当前位置:文档之家› 斜拉桥施工监控方案.

斜拉桥施工监控方案.

斜拉桥施工监控方案.
斜拉桥施工监控方案.

斜拉桥施工监控方案

一﹑概述

1.1 工程概况

全桥跨径组成:2x(4x30)+2x(5x30)m 组合箱梁+(125+220+125)m 矮塔斜拉桥+(2x30)m 组合箱梁+ (42+70+42)m 连续刚构+3x (5x30 )m 组合箱梁,桥梁全长1681.2m。

大桥主桥采用220m 预应力混凝土矮塔斜拉桥,预应力混凝土单箱三室斜腹板截面,按整体式截面设计。在斜拉索锚固点,设置横桥向贯通的横梁。跨径布置为125+220+125m,主桥桥长470m。主桥主梁全宽为26.5m。桥面设2%的双向横坡,桥面横向布置为:0.5m(防撞护栏)+11.0m(机动车道)+ 0.50m(防撞护栏)+2.5m(索塔) +0.50m(防撞护栏) + 11.0m(机动车道)+0.5m(防撞护栏)。

主梁边中跨比为0.568,支点处高8.0m,跨中高3.5m。箱高度和底板厚度均按1.6 次抛物线变化。箱梁顶宽为26.5m,腹板斜率为1:3.142,底板宽度为变值,零号块顶、底板厚度分别为65cm 和150cm,腹板厚110cm,其它块件顶板厚度为30cm,底板厚度从根部的110cm 按 1.6 次抛物线变化至跨中的28cm。全桥在梁端、0号块和斜拉索主梁锚固点处均设置横隔梁,其余位置不设置横隔板。其中0 号块横隔板厚150cm,端横梁厚250cm,斜拉索主梁锚固点处横隔板厚30cm。主梁采用预应力混凝土结构,设有纵、横、竖三向预应力,纵、横向预应力采用高强低松弛钢绞线,锚具采用群锚;竖向预应力采用精轧螺纹粗钢筋,布置在腹板及横隔板内。

索塔下塔柱采用双薄壁实体墩,桥墩横向宽13.5m,薄壁纵向厚1.7m,间距为2.6m,从美观上考虑,桥墩横向设置花瓶型凹槽。承台尺寸为23.0x18.2m,承台厚4.5m,基础采用钻孔灌注桩基础,每个索塔基础采用20 根φ2.2m 的钻孔灌注桩。

斜拉索为双索面,双排布置在中央分隔带上,每个索塔设有2×12 对48 根斜拉索,全桥共96 根。

1.2 技术标准

1、公路等级:一级公路双向六车道

2、设计速度:80km/h

3、桥梁宽度:26.5m

4、主要荷载标准:

(1)汽车荷载等级:公路-I 级;

(2)设计温度:桥位区的年平均气温为16.2℃,极端最高温度为38.4℃,极端最低气温为-14.3℃。

(3)设计风速:

使阶段基本风速V10=25.6m/s(重现期100 年)

施工阶段基本风速V10=21.5m/s(重现期30 年)

(4)船舶撞击力:

防撞击力按照美国ASSHTO 规范规定驳船撞力的要求计算。横桥向设计防撞力为8.0MN,顺桥向设计防撞力为4.0MN

(5)基础变位:成桥后主墩不均匀沉降为1cm,过渡墩不均匀沉降为0.5cm。

5、设计洪水频率:1/300

6、大桥设计基准期:100 年,设计安全等级:一级

7、环境类别:Ⅰ类

二、编制依据

(1) 《公路工程技术标准》(JTG B01—2003)

(2) 《公路工程设计规范》(JTG B20—2006)

(3) 《公路桥涵施工技术规范》(JTG/T F50—2011 )

(4) 《公路桥涵设计通用规范》(JTG D60—2004)

(5) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)

(6) 《公路斜拉桥设计细则》(JTG/T D65-01—2007)

(7) 《公路桥梁抗风设计规范》(JTG/T D60-01-2004)

(8) 《公路桥涵钢结构及木结构设计规范》(JTJ 025—86)

(9) 《公路桥梁抗震设计细则》(JTG/T B02-01-2008)

(10) 《公路工程质量检验评定标准》(JTG F80 1/—2003)

(11)蔡甸至汉川一级公路汉江特大桥施工结构设计图纸。

三、施工监控的目的

由于各种因素(如材料的弹性模量、混凝土收缩徐变系数、结构自重、施工荷载、温度影响、结构分析模型误差、测量误差等)的随机影响,结构的初始理论设计值难以做到与实际测量值完全一致,两者之间会存在偏差。若对偏差不加以及时有效的调整,就会影响成桥的内力和线形。

施工控制的目的,就是根据实际的施工工序,以及现场获取的参数和数据,对桥跨结构进行实时误差分析和结构验算;对每一施工阶段,根据分析验算结果给出结构应力及变形等施工控制参数,分析并调整施工误差状态,建立预警体系对施工状态进行安全评价和控制。这样,才能保证结构的受力和变形始终处于安全合理的范围内,成桥后的结构内力和线形符合设计要求。

根据该桥主桥结构和施工方法的特点,施工监控的工作内容主要包括

以下几项:

1) 在钢箱梁制作时提供无应力制造线形;

2) 根据现场施工进度提供0#块立模标高,塔柱支撑;

3) 钢箱梁施工时提供钢箱梁前端定位标高;

4) 若干施工阶段下主梁及主塔轴线偏位及变形情况;

5) 提供主梁施工索力初始张拉值及每一施工阶段下悬臂前4个梁段斜拉索索力及索力变化值;

6) 若干施工阶段下各控制截面的应力或应变;

7) 若干关键工况下的塔柱水平位移;

8) 若干施工阶段下主墩沉降值及水平位移值;

9) 成桥状态各控制截面的应力、索力、塔柱水平位移;

10) 施工过程监控仿真计算。

四、施工监控目标

本桥高程控制精度为:

(1)立模标高允许误差:±5mm;

(2) 控制索力张拉允许误差±2%;

(3) 主梁相邻节段相对标高误差(附加纵坡)≯0.3%;

(4) 主塔控制精度:轴线偏位±10mm;断面尺寸±20mm;倾斜度≯H/3000;

塔顶高程±10mm;斜拉索锚固点高程±10mm。

(5)主梁轴线:主梁中线水平方向允许偏差±10mm;高程允许偏差±10mm。

五、斜拉桥施工监控的必要性

桥梁施工监控技术包含施工过程计算、施工方法、施工手段与工艺、施工过程控制等内容。施工控制是施工技术的重要组成部分,并始终贯穿于桥梁施工过程中。

斜拉桥属高次超静定结构,其最为重要的特性之一是采用的施工方法和安装程序与成桥后的线形及结构恒载内力息息相关。与此同时,大跨度斜拉桥一般采用分阶段施工方法,结构内力状态和线形随施工过程不断发生变化。设计阶段一般根据经验预先确定包括结构刚度,构件几何尺寸,梁段重量,施工临时荷载,斜拉索张拉力,收缩和徐变等关键参数为理想值,并根据上述参数的理想值确定结构各关键阶段的理想状态。尽管可对上述参数进行控制,但由于施工误差,环境误差,测量误差等不可避免,如不加以控制,必然导致实际结构状态和理想结构状态间的偏差。随着跨度和结构复杂性的增加,该偏差对结构线形和内力状态的不良效应显著增加,给结构的施工和正常运营带来诸多隐患,甚至危及施工和运营过程中的结构安全。

为确保施工过程中斜拉桥的结构内力和变形状态始终处在安全,合理的范围内,且成桥后的主梁线形逼近设计预期的理想线形,结构本身处于最优的受力状态,必须在施工过程中进行严密的施工控制。斜拉桥施工控制指通过对斜拉桥进行施工全过程仿真分析获得个关键施工阶段的主梁线形,斜拉索初张力,索塔位移,主梁及索塔关键部位应力等理论值,进而根据理论值对施工过程做出明确规定,并在施工过程中加以有效的控制和管理,在对理论值和相应的实测值进行对比的基础上,根据误差分析结果对后续施工过程进行最优状态控制,以保障结构施工过程的安全性并最大限度地减少误差不良效应的过程。

六、施工监控的内容

本项目施工监控工作主要包括以下内容:

●结构仿真计算:按施工过程对结构进行仿真计算。

●线形监测:包括平面线形监测和挠度(高程)监测、主塔线形监测。

●应力监测:在大桥上部结构(箱梁)的控制截面布置应力量测点。

●索力监测:斜拉索张拉后的每个阶段都要对索力进行严格的监测。

●温度测试:在梁体上布置必要的观测点以获得准确的温度变化规律。

斜拉桥的施工控制是一个预告、施工、测量、识别、修正、预告的循环过程。要求控制系统除了具备常规的结构分析计算功能外,还应具备在施工现场根据实测参数消除设计与实际不一致的自适应能力,并能及时提供标高和索力修正值。基本思路是:首先用规范的参数计算结构的响应,然后和实际测量的结果进行比较,比较二者的差异,修正参数使其和实际结构的结果吻合。经过几节段的施工就可以得到合适的参数。对于采用悬臂拼装或悬臂浇筑方法施工的桥梁,主梁在塔根部的相对线刚度较大,变形较小,因此在控制初期参数不准确带来的误差对全桥线形的影响较小,这对自适应控制思路的应用是非常有利的。经过几个节段的施工后,计算参数已得到修正,为跨中变形较大节段的施工控制创造了良好的条件,这种系统方法目前是最好的施工控制方法。

本项目施工周期长、过程复杂,影响参数较多,如:构件材料特性、截面特性、温度、砼的收缩徐变、施工荷载、施工误差等。计算施工控制参数的理论值时,一般假定这些参数值为桥梁规范的给定值。为了消除因设计参数取值误差所引起的施工中设计与实际的不一致性,监控组将在施工过程中对这些参数进行识别和预测,对于重大的设计参数误差,提请设计方进行理论设计值的修改,对于常规的参数误差,通过优化进行调整。具体流程见图

施工监控流程图

前期结构分析计算

预告立模标高和索力

桥梁施工

现场数据采集

设计参数误差识别

设计参数误差预测

根据测试结果和计算数据,对施工下阶段张拉索

力和立模高程调整分析

预告下一梁段立模高程和索张拉力

主梁立模标高、索

力、应力、温度及

塔顶偏位、截面尺

寸和弹性模量等

5.1 控制测量

施工一个梁段称为一个阶段,为了改善施工过程中的挂篮和混凝土主梁的受力,每个阶段分成四个工况:

①挂篮前移并定位立模;

②主梁混凝土浇筑;

③待强后预应力张拉、降挂篮;

④主梁斜拉索张拉。

以上针对的是浇注有斜拉索锚固点的梁段,无斜拉索锚固点的去掉张拉斜拉索的步骤,如果需要进一步改善受力,可将混凝土分两次浇筑,斜拉索分两次张拉,则一个阶段共分六个人工况。

(1)每个阶段观测项目;

1.索力测定

测试方法:本桥采用平行钢丝斜拉索,采用特制的带有压力传感器的千斤顶,利用高精度传感器的精确读数来测定斜拉索的索力值,同时,辅以弦振式测索仪。几种方法有机结合,相互校合,取长补短。

2.主梁挠度观测

①测点布置:每一梁段悬臂端截面梁顶设立三个标高观测点,同时也作为坐标观测点,测点布置在每个梁段梁端纵向横向距边缘10cm处,需用端钢筋预埋设置并用红漆标明编号。当前现浇段悬臂端截面同时设立三个临时标高观测点,作为当前梁段控制截面梁底标高用,并结出对应的测点的高程关系。

②测试方法:用精密水准仪测量测点标高。临时水准点可设在梁塔固结处。每阶段每一工况均进行标高测试,由施工单位及监理单位协作完成。测量时间选在一天中温度变化最小的时候,即凌晨0点和6点之间。

3.截面钢筋应力或混凝土应变观测

①测试方法

应变计采振弦式应变计,振弦式应变计采用相应的数据采集器进行测试。所用的测试元件都局具有可靠的标定数据。

②测点布置

主梁纵向应力监测断面选为主塔根部的截面,主跨1/4截面处,边跨跨中截面处。主梁截面上重点测试上下缘处的应力值。主塔应力监测断面取主梁上方50cm 标准截面。

由于实际施工中受结构自重,挂篮刚度,施工荷载等复杂因素的影响,需要根据结构的实际状况及仿真计算的结果,对应力、变形较大的关键截面进行适当的调整。

4.塔顶水平变位测量

①测点布置:主塔顶上下游各设一到两个测点,测点位置选在塔顶便于观测的可靠位置处。

②测试方法:用全站仪测量。

5.承台水平变位测量

①测点布置:承台顶面上下游各设二个测点,分别设在四个角处。

②测试方法:用全站仪测量。

5,2 梁体线形测量

主梁的标高直接影响到桥梁的线形,因此在施工过程中对标高应加以严格控制。但在施工过程中也应根据结构本身的特性与施工方法的不同,采取不同的策略。例如,当主梁刚度较大时,斜拉索索力的变化对主梁标高的影响时有限的,应先对肃立的张拉吨位进行控制,根据实测的标高,对索力做适当的调整,此时,几何线性及标高的控制主要是通过主梁浇筑前端部的立摸标高的调整(悬浇施工)或是预制快件间接缝转角的调整(悬拼施工)来实现的。当主梁刚度较小时,索力的变化将对主梁标高产生较大的影响,此时下拉所的张拉应以标高测量进行控制。

在以下几种情况,应进行标高的测量。

(1)对于采用悬臂施工的斜拉桥,则在挂篮定位时要测量立摸标高;

(2)在浇筑完一个阶段后,应对梁端头的标高值进行观测;

(3)索力张拉前对已浇筑的梁段上所布设的所有高程监测点通桥观测;

(4)索力张拉后对已浇筑的梁段上所布设的所有高程监测点通桥观测;

最后,主梁的标高是随着温度的变化而变化的。根据既有的温度场试验可知:

早上6点左右是主梁标高变化相对比较稳定的时段;因此在进行标高监测时应尽量选择清晨这个时段,以减小温度对标高的影响。

5,3 索力测量

斜拉桥测量的准确与否是关系到斜拉桥施工控制能否顺利实施、斜拉桥能否成功修建的几个关键问题之一。在斜拉桥施工过程中,可以采用千斤顶,锚索计,频率法等方法来测量索力。千斤顶和锚索计安装较麻烦,只能测索端的力,前者则只能对正在张拉的那对索进行测量,当需要对已张拉完毕的斜拉索进行索力复核时,频率法几乎是唯一的选择。频率发测索力分两步进行:1.在环境激励下利用加速传感器拾取斜拉索的随机振动信号,然后通过频域分析获取斜拉索的频谱图,据此识别出斜拉索的各阶振动固有频率;2.通过理论分析(解析法与有限元法)与现场标定,获取斜拉索振动固有频率与索力之间的对应关系,从而可以由频率推算出索力。由此可见,频率法测索力是一种间接方法,频率法的精度取决于高灵敏拾振技术以及准确的索力、频率对应关系。

5,4主塔变位测量

主塔变位测量包括顺桥向和横桥向二个方向变位值的测量。主塔在施工和成桥状态通过斜拉索均承担相当部分的梁体重量。在不平衡荷载和大气温差及日照影响下,均会使主塔产生不同程度的变形。为了不影响主梁的架设施工,必须研究掌握主塔在自然条件下的变化规律以及在索力影响下偏离平衡位置的程度。

索塔施工控制的一般步骤如下:

(1)对最新完成的混凝土节段和索塔整体线形进行测量。

(2)根据测量结果,计算索塔截面边角的投射位置。然后再由边角位置计算其截面中心线的位置。

(3)通过控制点,预拱和超长值计算索塔截面中心线的目标位置。

(4)考虑温度和风荷载的影响,对目标位置中心线进行修正。

(5)计算温度和风荷载影响下的几何线形修正数据。比较施工阶段坐标和理想几何坐标,预测下一施工阶段的施工误差情况,并决定误差修正方式和相应的修正步骤。

(6)如果误差修正过程多于两个步骤,需进行后续阶段可能的几何线性预测与风险分析,并在此基础上确定后续阶段放样修正值。

(7)后续阶段施工放样。

5,5应力测试

斜拉桥应力监控测量包括梁的安装应力监测和塔的施工应力监测两大类。主要目的是了解梁塔控制截面的应力状况,并对梁体重量及其它荷载变化情况进行判断,确保结构施工安全。

施工应力测试是一项长期的现场观测,涉及的测试技术困难较多。至今,国内外尚无十分完善的解决办法。经过长期的大量的现场观测实践,发现针对钢梁的安装应力测试,采用手持式应变计相对比较可靠。针对混凝土梁则选用钢弦式应变计,并用无应力计加以补偿,测试结果较好,可以满足施工监控的要求。

