高一数学总复习《集合》
- 格式:pdf
- 大小:180.87 KB
- 文档页数:3
完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。
其中的各事物叫作集合的元素或简称元。
集合的元素具有三个特性:确定性、互异性和无序性。
确定性指元素是明确的,如世界上最高的山。
互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。
无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。
集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。
集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。
集合的表示方法有列举法和描述法。
常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。
2.集合间的关系集合间有包含关系和相等关系。
包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。
如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。
如果A和B是同一集合,则称A是B的子集,记作A⊆B。
反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。
相等关系表示两个集合的元素完全相同,记作A=B。
真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。
如果XXX且B⊆C,则A⊆C。
如果XXX且B⊆A,则A=B。
空集是不含任何元素的集合,记为Φ。
规定空集是任何集合的子集,空集是任何非空集合的真子集。
3.集合的运算集合的运算包括交集、并集和补集。
交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。
并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。
补集是由S中所有不属于A的元素所组成的集合,记作A的补集。
如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。
⾼⼀数学集合知识点总结由⼀个或多个元素所构成的叫做集合,集合是数学中⼀个基本概念,它是集合论的研究对象,集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。
下⾯给⼤家分享⼀些关于⾼⼀数学集合知识点总结,希望对⼤家有所帮助。
⾼⼀数学集合知识点1集合及其表⽰1、集合的含义:“集合”这个词⾸先让我们想到的是上体育课或者开会时⽼师经常喊的“全体集合”。
数学上的“集合”和这个意思是⼀样的,只不过⼀个是动词⼀个是名词⽽已。
所以集合的含义是:某些指定的对象集在⼀起就成为⼀个集合,简称集,其中每⼀个对象叫元素。
⽐如⾼⼀⼆班集合,那么所有⾼⼀⼆班的同学就构成了⼀个集合,每⼀个同学就称为这个集合的元素。
2、集合的表⽰通常⽤⼤写字母表⽰集合,⽤⼩写字母表⽰元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
有⼀些特殊的集合需要记忆:⾮负整数集(即⾃然数集)N正整数集N-或N+整数集Z有理数集Q实数集R集合的表⽰⽅法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语⾔描述法:例:{不是直⾓三⾓形的三⾓形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表⽰集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性(1)⽆序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表⽰为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
高一数学集合知识点总结一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(假设a?a,b?a,那么a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:n,z,q,r,n*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:假设对× ∈a都有× ∈b,那么a b(或a b);2)真子集:a b且存在× 0∈b但× 0 a;记为a b(或,且)3)交集:a∩b={× | × ∈a且× ∈b}4)并集:a∪b={× | × ∈a或× ∈b}5)补集:cua={× | × a但× ∈u}注意:①? a,假设a≠?,那么? a ;②假设,,那么;③假设且,那么a=b(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。
4.有关子集的几个等价关系①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;④a∩cub = 空集cua b;⑤cua∪b=i a b。
5.交、并集运算的性质①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;6.有限子集的个数:设集合a的元素个数是n,那么a有2n 个子集,2n-1个非空子集,2n-2个非空真子集。
高一数学集合知识点总结集合是数学中的一个基本概念,它可以理解为一组事物的集合体。
在高一数学课程中,学生需要学习集合的一些基础知识和操作方法。
下面是一些集合的知识点和例子。
