当前位置:文档之家› 新概念物理教程热学答案-第一章-温度

新概念物理教程热学答案-第一章-温度

新概念物理教程热学答案-第一章-温度
新概念物理教程热学答案-第一章-温度

第一章温度

1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?

解:(1)

当时,即可由,解得

故在时

(2)又

当时则即

解得:

故在时,

(3)

若则有

显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?

(2)当气体的压强为68mmHg时,待测温度是多少?

解:对于定容气体温度计可知:

(1)

(2)

1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据

已知冰点

1-4用定容气体温度计测量某种物质的沸点。原来测温泡在水的三相点时,其中气体的压

强;当测温泡浸入待测物质中时,测得的压强值为,当从

测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些

气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.

解:根据

从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出

时,T约为400.5K亦即沸点为400.5K.

题1-4图

1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得

1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,

即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:

由题给条件可知

由(2)-(1)得

将(3)代入(1)式得

1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?

(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

解:设水银柱长与温度成线性关系:

当时,

代入上式

当,

(1)

(2)

1-8设一定容气体温度计是按摄氏温标刻度的,它在冰点和汽化点时,其中气体的压强分别

为和。

(1)当气体的压强为时,待测温度是多少?

(2)当温度计在沸腾的硫中时(硫的沸点为),气体的压强是多少?

解:解法一设P与t为线性关系:

由题给条件可知:当时有

当时得:

由此而得(1)

(2)时

解法二若设t与P为线性关系

利用第六题公式可得:

由此可得:(1)时

(2)时

1-9当热电偶的一个触点保持在冰点,另一个触点保持任一摄氏温度t时,其热电动势由下式确定:

式中

题1-9题(1)题1-9图(2)

题1-9图(3)

(1)试计算当和时热电动势的值,并在此范围内作图。

(2)设用为测温属性,用下列线性方程来定义温标:

并规定冰点为,汽化点为,试求出a和b的值,并画出图。

(3)求出与和对应的值,并画出图

(4)试比较温标t和温标。

解:令

(1)

(2)在冰点时,汽化点,而,已知

解得:

(3)

当时

当时

当时

当时

(4)温标t和温标只有在汽化点和沸点具有相同的值,随线性变化,而t不随

线性变化,所以用作测温属性的温标比t温标优越,计算方便,但日常所用的温标是摄氏温标,t与虽非线性变化,却能直接反应熟知的温标,因此各有所长。

1-10 用L表示液体温度计中液柱的长度。定义温标与L之间的关系为。

式中的a、b为常数,规定冰点为,汽化点为。设在冰点时液柱的长

度为,在汽化点时液柱的长度,试求到之间液柱长度

差以及到之间液柱的长度差。

解:由题给条件可得:

(1)

(2)

解联立方程(1)(2)得:

1-11定义温标与测温属性X之间的关系为,其中K为常数。

(1)设X为定容稀薄气体的压强,并假定在水的三相点为,试确定温标与热力学温标之间的关系。

(2)在温标中,冰点和汽化点各为多少度?

(3)在温标中,是否存在0度?

解:(1)根据理想气体温标

,而X=P

(1)

由题给条件,在三相点时代入式

代入(1)式得:

(2)

(2)冰点代入(2)式得

汽化点代入(2)式得

(3)若,则

从数学上看,不小于0,说明有0度存在,但实际上,在此温度下,稀薄汽体可能已液化,0度不能实测。

1-12一立方容器,每边长20cm其中贮有,的气体,当把气体加热到

时,容器每个壁所受到的压力为多大?

解:对一定质量的理想气体其状态方程为

因,

1-13一定质量的气体在压强保持不变的情况下,温度由升到时,其体积将改变百分之几?