施工应力测试影响因素相当复杂,除荷载作用引起的弹性应变之外,还有与收缩、徐变、温度等因素有关的应变。对混凝土梁,在埋设应力测点的相同部位埋设无应力计,补偿混凝土自身的体积应变和收缩应变以及自由度应变。并且在测试工艺上采取有效措施,使混凝土徐变和温度产生的应变减少到最低限度,或根据测量时的龄期、环境温度状态进行修正,这样,基本上可以达到施工监控目的。

施工应力测试截面一般由设计院根据施工计算的控制截面确定。原则上应包括以下几个方面:安装的阶段最大正、负弯矩截面,成桥状态的最大正、负弯矩截面,主塔及其横梁的应力控制截面以及设计院从设计角度考虑的其他控制截面。一般情况下梁体应力监测断面可选6~10个,主塔应力测试截面可选4~6个。混凝土梁施工应力测点一般是测试截面的法向应力,对于箱梁截面应在顶板和底板上布设测点,对于边主梁结构应在主梁上下缘处布设测点,方向与截面法向一致。在主横梁中部,宜布设横桥向应力测点。

应力测量结果:包括各施工状态下监测截面的应力值,塔柱监测截面的应力值以及成桥状态下各监测截面的恒载应力水平。

5,6温度测量

温度变化,特别是日照温差的变化,对于斜拉桥结构内力和变形的影响是复杂的。在施工阶段,日照温差对主梁挠度和塔柱水平位移的影响尤其显著。温度的影响总体上可分为二种。一是昼夜温差,二是季节温差。前者是指太阳每日的起落对桥梁各部位的日照变化在混凝土结构内形成由表及里且深度一般不超过40cm的浅层温度梯度,使混凝土产生非均匀变形,后者则是由于长期的昼夜变化,使混凝土结构产生基本均匀的伸长和缩短。现代混凝土斜拉桥的主桥和拉索的刚度相对于空心箱形混泥土塔身刚度而言是较小的,主梁的抗弯刚度几乎只有塔身的1/90~1/25。再加之斜拉索又细又长,对温度变化十分敏感,容易掩盖主梁因昼夜温差产生的变形。季节性温差则使塔、梁、索产生均匀伸缩。总之,温度引起的主梁变形因悬臂长度的增加而增加,但是,如果想从挠度实测值中分离出因受温度影响引起的变形,则相当困单。因此,选择测量工作时间至关重要,宜在一天中日照温差对结构变形影响最小的时候进行测量,理所当然,清晨便是最佳选择。

为了便于施工控制资料的分析,尚应测量出较有代表性的某一天或几天24h内结构温度变化情况。结合塔柱偏移和主梁线形测量结果,总结出结构日照温差变形规律和季节性的温差变化规律。主梁和塔柱的温度测试断面一般与应力测量断面相同,以资对应,也便于计算

分析。索温测量的一般方法是制造一段同实索等粗的长约1.5m的试验索,在其中心和内部以及外表均对称布置测点,吊挂于施工现场实索部位,以承受同样的大气环境条件。对其它实索,每种型号选择1~2根,在其表面布设测点,测得表面温差,对照试验短索的测量结果,确实实索的内外温差。测量结果:提供索、塔、梁各测试断面温度短期变化曲线和季节性温度差变化曲线;对于斜拉索,尚应提供所内外温差和中心点温差的对应关系曲线。

斜拉桥桥面施工方案

桥面施工方案 一、工程概况: 桥面总宽度及组成:本桥采用上下行分离式桥面,桥面总宽度为26m,桥面组成:0.5米(护栏)+11.5米(行车道)+2.0米(中间分隔带)+11.5米(行车道)+ 0.5米(护栏)=26.0米。 大桥的上部构造为7×30m预应力混凝土连续组合箱梁、共56片。 二、总体施工进度和劳动力安排 桥面施工计划在2004年2月20日开工,计划在2004年4月30日桥面施工施工完毕。 人员机械配备:混凝土工15人,钢筋工18人,木工8人,勤杂人员2人,两台容量8m3混凝土运输车,EA-05混凝土泵一台,平面阵捣梁一台。 三、施工准备 1、对便道进行修整,达到运输车辆能够顺利通行。 2、对桥面进行清洗并对纵横向湿接缝梁体混凝土进行彻底凿毛,露出新鲜混凝土。 3、全面复测,组织测量人员对郑沟大桥中线及桥面标高等进行全面复测,如有误差进行调整,调整后再进行桥面铺装。 4、组织施工技术人员进行图纸审核,对现场工人及工班长进行桥面铺装施工技术交底。 四、施工要点 施工顺序:横向湿接缝施工纵向湿接缝施工箱梁顶板负

弯矩张拉孔道压浆和封锚桥面铺装层的施工解除临时支座 1、桥梁纵、横向湿接缝施工 a、本桥纵、横向湿接缝模板采用厂制定型钢模,钢模出厂后经验收各部尺寸合格后,模板表面打磨光滑并涂油。模板与梁体端头采用外支撑顶紧,并夹双面海绵胶带,保证模板不漏浆、不变形。横向湿接缝模板采用厂制定型钢模,采用吊挂式施工,模板安装时,其吊杆必须顶紧,上横杆安装牢固可靠。 b、接头钢筋采用绑扎搭接,并部分焊接,焊接接头长度单面焊不小于10倍的钢筋直径,双面焊不小于5倍的钢筋直径。 c、梁体端头混凝土面必须凿毛,凿除浮浆,露出混凝土石子。 d、梁体端头顶板负弯矩部分预应力扁波纹管的连接,采用比原直径稍大一点的波纹管套接,套接后用胶带纸密封。 e、混凝土浇注。混凝土采用C50号混凝土,其坍落度80~180mm,其浇注时操作人员必须是混凝土施工的熟练工人,掌握混凝土施工工艺,保证混凝土密实的前提下,振动棒绝对不能捣动波纹管。 f、浇注完成后,加强混凝土的养护,保证接缝混凝土的质量。施工完毕,墩顶清理干净。 2、桥面顶板负弯距张拉及压浆 桥面顶板负弯距张拉采用穿心式千斤顶单根张拉,张拉采取双控,以伸长量进行校核,张拉顺序为T1、T2号钢束对称单根张拉,其中T1的伸长量为10.9cm,T2的伸长量为6.2cm。张拉施工人员全为经验丰富张拉作业人员。张拉时报请监理工程师,经批准后进行张拉。张拉时作好张拉施