1. 集合的基础概念集合是由一个或多个元素组成的,可以用大括号{}括起来表示。
例如,{1,2,3,4}就是一个集合,其中包含了四个元素。
另外,集合中的元素不重复,每个元素只出现一次。
2. 集合的运算集合的运算包括并集、交集、差集和补集。
并集:两个集合A和B的并集,记作A∪B,表示包含A和B中所有元素的集合。
例如,A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。
交集:两个集合A和B的交集,记作A∩B,表示集合A和B中共同包含的元素构成的集合。
例如,A={1,2,3},B={3,4,5},则A∩B={3}。
差集:两个集合A和B的差集,记作A-B,表示集合A中元素除去与集合B中的共同元素构成的集合。
例如,A={1,2,3},B={3,4,5},则A-B={1,2}。
补集:给定一个全集U和一个集合A,U-A称为集合A关于全集U的补集。
例如,U={1,2,3,4,5},A={1,2,3},则U-A={4,5}。
3. 集合的性质包含关系:对于任意两个集合A和B,当且仅当A中所有元素都属于B时,称A是B的子集,记作A⊆B。
例如,A={1,2,3},B={1,2,3,4,5},则A⊆B。
等价关系:对于任意两个集合A和B,当且仅当A和B所包含的元素相同的时候,称A和B等价,记作A=B。
例如,A={1,2,3},B={2,3,1},则A=B。
幂集:给定一个集合A,它的幂集是由A的所有子集构成的集合。
例如,A={1,2},它的幂集为P(A)={{},{1},{2},{1,2}}。
在高一数学中,集合是一个十分重要的概念,也是很多高级数学理论和应用的基础。
除了上文中介绍的基本概念、运算和性质,还有一些需要深入学习和掌握的集合知识。
高一数学期末复习教学案《必修第一册》 期末复习(一) 集合与逻辑 班 级 姓 名【课前预习】1. 已知集合2|340=A x R ax x .若A 中只有一个元素,则实数a 的取值范围为 .2.已知全集为=U R , [1,3),[2,4]A B =-=,如图阴影部分所表示的集合为 .3.集合A ={x |1£x <5},B =[-a ,a +3],若A ÍB ,则实数a 的取值范围是 .4.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为 .5.已知集合U =(1,7),A =[2,5),B =[3,7),则(C U A )È(C U B )= .6.集合{}2|9100A x x x =--=,{}|10B x mx =+=,且A ÇB =B ,则m 的取值集合 是 .7.(多选题)下列说法正确的是( )A .“1a >”是“21a >”的充分不必要条件;B .“a b >”是“22ac >bc ”的充要条件C .命题“x R ∀∈,210x +<”的否定是“x R ∃∈,使得210x +≥”D .已知函数()y f x =的定义域为R ,则“()00=f ”是“函数()y f x =为奇函数”的必要不充分条件.8. 已知条件p :x >a ,条件q :11x -<.若p 是q 的必要不充分条件,则实数a 的取值范围是 .9. 已知()24f x x x m =-+,()2log g x x =,若“[]11,4x ∀∈,[]22,4x ∃∈,使得()()12f x g x >成立”为真命题,则实数m 的取值范围是 .10.已知全集U R =,集合A ={x |log 2(x -1)£3},,{|}B x x a =≥.如果A B,则实数a 的取值范围为 .【典型例题】例1.已知函数()4log f x x =,1,416x ⎡⎤∈⎢⎥⎣⎦的值域是集合A ,关于x 的不等式3122x a x +⎛⎫> ⎪⎝⎭()a R ∈的解集为B ,集合51x C x x ⎧-⎫=⎨⎬+⎩⎭≥0,集合{}()1210D x m x m m =+≤<->. (1)若A B B =,求实数a 的取值范围; (2)若D C ⊆求实数m 的取值范围.例2.已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围.期末复习(一)【课外作业】 班级 姓名1.集合{}{}b a B a A ,,log ,32==,若{}2=B A ,则B A = .2.设集合A ={x |x 2+x -2<0},B =(-1,0),则C A B = .3.某次月考数学优秀率为70%,语文优秀率为75%,则这两门学科都优秀的百分率至少为 .4.已知[,3)A a a =+,(,1][5,)B =-∞-+∞,若A ÇB ¹f ,则实数a 的取值范围是 .5.已知集合2{|log 1}A x x =<-,{|B k =函数14()k f x x-=在(0,)+∞上是增函数}.则 ()R C A B = .6.已知P ={x|x 2-8x -20≤0},非空集合S ={x|1-m≤x≤1+m}.若x ∈P 是x ∈S 的必要条件,则实数m 的取值范围是 .7. 若命题“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,则实数a 的取值范围是____________.8.(多选题)下列命题正确的是( )A .“1a >”是“11a <”的必要不充分条件;B .若,a b ∈R ,则2b a b a a b a b+≥⋅= C . 命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-” D .设a R ∈,“1a =”,是“函数()1xx a e f x ae-=+在定义域上是奇函数”的充分不必要条件9.集合1{|0}1x A x x -=<+,{|||}B x x b a =-<,若“1a =”是“A B ≠∅”的充分条件,则实数b 的取值范围是 .10.若命题p:“2log 11m -≤”, 与命题q: “函数2()2+f x x mx m =-图像与x 轴至多一个交点”至少有一个是真命题,则实数m 的取值范围是 .11.