解:根据方程

则体积改变的百分比为

1-14一氧气瓶的容积是,其中氧气的压强是,规定瓶内氧气压强降到

时就得充气,以免混入其他气体而需洗瓶,今有一玻璃室,每天需用氧气,问一瓶氧气能用几天。

解:先作两点假设,(1)氧气可视为理想气体,(2)在使用氧气过程中温度不变。则:

由可有

每天用掉的氧气质量为

瓶中剩余氧气的质量为

1-15水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的

读数为时,它的读数只有。此时管内水银面到管顶的距离为

。问当此气压计的读数为时,实际气压应是多少。设空气的温度保持不变。

题1-15图

解:设管子横截面为S,在气压计读数为和时,管内空气压

强分别为和,根据静力平衡条件可知

,由于T、M不变

根据方程

有,而

1-16截面为的粗细均匀的U形管,其中贮有水银,高度如图1-16所示。今将左侧的上端封闭年,将其右侧与真空泵相接,问左侧的水银将下降多少?设空气的温度保持不变,

压强

题1-16图

解:根据静力平均条件,右端与大气相接时,左端的空气压强为大气压;当右端与真空泵相

接时,左端空气压强为(两管水银柱高度差)

设左端水银柱下降

常数

整理得:

(舍去)

1-17图1-17所示为一粗细均匀的J形管,其左端是封闭的,右侧和大气相通,已知大气压

强为,今从J形管右侧灌入水银,问当右侧灌满水银时,左侧水银柱有多高,设温度保持不变,空气可看作理想气体。

题1-17图

解:设从J形管右侧灌满水银时,左侧水银柱高为h。假设管子的直径与相比很小,可

忽略不计,因温度不变,则对封闭在左侧的气体有:

(S为管的截面积)

解得:

(舍去)

1-18如图1-18所示,两个截面相同的连通管,一为开管,一为闭管,原来开管内水银下降

了,问闭管内水银面下降了多少?设原来闭管内水银面上空气柱的高度R和大气压强为

,是已知的。

题1-18图

解:设截面积为S,原闭管内气柱长为R大气压为P闭管内水银面下降后,其内部压强为。对闭管内一定质量的气体有:

以水银柱高度为压强单位:

取正值,即得

1-19 一端封闭的玻璃管长,贮有空气,气体上面有一段长为的水银柱,将气柱封住,水银面与管口对齐,今将玻璃管的开口端用玻璃片盖住,轻轻倒转后再

除去玻璃片,因而使一部分水银漏出。当大气压为时,六在管内的水银柱有多

长?解:题1-19图

设在正立情况下管内气体的压强为,以水银柱高度表示压强,

倒立时,管内气体的压强变为,水银柱高度为

由于在倒立过程温度不变,

解之并取的值得

1-20求氧气在压强为,温度为时的密度。

解:已知氧的密度

1-21容积为的瓶内贮有氢气,因开关损坏而漏气,在温度为时,气压计的读数

为。过了些时候,温度上升为,气压计的读数未变,问漏去了多少质量的氢。

解:当时,容器内氢气的质量为:

当时,容器内氢气的质量为:

故漏去氢气的质量为

1-22 一打气筒,每打一次可将原来压强为

,温度为 ,体积

的空气压缩到容器内。设容器的容积为

,问需要打几次气,才能使

容器内的空气温度为

,压强为

解:打气后压强为:

,题上未说原来容器中的气体情况,可设原来容器中没有空气,设所需打气次数为

,则

得:

1-23 一气缸内贮有理想气体,气体的压强、摩尔体积和温度分别为 、 和 ,现将气

缸加热,使气体的压强和体积同时增大。设在这过程中,气体的压强 和摩尔体积 满足

下列关系式: 其中

为常数

(1)求常数 ,将结果用

和普适气体常数

表示。

(2)设 ,当摩尔体积增大到 时,气体的温度是多高?

解:根据

理想气体状态方程

和过程方程

(1)

(2)

,则

1-24图1-24为测量低气压的麦克劳压力计的示意图,使压力计与待测容器相连,把贮有水银的瓶R缓缓上提,水银进入容器B,将B中的气体与待测容器中的气体隔开。继续上提

瓶R,水银就进入两根相同的毛细管和内,当中水银面的高度差,

设容器的容积为,毛细管直径,求待测容器中的气压。

题1-24图

解:设管体积,当水银瓶R上提时,水银上升到虚线处,此时B内气体压强与待

测容器的气体压强相等。以B内气体为研究对象,当R继续上提后,内气体压强增大

到,由于温度可视为不变,则根据玻-马定律,有

由于

1-25用图1-25所示的容积计测量某种轻矿物的操作步骤和实验数据如下:

(1)打开活拴K,使管AB和罩C与大气相通。上下移动D,使水银面在n处。

(2)关闭K,往上举D,使水银面达到m处。这时测得B、D两管内水银面的高度差

(3)打开K,把400g的矿物投入C中使水银面重密与对齐,关闭K。

(4)往上举D,使水银面重新到达m处,这时测得B、D两管内水银面的高度差

已知罩C和AB管的容积共为,求矿物的密度。

题1-25图

解:设容器B的容积为,矿物的体积为,为大气压强,当打开K时,罩内压强

为,步骤(2)中罩内压强为,步骤(4)中,罩内压强为,假设操作过程中温度可视不变,则根据玻意马定律知

未放矿石时:

放入后:

解联立方程得

1-26一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积

,问经过多少时间后才能使容器的压强由降到。

解:设抽气机每转一转时能抽出的气体体积为,则

当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为

抽出压强为的气体,因而有,

当抽气机转过两转后,压强为

当抽气机转过n转后,压强

设当压强降到时,所需时间为分,转数

1-27按重量计,空气是由的氮,的氧,约的氩组成的(其余成分很少,可以忽略),计算空气的平均分子量及在标准状态下的密度。

解:设总质量为M的空气中,氧、氮、氩的质量分别为。氧、氮、氩的分子

量分别为。

空气的摩尔数

则空气的平均摩尔质量为

即空气的平均分子量为28.9。空气在标准状态下的密度

1-28把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。试求混合气体的压强和各种气体的分压强,假定容器中的温度保持不变。

解:根据道尔顿分压定律可知又由状态方程且温度、质量M 不变。

1-29用排气取气法收集某种气体(见图1-29),气体在温度为时的饱和蒸汽压为

,试求此气体在干燥时的体积。

题1-29图

解:容器内气体由某气体两部分组成,令某气体的压强为

则其总压强

干燥时,即气体内不含水汽,若某气体的压强也为其体积V,

则根据PV=恒量(T、M一定)有

1-30 通常称范德瓦耳斯方程中一项为内压强,已知范德瓦耳斯方程中常数a,对二氧化

碳和氢分别为和,试计算这两种气体在,

0.01和0.001时的内压强,

解:根据内压强公式,设内压强为的内压强。

当时,

当时

当时

1-31一摩尔氧气,压强为,体积为,其温度是多少?

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

“物理学与人类文明”简介和教学大纲

“物理学与人类文明”简介和教学大纲 课程代码:061K0120 课程名称:物理学与人类文明(Physics and human civilization) 学分:2 周学时: 2 面向对象:全校本科生 预修课程要求:无 一、课程介绍 (一)中文简介 本课程着重介绍物理学的重大进展及其与人类文明的关系。内容包括经典物理学、量子力学、相对论、物质结构、现代宇宙学、非线性物理学等,以及由此而产生的现代高科技的重大突破;同时还结合当代大学生实际,对科学发展的规律、哲学观念、思维方式及研究方法等进行较为开放但又不失其严谨性的阐述,培养学生的科学精神。 (二)英文简介 The course is designed for all undergraduates in Zhejiang University. The basic concepts and main achievements of physics will be introduced. The contents include classical physics, quantum physics, relativity, particle physics, cosmology, nonlinear physics, philosophical view, scientific thinking and the methods used in scientific research. This is a physics course without complex mathematics. 二、教学目标 (一)学习目标 本课程用尽可能少的数学语言(限于初等数学)和尽可能多的实际例子,着重介绍几百年来,特别是二十世纪物理学的重大进展及其与人类文明的关系;力求将物理学中奥妙无穷的现象和规律与其深层的哲学意义结合起来,以缩小自然科学与社会科学之间的鸿沟。通过本课程的学习,使学生对现代科学的基础(包括经典物理学、量子物理学、相对论、非线性物理学、现代宇宙学等)有初步的了解;通过具体实例和小班研讨,使学生了解科学发展规律、思维方式及研究方法;培养学生严谨的逻辑和推演等理性思维能力,应用科学知识和科学思维方式解决实际问题的能力;介绍在人类长期科学实践活动中所逐渐形成的一种文化----科学精神;培养学生的科学精神。 (二)可测量目标 1) 对现代科学的基础(包括经典物理学、量子物理学、相对论、非线性物理学、现代宇宙学等)有初步的了解。