大跨度预应力混凝土斜拉桥施工监控方法及内容

大跨度预应力混凝土斜拉桥施工监控方法及内容 发表时间:2016-04-05T14:40:42.500Z 来源:《基层建设》2015年21期供稿作者:王兴球[导读] 中山市地方公路管理总站大桥合龙精度高,建成后大桥线形优美,成桥线形与设计目标线形吻合一致。 中山市地方公路管理总站 摘要:以大南沙特大斜拉桥为背景,根据斜拉桥的结构特点确定施工控制内容,通过对几何变形、索力、应力和温度的监测确保施工的顺利进行。 关键词:斜拉桥;施工工艺;索力;应力监测;施工控制 Abstract:Using Nansha Xiaolan River cable-stayed bridge as the background,according to the structural characteristics of cable-stayed bridge,based on the supervisory control of geometric deformation,cable force,stress and temperature to insure the construction process. Keywords:cable-stayed bridge;construction technology;cable force;stress monitoring;construction control 一、工程概况 大南沙特大桥主桥为(90+200+90)m三跨双塔双索面预应力混凝土梁斜拉桥,全长380m。为单向行驶右幅桥,斜拉索布置在主梁两侧成空间双索面。桥幅布置为:(1.2m索带)+(0.5m防撞护栏)+(14.5m车行道)+(0.5m防撞护栏)+(1.2m索带)=全桥总宽17.9m。主梁采用预应力混凝土肋板式结构,主梁纵向按全预应力砼结构设计,横梁按部分预应力砼A类构件设计,桥面板按钢筋砼构件设计。为确保该施工阶段的安全与质量,必须对其整个施工过程进行有效监测,才能获得理想的测试结果。 二、施工控制 监控过程是与施工一一对应的。在各施工阶段中,通过各项测试取得反结构态的各种参数,和理论设计值相比较,发现偏离,采取相应措施及时纠偏,防止误差积累,所以监控过程是以理论设计值为基准的维持动态平衡的过程。其测试内容包括:施工记录,线形测量,索力测量,温度场测量,应力应变测量和高程测量。下面文章将分别讲述各项测试内容。 三、几何变形监测 几何形态监测的目的主要是获取(识别)已形成的结构的实际几何形态,其内容包括标高、跨长、结构或拉索的安装位置、结构变形或位移等。它对施工控制、预报非常关键。 目前用于桥梁结构几何形态监测的主要仪器包括水准仪、经纬仪、全站仪等。通常采用测距精度和测角精度不低于规定值(如±(2mm+2ppm)和±2’’)的全站仪并结合固定高亮度发光体照准目标作为需要全过程动态跟踪监测的三维几何形态参数(如索塔位置、主索鞍位置、主缆索和加劲梁线形、索夹位置等;斜拉桥索塔位置、斜拉索锚固位置、加劲梁平面位置(线形)等;桥梁中轴线线形、连续刚构桥墩位、悬臂施工主梁的平面位置等)的监测手段;采用精密水准仪和全站仪测量等作为一般的标高、变形(位)等的监测手段。 为确保桥梁施工放样和几何控制的精度,施工现场一般都建立有高精度的施工平面和高程控制网。在上述控制网的基础上,根据结构几何形态参数监测工作的可实现性和现场操作便利性要求,在进行局部控制网优化处理后,便可形成一个形变监测控制网,并以此作为结构几何形态参数监测的控制基准。形变监测控制网的精度满足设计、规范以及施工控制本身的要求。可以对监控控制点进行加密其精度确保满足施工监控的要求。 中山大南沙特大桥主梁线形控制实施过程如下:在悬臂施工过程中,通过施工控制计算预测,对各悬臂梁段的施工同步发布立模标高预拱度指令,指示下一阶段主梁预抬高度、做好挂篮变形等的施工测量工作,同步应力测试工作;实时施工误差分折、参数调整等,在整个悬臂浇筑期间,监控组共发布节段立模标高控制指令多份。 经过现场分析,每经过一个节段,都要准确的对建成的模型进行分析和计算模型对照,利用模糊模型预测机制,得出下个节段的理论应该的预拱度。 这一计算工作在桥梁整个施工过程中需要实时调整这些调整既包括各个直接的实时测贵参教也包括根据实侧数据通过反位分析等而得的辨识参数,还要视实际施工情况对计算模型、计算方法及计算内容等做出调整。 四、索力监测 大跨度桥梁采用斜拉桥、悬索桥等缆索承重结构越来越广泛,特别是跨径在500m以上时基本上是斜拉桥、悬索桥一统天下。斜拉桥的斜拉索、悬索桥主缆索及吊索索力是设计的重要参数,也是施工监控实施中需要监测与调整的施工控制参数之一。索力量测效果将直接对结构的施工质量和施工状态产生影响。要在施工过程中比较准确地了解索力实际状态,选择适当的量测方法和仪器,并设法消除现场量测中各种误差因素的影响非常关键。可供现场索力量测的方法目前主要有以下几种:(1)压力表量测法(2)压力传感器量测法(3)磁通量法(4)光纤光栅法(5)振动频率量测法。 4.1.施工要点 在实施振动频率法量测索力时,由于实际索股的振动是复杂的,即便是采用人工激振的方法也不一定能激发出索股基频的自由振动,而随机环境的激振更使索股产生复合振动,同时索股的刚度、挠度、斜度、温度对测量频率也是有一定的影响,因此,需在随机信号测量与处理技术基础上,对环境随机激振的振动信号进行测量与处理分析,获得被测索股的频率参数,再进行索力的分析计算,并进行数据对比分析,获得不同长度索股的修正系数,然后再进行大量的索力量测。 4.2.索力调整 斜拉桥成桥恒载索力将直接决定其内力分布,索力的合理与否是衡量设计优劣的重要标准之一。通过斜拉桥索力优化,可以得到合理的成桥索力,称之为设计索力。然而,设计索力还必须通过施工来实施。一般情况下,斜拉索是在不同的施工阶段逐根进行张拉安装的。在每一个施工阶段中,如何确定当前拉索的张拉力,以确保施工完毕时所有斜拉索的索力都达到设计索力,就是确定斜拉索施工张拉力的任务。确定斜拉桥施工张拉力的方法有:(1)倒退分析法(2)正装迭代法。

主塔施工方案

第一节主塔施工专项方案 一、编制说明与依据 索塔是斜拉桥的一个重要组成部分,同时又是斜拉桥的主要受力构件,除自重引起的轴力外,还有水平荷载以及通过拉索传递给塔的竖向荷载(活载)和水平荷载。索塔施工在斜拉桥施工中有着很重要的地位,从造价方面看,索塔占总造价的20%左右;从建设工期看,索塔施工约占总工期的1/3。 鉴于索塔施工的重要性,项目技术组认真广泛收集有关资料、认真领会设计意图、熟悉暂有的合同条款和技术规范的基础上,依据前期《实施性施工组织设计》以及《主塔初步施工方案》评审与研讨时专家提出的意见与建议开展编制工作。本方案主要参照以下几项资料进行编制: 1、《温州市永嘉县瓯北大桥工程桥梁工程施工图》; 2、《公路桥涵施工技术规范(JTG/T F50-2011)》; 3、《城市桥梁工程施工与质量验收规范(CJJ2-2008)》; 4、《温州市永嘉县瓯北大桥实施性施工组织设计》; 5、《斜拉桥建造技术(人民交通出版社)》; 6、《新编桥梁施工工程师手册(人民交通出版社)》; 7、《路桥施工计算手册(人民交通出版社)》; 8、《大体积混凝土施工规范实施指南(中国建筑工业出版社)》; 9、《大体积混凝土温度应力与温度控制(中国水利水电出版社)》; 10、《桥梁施工常用数据手册(人民交通出版社)》; 11、《现代大型斜拉桥塔梁施工测控技术(科学出版社)》。 二、工程概况 2.1概述 瓯北大桥主桥为独塔双索面叠合梁斜拉桥,其跨径组成为150m+125m=275m。索塔为钢筋砼钻石型索塔,包括上塔柱、下塔柱和下横梁,砼强度等级为C55。塔座与首节塔柱一起浇注,塔座采用C55聚丙烯纤维混凝土。主塔构造如图2.1.1所示。

江南大桥桥施工监控系统总结报告定稿

岱山高亭至江南公路段 江南大桥主桥施工监控总结报告 上海同济建设工程质量检测站 同济大学桥梁工程系 二○○八年八月

目录 1 江南大桥施工监控系统建立的基本原理 (1) 1.1概述 (1) 1.2施工监控系统的基本原理 (3) 1.3施工控制技术 (4) 1.3.1 同步模拟施工过程仿真计算 (4) 1.3.2 多段拱肋拼装扣索张力调整技术 (4) 1.3.3 结构线形及桥面高程预测技术 (5) 2 江南大桥施工监控系统的主要任务 (6) 2.1施工控制的主要任务 (6) 2.2施工监测的主要任务 (7) 3 江南大桥施工监控系统实施大纲 (9) 3.1江南大桥现场监测系统的建立细则 (9) 3.1.1应力应变的现场监测 (9) 3.1.2吊杆张拉力的现场监测 (14) 3.1.3 监测系统现场安装的配合 (14) 3.2江南大桥现场控制分析系统的建立细则 (14) 3.2.1 江南大桥施工控制分析方法 (14) 3.2.2主桥结构施工状态的现场模拟分析 (16) 3.2.3现场测试与现场计算分析调整 (16) 3.2.4关键部位的应力及变形跟踪 (16) 3.2.5主桥结构现场稳定分析 (17) 3.3江南大桥现场监控系统的工作流程 (18) 3.3.1 现场监测系统信息的管理 (18) 3.3.2 现场计算分析系统信息的管理 (19) 3.3.3施工状态的预报及综合分析 (19) 4 江南大桥施工监控系统施工期报告汇总 (20) 5 江南大桥施工期结构工作状态总结 (86) 5.1主要承重结构的工作状态 (86) 5.2吊杆张力监测成果 (90) 6 江南大桥施工监控系统工作结论 (93)

江肇西江特大桥矮塔斜拉桥主塔施工方案(索鞍式)