在①A B ⊆;②R R C B C A ⊆;③A B A =;这三个条件中任选一个,补充在下面问题中.若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由. 问题:已知集合{}2log (1)1,A x x x R =->∈,{}()(4)0,B x x a x a x R =--+>∈,是否存在实数a ,使得 ?注:如果选择多个条件分别解答,按第一个解答计分.12.已知集合{}2|514A x y x x ==--, 集合()212|log 61B y y x x ⎧⎫⎪⎪==---⎨⎬⎪⎪⎩⎭, 集合{}|121C x m x m =+≤≤-. (1)求A ÇB ; (2)若A C A =,求实数m 的取值范围.13.已知p :24120x x ,q :22210(0)x x m m . (1)若p 是q 充分不必要条件,求实数m 的取值范围; (2)若“”是“”的充分条件,求实数m 的取值范围.。
集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B规定:空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学集合知识点总结由一个或多个元素所构成的叫做集合,集合是数学中一个基本概念,它是集合论的讨论对象,集合是指具有某种特定性质的详细的或抽象的对象汇总成的集体,这些对象称为该集合的元素。
下面给大家共享一些关于(高一数学)集合学问点(总结),盼望对大家有所关心。
高一数学集合学问点1集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师常常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么全部高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
有一些特别的集合需要记忆:非负整数集(即自然数集)N正整数集N-或N+整数集Z有理数集Q实数集R集合的表示(方法):列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x-32},{x|x-32},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-32的解集是{x?R|x-32}或{x|x-32}强调:描述法表示集合应留意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性(1)无序性指集合中的元素排列没有挨次,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B留意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必需明确,不允许有模棱两可、含混不清的状况。
高一数学集合知识点及练习题由一个或多个元素所构成的叫做集合,集合是数学中一个基本概念,它是集合论的研究对象。
这次小编给大家整理了高一数学集合知识点及练习题,供大家阅读参考。
高一数学集合知识点(一)1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
高一数学总复习--《集合》
1、 内容提要
1、 集合的概念:由一些事物组成的整体。可用大写字母A、B、C表
示。
1) 元素:集合中的每一个事物。可记作a 、b、 c。
2) 集合与元素的关系。。
3) 常用集合
4) 表示方法:列举法、描述法。
2、 集合与集合的关系
1) 子集:如果集合B的每一个元素都是A的元素,那么B叫做A的一
个子集,记作,(A的子集包括本身)。
2) 真子集:B是A的子集且A中至少有一个元素不属于B,则称B是A
的一个真子集记作。
3) 相等:A、B的元素完全一样,称A=B。
若。
3、 集合的运算
1) 交集:
2) 并集:
3) 补集;
4、 充要条件:称p是q的充分条件, q是p的必要条件.
称p 、q的互为充要条件。
2、 例题讲解:
例1、 写出集合{a,b,c}的所有子集和真子集。
例2、 已知,,求、、 、。
例3、 用符号填空
{a} b {b} 0 R
c {a,b} {} R 1+ Q
例4、 “x = y”是“x2 = y2”的 条件。
“”是“a = 0且b = 0”的 条件。
例5、加上条件使:1)、p是q的充分条件;
2)、p是q的必要条件;
3)、p是q的充要条件。
已知p: 直线 ; q : k1 = k2 (k1,k2分别是的斜率)
3、 练习:
(一)、选择题
1、已知集合A={1,3,7},B={3,7,8}则AB
= ( )
A)、{1,3,7,8} B)、{3,
7}
C)、{1,3,3,7,7,8} D)、
2、设A={1,2,3,4,5},B={1,3,4},C=
{2,4,5},
则=
( )
A)、{1,2,3,5} B)、{U}
C)、 A D)、
3、已知M={},N={},则MN= ( )
A)、{} B)、{}
C)、{} D)、
4、的充分条件是
( )
A)、 B)、
C)、 D)、
5、实数m、n满足的充要条件是 ( )
A)、 B)、
C)、 D)、
(二)、填空题
1、用符号表示:
3 {1,2,3,4}
{4} {1,2,3,4}1
{1} 0
2、写出“大于-3且小于等于3的正整数集”的
列举法
描述法
3、{1,3,7}{2,3, }={1,2,3,
8, }
4、{1,4,5}{1,3, }={5, }
5、A={},B={},则AB= ,
AB= , =
6、用充分、必要、充要填空:
1)、| a | = 5是 a = 5或 a = -5的
2)、的 是 x = 2 或x = -2
3)、x = -1是的
三、写出{ 2 , 6 , 9 }的所有子集和真子集