新概念物理教程热学答案第一章温度

第一章温度 1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标 解:(1) 当时,即可由,解得 故在时 (2)又 当时则即 解得: 故在时, (3) 若则有 显而易见此方程无解,因此不存在的情况。 1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。 (1)用温度计测量300K的温度时,气体的压强是多少 (2)当气体的压强为68mmHg时,待测温度是多少

解:对于定容气体温度计可知: (1) (2) 1-3 用定容气体温度计测得冰点的理想气体温度为,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。 解:根据 已知冰点 。 1-4用定容气体温度计测量某种物质的沸点。原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度. 解:根据

从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为亦即沸点为. 题1-4图 1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为欧姆。当温度计的测温泡与待测物体接触时,铂电阻的阻值为欧姆。试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为。 解:依题给条件可得 则 故 1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。 设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。 解:

从热平衡的建立过程来理解温度

从热平衡的建立过程来理解温度 江苏省华罗庚中学物理组周月平213200 [摘要]:本文从热平衡的建立过程来分析和理解有关温度的两个知识点:即温度与冷热程度的关系和温度与分子平均动能的关系。其中重点分析了分子平均动能与温度的关系,分析过程中采取了一般--特殊--一般的分析方法,分析过程和方法简单易懂,期望能帮助学生理解热学中的核心概念“温度”。 [关键词]:热平衡温度分子平均动能冷热程度 温度时什么?对于刚接触热学的高中生来说,就只有两点认识:(一)温度就是物体的冷热程度、(二)温度是分子热运动剧烈程度的标志。对于高中学生来说根本无法理解温度这个概念的实质,从字面上很容易错误地理解为热的物体温度高,冷得物体温度低。(比如相同温度的木头和铁块,用手去触摸后的感觉不一样)。教材中从布朗运动的剧烈程度的角度分析,温度越高,分子运动越剧烈,于是可以得到温度越高,分子的平均动能越大的结论[1]。学生对这个结论的理解是没有任何问题的,但是教材中随后出现的:理想气体的热力学温度与分子的平均动能成正比[1]。这样的定量的关系,学生就无法理解了。分子的平均动能为什么与温度有这样的定量关系,而且与物质的状态无关?对于学生而言,这个知识点只能靠记忆了,这样的话物理概念就成了毫无意义的知识记忆,没有任何物理内涵,也失去了物理思想。如何帮助学生形象理解温度就显得非常有意义了。 下面我们从热平衡的建立过程来帮助我们理解温度的概念:我们知道,在于外界影响隔绝的条件下,使两个物体相互接触,让它们之间发生传热,则热的物体变冷,冷得物体变热,经过一段时间后,最终他们的冷热程度就相同了,即认为温度是相同的。我们说,它们彼此达到了热平衡状态[2]。对于这个事实,我们可以用温度计测体温的例子来理解。热平衡建立的过程从微观上来看就是运动着的分子的碰撞过程,碰撞过程看成是完全弹性碰撞,则碰撞过程要满足动量守恒和系统机械能守恒,计算结果表明,分子间的碰撞过程实际上就是能量传递过程,当分子的平均动能相等时,能量不再传递,即达到了热平衡状态[2]。对于这样的认识,我们可以从用手触摸物体感觉冷热的例子来理解,如果物体的温度比手的温度高(则物体中分子的运动剧烈),我们会感觉到烫,手发烫的过程实际上就是物体分子对手的碰撞把能量传递给手的过程。如果物体的温度比手的温度低,我们会感觉到冷,手发冷的过程实际上就是通过分子的碰撞把手上的能量传递给物体的过程。最终手何物体得温度会相同,则不会感觉到冷热了。达到热平衡后有两大表现:宏观上物体的温度相同,微观上分子平均动能相同。也就是说分子的平均动能与温度有关系。