2010年11期(总第71期 )作者简介:罗庆湘(1981-),男,重庆人,工程师,主要从事高速公路建设与管理。 1工程概况 江肇西江特大桥主桥共四个主塔,塔号为29#~32#塔,主塔为独柱式刚劲混凝土结构,截面为八边形,并在顺桥上刻有0.1m ,宽0.7m 的景观饰条。主塔高度为30.5m (含索顶以上4m 装饰段),主塔截面等宽段顺桥向宽5m ,横桥向宽2.5m ;塔底5m 范围,顺桥向厚为5m ,横桥向由2.5m 渐变到3.1m 。 图1主塔一般构造图 本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ,拉索通过预埋钢导管穿过塔柱,在主梁上张拉。斜拉索采用Φs 15.2mm 环氧涂层钢绞线斜拉索,标准强度为1860MPa ,斜拉索规格分别为43-Φs 15.2mm 和55-Φs 15.2mm ,采用钢绞线拉索群锚体系。斜拉索为单索面双排索,布置在主梁的中央分隔代处,全桥共128 根斜拉索。钢绞线外层采用HDPE 护套。减振装置及锚具采用斜拉索专用材料。 2施工方案简介 主塔分六节施工,其中最大施工节段为5.4m ;主塔内设劲性骨架,用于钢筋和索鞍定位;模板施工采用无支架翻模施工,模板采用定型钢模板,均设有阴阳缝,由模板厂加工,现场拼装。考虑到主塔外观,该主塔模板不采用对拉杆在塔身中间穿过来固定模板,而采用桁架式模板翻模施工,塔吊辅助翻模。 3主塔施工流程 图2主塔施工流程 江肇西江特大桥矮塔斜拉桥主塔施工方案 罗庆湘,闫化堂 (广东省长大公路工程有限公司,广东 广州 510000) 摘 要:江肇西江特大桥主塔为独柱式刚劲混凝土结构,截面为八边形;主塔高度为30.5m ,主塔截面等宽段顺 桥向宽5m ,横桥向宽2.5m ;本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ;拉索通过预埋钢导管穿过塔柱;采用C60混凝土。本文介绍了江肇西江特大桥主塔施工方案,重点介绍了劲性骨架设计及施工、索鞍定位以及混凝土防裂等。 关键词:矮塔斜拉;主塔;施工方案中图分类号:U44 文献标识码: B 265

既有桥梁监控监测方案(最终1)

昆明两面寺立交连接寺瓦路工程 既有桥梁施工监控监测方案 中铁西南科学研究院有限公司 2015年5月

目录 1 工程概况 (2) 项目概况 (2) 施工监控监测主要依据 (3) 2 施工监控监测的目的 (4) 3 施工监控工作计划 (4) 4 本项目施工监控的主要内容 (5) 5施工监控监测方法 (5) 仿真计算分析 (5) 既有桥梁变位监测 (6) 施工异常情况的对策 (13) 6 监控技术方案保证措施 (13) 7 施工监控技术质量保证体系 (14) 8安全、文明及环保施工监控量测措施 (15)

1 工程概况 项目概况 两面寺立交连接寺瓦路工程位于昆明市盘龙区。现状两面寺立交是连接虹桥路与绕城高速的互通式立交,其中虹桥路呈东西走向,绕城高速呈南北走向。虹桥路为城市主干路,双向6车道,设计车速60km/h。绕城高速相当于昆明四环,允许货车全日通行,主要承担过境交通流量转换功能,双向6车道,设计车速80km/h。寺瓦路起于虹桥路,止于两面寺立交,是一跳贯通昆明东二环与东三环的重要城市主干路,双向6车道,设计车速40km/h。现状两面寺立交缺少右转入寺瓦路的匝道,为完善立交功能,解决两面寺立交桥底交通拥堵问题,本工程新建3条定向匝道实现虹桥路、绕城高速与寺瓦路的快速连接。 两面寺立交连接寺瓦路工程的桥梁布置如下: 立交分为三层,地面层为改造拓宽的寺瓦路辅导和线位调整后的寺瓦路连接线,寺瓦路拓宽需要在既有桥左侧新建一座跨径20m,桥宽的的预制空心板桥;因寺瓦路连接线线位调整,需新建一座跨径20m,桥宽11m、的预制空心板桥跨越凤凰河。 地上一层为虹桥路、绕城高速右转寺瓦路的高架A匝道,虹桥路拓宽,新增开口汇入绕城高速左转进入市区的匝道,然后通过绕城高速左转匝道直接分流进入寺瓦路。A 匝道桥桥宽8m桥长,引道长度。桥梁结构为现浇预应力混凝土连续箱梁。 地上二层为寺瓦路上虹桥路高架B匝道和绕城高速的高架C匝道。B匝道桥桥宽主要为10m和8m两种(其中有一联变宽),桥长,引道长度为。桥梁结构除上跨虹桥路采用一联37+60+37m的钢混叠合梁外,其他的为现浇预应力混凝土连续箱梁。C匝道桥桥宽均为8m,桥长153m,桥梁结构为现浇预应力混凝土连续箱梁。

斜拉桥工程施工程序施工技术方案

斜拉桥工程施工程序施工技术方案 索塔施工 2.1 简述 本桥主桥为塔梁固结体系,索塔采用曲线H 型索塔,塔柱曲线半径275.4m(外侧),箱形断面,索塔全高107m(从承台顶面算起);其中上段塔柱39.8m,中段塔柱48.6m,下段塔柱18.6m(含塔柱底座)。 上段塔柱塔柱断面为等截面,顺桥向尺寸6.5m,横桥向尺寸4.6m,空心矩形截面,顺桥向壁厚1.0m,横桥向壁厚0.9m。 中段塔柱断面为变截面空心矩形截面,顺桥向尺寸6.5~7.972m,横桥向尺寸4.6m,顺桥向壁厚1.2m,横桥向壁厚1.1m。 下段塔柱也为变截面空心矩形截面,顺桥向尺寸7.972~9.0m,横桥向尺寸5.5m,顺桥向壁厚1.2m,横桥向壁厚也为1.1m。 索塔横向设两道横梁,上横梁的顶板和底板均为半径12m 的弧形,采用空心截面,横梁宽度5.5m,横梁中心处高度15m,临近索塔处高度为30m,壁厚0.6m,由于结构造型的需要,横梁正中间开设半径 3.5m 的圆洞;下横梁梁为适应桥面横坡需要,采用变高度结构,横梁中部梁高4.5m,宽6.0m,顶底板厚为0.6m,腹板厚为1.5m。横梁为预应力混凝土A 类结构,共设置了34 束15-25 预应力钢束。预应力钢束锚固于塔柱外侧并采用深埋锚工艺,预应力管道采用塑料波纹管。下横梁兼作主梁0 号梁段,形成塔梁固结体系。 斜拉索通过钢锚梁锚固于上塔柱,为抵消斜拉索的不平衡水平分

力,在上塔柱斜拉索锚固区内配置了Φ32 的精轧螺纹粗钢筋。 索塔采用C50 混凝土,为便于施工、定位,索塔内设置劲性骨架,劲性骨架须按照图纸要求与钢牛腿壁板进行焊接连接,塔顶设置避雷针及导航灯,塔内设检修爬梯。 2.2 施工难点及重点 (1)施工测量及控制 塔高107m,测量控制难度大,需采用多种测量手段进行放样及施工控制测量,确保索塔施工精度要求。索塔施工测量及控制的重点和难点有:外形轮廓曲线控制、钢锚梁安装定位及精确控制;索塔结构应力和变形控制,包括多种工况以及日照温差、风荷载等因素影响下的索塔各部位的应力状态和变形控制。 (2)钢锚梁施工 斜拉索锚固区钢锚梁制作、安装精度要求高,单节钢锚梁重4.5t,钢锚梁安装定位难度大,定位精度将直接影响斜拉索安装质量结构受力和耐久性。 (3)高性能混凝土施工 索塔混凝土最大泵送高度约107m,砼强度等级、抗裂及耐久性要求高,泵送难度大。混凝土配合比设计及浇筑工艺是确保索塔混凝土质量的关键,尤其是上塔柱钢混结合段混凝土施工难度大。 2.3 总体施工工艺 (1)塔柱起步段采用搭设脚手管支架作施工平台,立模现浇,第一段高度2.2m,第2个节段高度4.5m;其余节段采用爬模施工,标

