常见的九种二次曲面方程
- 格式:doc
- 大小:11.95 KB
- 文档页数:1
高数九大曲面方程总结1. 一次曲面方程一次曲面方程是指一个关于x,y和z的方程,其中x,y和z的最高次数均为1。
一次曲面方程的一般形式可以表示为:Ax+By+Cz+D=0其中A,B,C和D为常数。
一次曲面方程描述了一个平面,可以通过平面上的一点和法向量来确定。
平面的法向量可以通过将x,y和z的系数标准化得到。
2. 二次曲面方程二次曲面方程是指一个关于x,y和z的方程,其中x,y和z的最高次数为2。
二次曲面方程的一般形式可以表示为:Ax2+By2+Cz2+Dxy+Exz+Fyz+Gx+Hy+Iz+J=0其中A,B,C,D,E,F,G,H,I和J为常数。
二次曲面方程可以描述各种曲面,例如椭球面、双曲面和抛物面。
通过适当选择系数,可以调整曲面的形状和方向。
3. 椭球面方程椭球面是一个光滑的曲面,其所有点到两个固定点(焦点)的距离之和相等。
椭球面方程的一般形式可以表示为:$$\\frac{x^2}{a^2} + \\frac{y^2}{b^2} + \\frac{z^2}{c^2} = 1$$其中a,b和c是椭球面的半轴。
椭球面可以分为三种类型:长轴与z轴平行的旋转椭球面、长轴与x轴平行的旋转椭球面和长轴与y轴平行的旋转椭球面。
通过合适选择系数,可以调整椭球面的大小和形状。
4. 双曲面方程双曲面是一个光滑的曲面,其所有点到两个固定点(焦点)的距离之差相等。
双曲面方程的一般形式可以表示为:$$\\frac{x^2}{a^2} + \\frac{y^2}{b^2} - \\frac{z^2}{c^2} = 1$$或$$\\frac{x^2}{a^2} - \\frac{y^2}{b^2} + \\frac{z^2}{c^2} = 1$$其中a,b和c是双曲面的半轴。
双曲面可以分为三种类型:长轴与z轴平行的旋转双曲面、长轴与x轴平行的旋转双曲面和长轴与y轴平行的旋转双曲面。
通过合适选择系数,可以调整双曲面的大小和形状。
二次曲面的分类在空间直角坐标系下,二次曲面的一般方程可以写成222111222333121213132323141242343442222220a x a x a x a x x a x x a x x a x a x a x a +++++++++=即()11121311232122232141242343443132333,,2220a a a x x x x a a a x a x a x a x a a a a x ⎛⎫⎛⎫ ⎪⎪++++= ⎪⎪ ⎪⎪⎝⎭⎝⎭, 其中,ij ji a a =. 记123x X x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭,那么实二次型()111213112312321222323132333(,,),,a a a x x x x x x x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪Φ= ⎪⎪ ⎪⎪⎝⎭⎝⎭的矩阵为111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,通过正交线性替换X TY =,其中123y Y y y ⎛⎫ ⎪= ⎪ ⎪⎝⎭,有 122221122333(,,)''(')'x y z X AX Y T AT Y Y Y y y y λλλλλλ⎛⎫ ⎪Φ====++ ⎪ ⎪⎝⎭, 其中123,,λλλ是实对称矩阵A 的全部特征值,它们与正交矩阵T 无关,由矩阵A 唯一确定. 这样,在上述正交线性替换X TY =下(即所谓的转轴变换),原二次曲面的方程变成了 222112233141242343442220y y y b y b y b y a λλλ++++++=.最后,再通过适当的平移变换消去一次项,二次曲面的一般方程可以化成下列十七种标准形之一,并且它们分别表示十七种曲面:(一)假设123,,λλλ都非零,即0A ≠,那么二次曲面的方程再通过适当的平移变换消去一次项后可以变为2221122330z z z d λλλ+++=的形式。
一、二次曲面
1-1球面
(X-X0)2+(Y-Y0)2+(Z-Z0)2=R2
球心为M0(X0,Y0,Z0)
1-2椭圆锥面
1-3椭球面
其中,表示xOz平面上的椭圆绕z轴旋转而成的椭球面。
1-4单叶双曲面
其中,表示xOz平面上的双曲线绕z轴旋转而成的单叶双曲面。
1-5双叶双曲面
其中,表示xOz平面上的双曲线绕x轴旋转而成的双叶双曲面。
1-6椭圆抛物面
1-7双曲抛物面(马鞍面)
二、柱面
2-1圆柱面
X2+Y2=R2
2-2椭圆柱面
2-3双曲柱面
2-4抛物柱面
y2=2px
注:形如二、柱面只含x,y而缺少z的方程F(x,y)=0在空间直角坐标系中表示母线平行于z 轴的柱面,其准线为xOy平面上的曲线C:F(x,y)=0
特别地,
1.球x2+y2+z2=R2
2.圆柱面x2+y2=R2
3.旋转抛物面X2+Y2=z(以原点为顶点,上下两个开口分别向上向下的抛物线旋转而成的图形)
4.X2+Y2=z2(以原点为顶点,上下两个开口分别向上向下的圆锥,锥顶角为90。
)。
常见的九种二次曲面方程
1.椭圆方程:(x/a)^2+(y/b)^2=1,其中a和b分别表示椭圆在x轴和y轴上的半轴长。
2. 双曲线方程:(x/a)^2 - (y/b)^2 = 1,其中a和b分别表示双曲线在x轴和y轴上的半轴长。
3. 抛物线方程:y = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
4. 椭圆抛物线方程:y = ax^2 + bx,其中a和b为常数。
5. 双曲线抛物线方程:y = ax^2 - bx,其中a和b为常数。
6. 椭圆柱面方程:(x/a)^2 + (y/b)^2 = 1,其中a和b分别表示椭圆柱面在x轴和y轴上的半轴长,z为常数。
7. 双曲柱面方程:(x/a)^2 - (y/b)^2 = 1,其中a和b分别表示双曲柱面在x轴和y轴上的半轴长,z为常数。
8. 抛物柱面方程:y = ax^2 + bx + z,其中a、b、z为常数,且a不等于0。
9. 面向z轴的旋转曲面方程:(x/a)^2 + (y/b)^2 = z/c,其中a和b分别表示旋转后的曲面在x轴和y轴上的半轴长,c为常数。
- 1 -。