历史数据和用户反馈来进行。
此外,还可以进行可靠性测试,如长时间运行测试和持续使用测试,以验证其可靠性。
仪表基础知识篇性能指标*1、什么是仪表的反应时间?当用仪表对被测参数进行测量时,仪表指示值总要经过一段时间才能显示出来,这段时间称为仪表的反应时间。
*2、按误差值的表示方法,误差可分为什么?可分为绝对误差、相对误差、引用误差。
*3、选定的单位相同时,测量值小数点后位数越多,测量越精确吗?是。
*4、什么叫回差?回差也叫变差,是在正、反行程上,同一输入的两相应输出值之间的最大差值。
(若无其他规定,则指全范围行程)*5、什么叫仪表的死区?死区是输入量的变化不至于引起输出量有任何可察觉的变化的有限区间,死区用输入量程的百分数表示。
标准仪器1、如何使用兆欧表进行线路绝缘检查?答:1)首先检验兆欧表:兆欧表有两个引线接线柱“L”和“E”。
“L”表示线路,“E”表示接地。
先将“L”和“E”短路,轻轻摇转兆欧表的手柄,此时表针应指到零位。
注意不得用力过猛,以免损坏表头。
然后将“L”与“E”接线柱开路,摇动手柄至额定转速,即达到每分钟120转,这时,表针应指到∞的位置。
2)线间检查:测试前应将被测线路或设备的电源切断,并进行放电。
将被测线路或电气设备用两条引线分别接至兆欧表的“L”和“E”接线柱。
对地检查:将被测线路及地端用两条引线分别接至兆欧表的“L”和“E”接线柱。
3)测试时以均匀、额定的转速转动兆欧表的手柄,则兆欧表的指针会指示一定的刻度,待一分钟时,读取表针所指的电阻值>0.5MΩ压力压差测量基本知识1、法兰变送器安装时,为什么一定要选择周围环境温度比较恒定的地方?(答:法兰变送器和普通变送器不同,它的毛细管、法兰膜盒是一个密闭系统,相当于一个大温包。
当周围环境发生变化时,系统内的填充液会发生膨胀收缩,从而引起系统的压力变化,它作用到变送器的敏感元件,使仪表产生附加误差。
而在一般变送器中,引压导管不是密闭系统,它由温度变化而引起压力变化,可以由介质扩散到工艺流程,因而不影响仪表输出。
法兰变送器安装时,一定不要使变送器和法兰膜盒系统暴露在阳光底下,以免太阳直晒,使环境温度发生剧烈变化。