斜拉桥施工阶段监测监控的内容及方法

斜拉桥施工阶段监测监控的内容及方法 桥梁的建设是一项结构复杂,技术要求高的大型工程,随着科技的进步,桥梁的跨度、内部结构、施工的工艺愈来愈复杂和先进。出于保证桥梁工程质量的目的,在施工过程的各个阶段都要进行监控。而斜拉桥作为桥梁中的一项重要工程,对于施工的监测监控的要求就更加严格,内容也更加的具体。 一、施工监测监控的意义 对于斜拉桥施工阶段的监测和监控是一项非常复杂的工作,主要由两方面构成:一是施工中数据的采集,也就是监测;二是对数据的整理和分析,就是监控。监测功能主要是通过事先在高塔、梁和拉索这些工程部分上放置各种性能不同的传感器和测量仪器来完成数据的收集,其中包含工程的几何参量以及力学的参量。监控功能则是要通过电子计算机,对获得的数据行进分析整理,进而得出下一阶段的工程施工参数。工作人员在将两种结果进行整合分析,对于施工中出现的桥梁内力与外形的偏差进行矫正,保障工程的安全有效运行以及桥梁的外观美感。 二、施工监测监控的组织管理构成 施工阶段的监测与监控是一项集数据测量、数据计算、数据分析和决策于一体的综合性工作,在人员的组织上必须要完善合理,人员技术过硬,具有很强的工作经验和能力。通常情况下,施工的监测监控组织都是由多名高级技术人员组成的,一般会有一个工程质量监测顾问组,人数大约在5人左右,其中要有教授级的高级技术工作指导,此外依据桥梁项目的施工内容,还应该组建施工监测监控的项目组。此外,因为工程的工艺十分复杂、工程量庞大、人员众多,所以在组织施工监测监控组织的同时,还应该集合工程的高级技术人员就工程的管理、设计、施工和检测等工作进行协调指导。 三、施工阶段监测工作内容及方法 1、监测监控的实施目的 斜拉桥的施工有自己独特的结构特征,对于成桥线形有很高的要求,施工中每一个节点的坐标变化都会对桥梁的内力结构分配产生影响。如果出现桥线形偏离了设计值的问题,就会导致内力值与设计值不相符合。此外,斜拉桥的主梁、索塔以及拉索之间的刚度存在很大差距,会受到来自拉索垂度、天气、温度、施

(完整版)斜拉桥主塔施工安全、技术专项措施

主塔施工安全技术专项方案 主塔施工是我项目施工中的难点,其涉及到常有的高空作业,作业人员施工过程中必须切实做好安全防护工作,进场前必须经经理部的专业培训,达到要求后方能进场作业。在作业过程中要注重提高本作业项目人员的安全防护意识,切实贯彻落实“安全第一,预防为主,综合治理”的方针。为有效防止和消灭施工作业过程中存在的安全隐患,制订本安全技术方案。 一、编制依据 1、《主塔施工组织设计》、《下塔柱施工作业指导书》、《上塔柱施工作业指导书》。 2、安监(1996)第38号《关于加强施工现场塔式起重机和施工电梯安装、拆卸管理的规定》。 3、ZBJ80012-89《关于塔式起重机操作使用规程》。 5、JGJ80-91《建筑施工高处作业安全技术规范》。 6、各项安全管理规定。 二、编制目的和适用范围 1、为了保障驻mbini大桥施工的顺利进行,确保机械的安全使用和从业人员在施工过程中的安全与健康,最大限度地控制危险源,尽可能地减少事故造成的人员伤亡和财产损失,认真落实“安全第一、预防为主”的安全生产方针,特制定本施工安全技术方案。 2、本方案是作为主塔安全施工作业的行动指南,以安全管理程序化为手段,注重高空作业和机械使用方面的过程控制,避免或减少施工过程中的人员伤亡、机械损坏和财产损失。

3、本方案是通过对主塔施工过程中潜在的重大危险源进行辨识和对各项施工过程中经常出现的事故进行分析的基础上编制的。 4、主塔施工以安全、合理、进度快为原则,这是难度较高的多重要求,在现场作业过程中必须予以统筹考虑,认真贯彻落实。在这些原则中,如安全与他项要求有矛盾时,必须服从于安全。 5、本方案适用于本项目主塔施工的过程控制。 三、组织保证与管理职责 根据我部现场施工的具体情况,成立以项目经理为组长,主管生产副经理为副组长的安全管理小组。 1、项目经理负责主持全面工作,对施工组织设计的编制进行审批。 2、项目副经理协助项目经理负责对主塔施工的实施过程进行全面监控、管理和协调,负责本施工过程的安全、质量、进度等,并对施工过程的总目标进行控制。 4、经理部各部门负责配合好现场的施工,对施工过程进行检查把关,对

斜拉桥施工监控报告记录

斜拉桥施工监控报告记录

————————————————————————————————作者:————————————————————————————————日期:

斜拉桥施工监控报告 一、项目概况 1.1、桥梁概况 项目区位置,起终点,桥梁形式、跨径、桥面布置。主要结构构件:主梁、主塔、拉索等的材料、形式、规格、约束状况等。 1.2、施工控制概况 (1)确保施工过程中的结构安全,施工过程中和竣工后结构的内力状况满足设计要求; (2)成桥的线型、索力逼近设计状态; (3)精度控制和误差调整的措施不对施工工期产生实质性的不利影响; (4)主梁合拢前两端标高误差、轴线偏差能够保证顺利合拢。 (5)控制及监测精度达到施工控制技术要求的规定。 1.3、监控依据 《公路桥涵设计通用规范》(JTG D60-2015) 《公路斜拉桥设计细则》(JTG/T D65-01-2007) 《公路桥梁抗风设计规范》(JTG/T D60-01-2004) 《公路桥涵钢结构木结构设计规范》(JTJ025-86) 《铁路桥梁钢结构设计规范》(TB 10002.2-2005) 《公路桥涵施工技术规范》(JTG/T F50-2011) 《公路工程质量检验评定标准》(JTGF801-2012) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 《工程测量规范》(GB50026-2007) 《公路桥涵地基与基础设计规范》JTG_D63-2007 1.4、目的和意义 由于各种因素的随机影响,结构的初始理论设计值难以做到与实际测量值完全一致,两者之间会存在偏差。若对偏差不加以及时有效的调整,就会影响成桥

斜拉桥大桥施工方案

第一章工程概况 1.1、工程项目简介 **长江公路大桥起始于江北岸合安高速公路**接线处,穿越**市区,在**市东门汽车轮渡处跨越长江天堑及南北岸部分区域,终点与318国道新改建路线相交,全长5.9km。该项目已由国家计委以计基础[2001]1186号文批准建设。 **长江公路大桥的主桥施工标段划分为A标(北)和B标(南)。A标段起止桩号为K20+118.5~K20+638.5全长520m,. 1.1.1 结构布置 **长江公路大桥主桥为50+215+510+215+50米五跨双塔双索面钢箱梁斜拉桥,全长1040m。 主桥采用全焊扁平流线形封闭钢箱梁,倒Y型双塔,空间双索面扇形钢绞线斜拉索。 钢箱梁采用主梁梁高3.0m(桥中心线处),梁上索距15m型式。 斜拉索每个索面16对斜拉索,在梁上锚固标准间距为15m,在塔上锚固间距为2.0~2.5m,与索塔的连接采用钢箱式锚固,与主梁的连接采用锚箱式锚固。斜拉索在塔上张拉。 索塔采用钢筋砼倒Y形形式,锚索区上塔柱为单箱双室整体多边形截面,塔体空心结构。索塔总高179.126m,桥面以上塔高与主跨比为0.2695。 主桥两座索塔均采用双壁钢围堰大直径钻孔状复合基础,双壁钢围堰外径32m,内径29m,壁厚1.5米。钢围堰高度A标为51.0m。承台为直径29m的圆形承台,高6.0m。承台顶面高程-3.25m。承台下为18根直径3.0m的大直径钻孔灌注桩,呈梅花形排列,桩间中心距为6.0m。封底采用水下C25号砼厚7.0m。 主桥边跨及辅助跨处各设一个辅助墩和一个过渡墩,其中辅助墩为双柱式实心结构,基础为8根直径3m的大直径钻孔灌注桩;过渡墩为分离式实体结构,基础为4根直径2m的钻孔灌注桩。 1.1.2 主要技术标准 桥梁等级:四车道高速公路特大桥 设计行车速度:100km/h 桥面宽度:31.2m,四车道桥面标准宽度26.0 m,中间设2.0m宽中央分隔带,两边各设0.5m防撞护栏。主桥斜拉桥两边增设锚索及检修宽度。 荷载标准:汽车——超20级,挂车——120 桥面最大纵坡:3.0% 桥面横坡:2% 设计洪水频率:1/300 地震烈度:基本烈度Ⅵ度,按Ⅶ设防 通航水位:最高通航水位16.930m,最低通航水位2.480m 通航净空:最小净高24m,主通航孔双向航宽不小于460m,边通航孔单向航宽不小于204m 1.2 桥址区自然条件 1.2.1地理位置

浅析特大斜拉桥施工监控措施

龙源期刊网 https://www.doczj.com/doc/c917900882.html, 浅析特大斜拉桥施工监控措施 作者:黄晓初 来源:《中国新技术新产品》2013年第07期 摘要:当今社会,高强度材料和预应力技术高速发展,与之俱来的是,斜拉桥得到了广 泛应用。在桥梁的建设中,施工监控是桥梁安全性和施工效益的保障,尤其是对于一些特大斜拉桥,对施工监控工作提出了新的标准,本文分析特大斜拉桥施工监控的内容和计算方法,探讨特大斜拉桥施工监控的应用措施。 关键词:特大;斜拉桥;施工监控;措施 中图分类号:U44 文献标识码:A 斜拉桥外观优美,结构坚固,经济成本适中,已经成为了大跨径桥梁的首先类型之一,斜拉桥通常都是高次超静定结构,对施工精确度的要求很高,从选定施工方案开始,每一环节都必须严格依照施工方案进行准确计算。然而,由于受到预应力、拉索垂度、施工荷载、温度变化、混凝土变化等因素的干扰,很容易导致施工误差,而且这种误差,很可能会随着施工进展而继续扩大,影响桥梁的安全性,因此,在特大斜拉桥施工过程中,必须要严格做好施工监控工作,确保选择最完善的施工工艺,对每个环节都进行精确的检测,确保施工方向按照正确的轨道前进,保障桥梁的使用安全性。 一、监控内容 施工控制工作需要准确的检测结果作为依据,在斜拉桥整个施工过程中的每一个阶段,都必须要认真检测各项施工参数,计算出施工活动中出现的误差,然后在依据误差值,通过精确的计算来调整下个阶段的施工参数。对于特大斜拉桥施工建设而言,施工检测主要包括线形检测,索力检测,应力检测,温度检测几个环节。 (一)桥梁位移及变形 1.主梁标高和挠度 主梁标高的检测结果,是控制斜拉桥线形的重要依据,为了避免温度给检测结果带来的干扰,斜拉桥主梁标高的检测工作最好在清晨日出之前进行,以保障检测结果具有足够的精确性。主梁挠度的监测结果,也是控制斜拉桥线形的重要依据,在实际检测时,可以在各个施工块件上全部都设置三个对称的观测点,在测量主梁竖向挠度的同时,测量主梁的横向变形。 要对斜拉桥的主梁进行检测,还要保证在每个悬臂施工阶段,都在以下六个环节分别对主梁进行检测:第一,浇筑块件之前;第二,浇筑块件之后;第三,预应力张拉之前;第四,预

斜拉桥主塔施工方案

2.5.(重点工程)颍河特大桥主塔塔身施工方案、方法与技术措施 颍河特大桥共设置两座斜拉索塔,均为人字形。塔身总高度为38m,分上塔柱(20.443m)和下塔柱(17.557m),上塔柱采用圆端型矩形截面,共设置七道斜拉索,下塔柱为两道独立圆端型矩形柱,与桥墩及箱梁固结。颍河特大桥主塔为本标段施工控制重点。 桥塔布置及断面如图2.5-1所示。 颍河台湾大桥主塔总体布置 主塔塔身剖面图 图2.5-1 桥塔布置及塔身断面示意 下塔柱全高17.557m,采用C50混凝土,拟定沿塔身垂直方向分4个节段,其中1~3

每个节段5m,第4节段2.557。模板系统采用3层模板翻模施工,每层模板高2.5m,外模采用定形钢模板和弧形小模板拼装而成。模板由专业模板厂家加工制造,其强度、钢度、垂直度、同心度、表面光洁度等都应满足要求,以保证其安装、拆卸方便,脱模容易。模板加工好后,应在工厂试拼,确保无误后出厂。 下塔柱为钢筋混凝土结构,无预应力,根部5m内横桥向壁厚由100cm渐变至60cm,顺桥向壁厚由150cm渐变至90cm。 在完成承台施工后,按每节5m浇筑下塔柱。每个节段的施工程序是:安装劲性骨架→绑扎钢筋→立模→验收→浇塔柱混凝土→待强、凿毛、养生→拆模、翻模。 下塔柱施工工艺流程见图2.5.1-1所示。 在主塔施工前,精确测量定出主塔的平面位置,放出模板轮廓线,用砂浆找平模板下部的标高,以保证模板的垂直度;将塔柱处承台顶面的混凝土表面进行凿毛处理,并用清水冲洗干净,以保证墩台连接的质量。 2.5.1.2.下塔柱劲性骨架施工 为满足下塔柱高空施工过程中塔柱施工导向、钢筋定位、模板固定的需要,同时方便

悬浇梁桥施工监控

施工监控的意义、原则、方法和依据 2.1施工监控的意义 桥梁悬臂施工中,由于施工荷载的变化、新浇筑混凝土重量的误差、结构弹性模量的变化、挂篮的重量和移动的位置、温度的变化、结构体系调整以及混凝土的收缩与徐变等均会影响结构的变形和内力,而这众多的因素在设计阶段是无法准确确定的,这些因素的改变均可能引起桥梁结构线形与内力的改变,影响施工质量,甚至危及桥梁安全。为了使施工能按照设计意图进行,确保施工安全并最终达到设计的理想状态,通过对箱梁实施施工全过程的跟踪监控监测,对控制参数进行实时调整,以确保施工中结构的安全、箱梁最终线形平顺、内力分布合理,使成桥状态的外形和内力符合设计要求,确保桥梁施工安全和正常运营。 对于悬臂施工的预应力混凝土连续梁结构来说,施工控制就是根据施工监测所得的结构参数真实值进行施工阶段的结构仿真分析,确定出每个悬臂浇筑阶段的立模标高,并在施工过程中根据施工监测的成果对误差进行分析、预测下一节段立模标高及进行相应的调整,以此来保证成桥后桥面线形、合龙段两悬臂端标高的相对偏差不大于规定值。同时监测平面线形是否满足有关规范的要求,并在施工过程中监测结构应变是否在设计及规范允许的范围内,保证结构安全。 施工监控的意义主要体现在以下几个方面: 1)设计图纸的要求是施工的目标,在为实现设计目标而必须经历的施工过程中,通过施工监控,可对施工状态进行实时识别(监测)、调整(纠偏)、预测,使施工处于有效的控制之中,确保设计目标安全、顺利实现是至关重要的。 2)通过对桥梁施工过程中的结构受力、变形及稳定进行监测控制,使施工中的结构处于最优状态。施工监控是施工质量控制体系的重要组成部分,是保证桥梁建设质量的重要手段,是对桥梁建设质量的宏观调控,是桥梁施工质量控制的补充与前提。 3)监控单位配合监理,辅助业主,指导施工,解决桥梁施工质量控制过程中的关键技术问题。 4)通过施工监控,可取得在成桥后无法得到的桥梁部分“参数”,建立档案,为后期桥梁的管理与养护,提供依据。 5)将施工监控与桥梁荷载试验结合起来,可以得到仅靠荷载试验无法取得的桥梁恒

斜拉桥施工方案新

石家庄市仓安路斜拉桥施工组织设计 1、工程概况 1.1 斜拉桥概况 石家庄市仓安路斜拉桥位于石家庄市内,跨越京广电化铁路和铁路编组场。该桥主桥跨度55+125+55 m,为双塔双索面PC斜拉桥式,采用塔墩固结、主梁连续全飘浮体系。主梁采用双主肋断面,梁高1.7m,肋宽2m,桥面宽28.9m,梁上索距6.3m,全桥斜拉索4×9对,共72根。 见图T1-1仓安路跨线桥总体布置图、图T1-2斜拉桥布置图 斜拉桥主塔为“H”型,塔高55m,采用Φ1500钻孔桩基础,每个塔柱下部13根桩,桩长62m;主塔承台尺寸为1050cm×1375cm×450 cm;塔柱为5200×300cm 箱形断面,壁厚顺桥向90cm,横桥向60cm。主塔下横梁采用预应力钢筋混凝土,上横梁为钢管桁架。边墩立柱为200×200cm钢筋混凝土结构,下为Φ1200钻孔灌注桩,桩长为56m。 1.2主要工程数量 主要工程数量表表1-1

1.3工程特点 1.3.1地下管线繁多。斜拉桥主塔及边墩下分布自来水管道、雨水管道、电信电缆等各种管道,施工期间必须对地下管线进行勘探、搬迁或保护,增大了工作量。 1.3.2施工难度大。斜拉桥主跨跨越电气化京广铁路和铁路编组场,且主塔的位置靠近既有铁路的地道桥,为保证铁路正常的运营,需对铁路地道桥基础进行加固处理,施工难度很大。 1.3.3高空作业多,防电要求高。 1.3.4地面交通繁忙,施工干扰大。仓安路交通较为繁忙,来往车辆川流不息,施工期间必须精心组织,合理布置,并对交通进行合理疏导。 1.4施工方案的制定与审核 斜拉桥设计单位:上海市政工程设计研究院 施工方案制定单位:湖南路桥建设集团公司-中铁十七局集团有限公司联营体方案审核专家组:上海同济大学夏建国、洪国智(教授、斜拉桥专家)、石家 庄铁道学院王道斌、吴力宁(教授、斜拉桥专家)、石家庄 市项目办技术顾问张长生、刘容生(原市政设计研究院总工) 2、斜拉桥施工方案 斜拉桥桩基施工采用循环旋转钻孔,泥浆护壁,导管法灌注水下混凝土;主塔及边墩立柱采用翻模技术施工;下横梁采用军用梁及军用墩搭设支架现浇混凝土;上横梁则在工厂分节预制,运至工地拼装成整体,用塔吊提升至安装位置后,与塔柱上的予埋管件焊接;主梁的两边墩处的6.65m段和边跨在支架上浇筑;主梁0号段在托架上浇筑;1-7号(主跨)段采用短平台、复合型牵索挂蓝悬臂浇筑法施工,每段浇筑6.3m,待7号段和7′号段浇筑完成后,先在支架上进行边跨段的合龙,再悬浇8、9号段,最后利用挂蓝完成主跨合拢段的浇筑;斜拉索由塔吊、千斤顶等进行安装。

斜拉桥施工监控实施方案

. 施工监控方案

. 施工监控方案 编制:刘海宽 复核:崔文涛 审核:唐国斌

目录 第一章工程概述 ..................................................................................... 1.1 东运河桥工程概述 ............................................................................... 1.1.1 桥梁概况 (1) 1.1.2 主要技术标准 (1) 1.1.3 施工方法概述 (2) 1.2 西运河桥工程概述 ............................................................................... 1.2.1 桥梁概况 (2) 1.2.2 主要技术标准 (3) 1.2.3 施工方法概述 (3) 第二章监控的依据、目的、内容和方法 ................................................................. 2.1 施工监控依据.................................................................................... 2.2 监控目的和内容.................................................................................. 2.3 施工监控方法.................................................................................... 第三章监控仿真计算与分析方法 ....................................................................... 3.1 施工过程仿真分析 ............................................................................... 3.1.1 有限元模型 (9) 3.1.2 仿真计算内容 (10) 3.2 计算分析方法 .................................................................................... 3.3 控制误差分析 .................................................................................... 3.4 各类误差处理方法 ................................................................................ 3.5 结构设计参数识别 ................................................................................ 3.6 控制的实时跟踪分析 .............................................................................. 3.7 索力调整的方法 .................................................................................. 第四章施工监测工作方案 .............................................................................. 4.1 线形监测 ........................................................................................ 4.1.1 索塔轴线偏移测量 (20) 4.1.2 主梁线形测量 (21) 4.1.3 线形监测设备 (23) 4.2 应力监测 ........................................................................................ 4.2.1 索塔应力监测 (24)

斜拉桥施工-主塔爬模

第七节区间斜拉桥施工 一、概述 该桥是本合同段高架桥群第六联,起止里程为K23+242.673~K23+452.673,桥跨布置为108m+66m+36m的钢筋砼箱梁结构,由28对斜拉索悬挂于主塔上,跨越清河和立军路,位于R=400m的曲线上。清河河宽60m 左右,常水位在0.7m~0.8m。 主塔墩基础采用钻孔灌注桩,桩径φ2.0m,共布置15根;边墩及辅助墩均采用板式桥墩,基础采用φ1.5m钻孔桩,每墩下设4根桩基础。 主塔采用A形塔,塔高65m,为钢筋砼箱形结构,其顺桥向壁厚120cm,横桥向壁厚60cm,塔柱顺桥向顶宽4m,底宽5m,横桥向塔柱宽2.2m,下横梁与承台联为整体,横梁高6.5m,承台顶以上30m处设上横梁一道,梁高2m,上下横梁都是箱形空心结构。预心力采用φj15钢绞线和φ32筋,OVM系列锚具。 主梁为预应力钢筋砼箱梁,梁高2.6m,全长210m,纵向设62个横隔板,除主塔中心处三个横隔板间距为3m外,其余间距均为3.5m,横向为单箱双室截面;主梁顶宽11m,顶板厚25cm,底板宽5m,底板厚30cm,中腹板厚40cm,外腹板厚35cm,内腹板厚25cm,翼缘板厚为80cm。主梁采用双向预心力,纵向预心力体系为高强低松驰钢绞线R y b=1860MPa,松驰率≤2.5%;为平衡斜拉索的竖向分力,斜腹板上布置竖向预应力粗钢筋,轧丝锚体系,纵向预应力采用φj15钢绞线,OVM系列锚具,支座采用盆式橡胶支座。 斜拉索采用φ7mm镀锌平行钢丝索,外包双层PE护套,钢丝标准强度R y b=1670MPa,梁上索距7m,塔上索距2m。主要工程数量见表3-7-1。

桥梁施工监控

桥梁施工监控 第一节桥梁施工监控的定义 桥梁监控是新桥施工过程中,按照实际施工工况,对桥梁结构的内力和线型进行量测,经过误差分析,继而修正调整以尽可能达到设计目标。桥梁监控,也称桥梁施工监控或桥梁施工控制。在大跨径悬索桥、斜拉桥、拱桥和连续刚构桥的平衡悬臂浇筑施工中,其后一块件是通过预应力筋及砼与前一块件相接而成,因此,每一施工阶段都是密切相关的。为使结构达到或接近设计的几何线形和受力状态,施工各阶段需对结构的几何位置和受力状态进行监测,根据测试值对下一阶段控制变量进行预测和制定调整方案,实现对结构施工控制。由于建桥材料的特性、施工误差等是随机变化的,因而施工条件不可能是理想状态。因此,决定上部结构每一待浇块件的预拱度具有头等的重要性。 虽然可采用各种施工计算方法算出各施工阶段的预抛高值、位移值、挠度,但当按这些理论值进行施工时,结构的实际变形却未必能达到预期的结果。 这主要是由于设计时所采用的诸如材料的弹性模量、构件自重、砼的收缩徐变系数、施工临时荷载的条件等设计参数,与实际工程中所表现出来的参数不完全一致而引起的;或者是由于施工中的立模误差、测量误差、观测误差、悬拼梁段的预制误差等;或者两者兼而有之。

这种偏差随着悬臂的不断加伸,逐渐累积,如不加以有效的控制和调整,主梁标高最终将显著地偏离设计目标,造成合龙困难,并影响成桥后的内力和线形。所以,桥梁施工监控就是一个施工→量测→识别→修正→预告→施工的循环过程。 其最基本的目的是确保施工中结构的安全,保证结构的外形和内力在规定的误差范围之内符合设计要求。 第二节桥梁施工监控监控的主要内容 桥梁施工监控的内容主要包括成桥理想状态确定,理想施工状态确定和施工适时控制分析。 成桥理想状态是指在恒载作用下,结构达到设计线形和理想受力状态;施工理想状态以成桥理想状态为初始条件,按实际施工相逆的步骤,逐步拆去每一个施工项对结构的影响,从而确定结构在施工各阶段的状态参数(轴线高程和应力),一般由倒退分析法确定;施工适时控制是在施工时,根据施工理想状态,按一定的准则调整,通过对影响结构变形和内力主要设计参数的识别进行修正,使结构性能、内力达到目标状态。 在建立了正确的模型和性能指标之后,就要依据设计参数和控制参数,结合桥梁结构的结构状态、施工工况、施工荷载、二期恒载、活载等,输入前进分析系统中,从前进分析系统中可获得结构按施工阶段进行的每阶段的内力和挠度及最终成桥状态的内力和挠度。接

相关主题
文本预览
相关文档 最新文档