全国中学生物理竞赛真题汇编热学

全国中学生物理竞赛真题汇编---热学 1.(19Y4) 四、(20分)如图预19-4所示,三个绝热的、容积相同的球状容器A 、B 、C ,用带有阀门K 1、K 2的绝热细管连通,相邻两球球心的高度差 1.00m h =.初始时,阀门是关闭的,A 中装有1mol 的氦(He ),B 中装有1mol 的氪(Kr ),C 中装有lmol 的氙(Xe ),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门K 1、K 2,三种气体相互混合,最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为 31He 4.00310kg mol μ--=?? 在体积不变时,这三种气体任何一种每摩尔温度升高1K ,所吸收的热量均为 3/2R ,R 为普适气体常量. 2.(20Y3)(20分)在野外施工中,需要使质量m =4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t =90.0oC 的1.200kg 的热水外,无其他热源。试提出一个操作方案,能利用这些热水使构件从温度t 0=10.0oC 升温到66.0oC 以上(含66.0oC),并通过计算验证你的方案. 已知铝合金的比热容c =0.880×103J ·(k g·oC)-1 , 水的比热容c = 4.20×103J ·(kg ·oC)-1 ,不计向周围环境散失的热量. 3.(22Y6)(25分)如图所示。两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。 磁场方向与导轨所在平面垂直.一质量为m 的均匀导体细杆,放在导轨上,并与导轨垂 直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为 尺0的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为S 的小液柱(质量不计),液柱将l mol 气体(可视为理想气体)封闭在容器中.已知温度升高1 K 时,该气体的内能的增加量为5R /2(R 为普适气体常量),大气压强为po ,现令细杆沿导轨方向以初速V 0向右运动,试求达到平衡时细管中液柱的位移. 4.(16F1)20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。若让其继续作等温膨胀,使体积再次加倍。试计算此时: 1.汽缸中气体的温度; 2.汽缸中水蒸气的摩尔数; 3.汽缸中气体的总压强。 假定空气和水蒸气均可以当作理想气体处理。 5.(17F1)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管 的长度l=76cm,管内封闭有n=1.0×10-3 mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空 气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1 ,普适气体常量R=8.31J·(m ol·K)-1 31Kr 83.810kg mol μ--=??31Xe 131.310kg mol μ--=??

高中物理竞赛练习7 热学一08

高中物理竞赛练习7 热学一08.5 1.证明理想气体的压强p = k n ε32,其中n 为单位体积内的分子数,k ε是气体分子的平均动能. 2.已知地球和太阳的半径分别为R 1=6×106m 、R 2=7× 108m ,地球与太阳的距离d =1.5×1011m .若地球与太阳均可视为黑体,试估算太阳表面温度. 3.如图所示,两根金属棒A 、B 尺寸相同,A 的导热系数是B 的两倍,用它们来导热,设高温端和低温端温度恒定,求将A 、B 并联使用与串联使用的能流之比.设棒侧面是绝热的. 4.估算地球大气总质量M 和总分子数N . 5.一卡诺机在温度为27℃和127℃两个热源之间运转.(1)若在正循环中,该机从高温热源吸热1.2×103 cal , 则将向低温热源放热多少?对外作功多少?(2)若使该机反向运转(致冷机),当从低温热源吸热1.2×103cal 热量,则将向高温热源放热多少?外界作功多少? 6.一定质量的单原子理想气体在一密闭容器中等压膨胀到体积为原来的1.5倍,然后又被压缩,体积和压强均减为1/3,且过程中压强与体积始终成正比,比例系数不变,在此压缩过程中气体向外放热Q o ,压缩后气体重新等压膨胀到原体积(气体在第一次等压膨胀前的状态),为使气体等容回到上面提到的原状态(第一次膨胀前的状态),需要传递给气体的热量Q 1是多少?

7.1 moI单原子理想气体初始温度为T o,分别通过等压和绝热(即不吸热也不放热)两种方式使其膨胀,且膨胀后末体积相等.如果已知两过程末状态气体的压强相比为1.5,求在此两过程中气体所做的功之和. 8.如图所示,两块铅直的玻璃板部分浸入水中,两板平行,间距d=0.5 mm,由于水的表面张力的缘故,水沿板上升一定的高度h,取水的表面张力系数σ =7.3×10-2N·m-1,求h的大小. 9.内径均匀的U形玻璃管,左端封闭,右端开口,注入水银后;左管封闭的气体被一小段长为h1=3.0cm 的术银柱分成m和n两段.在27℃时,L m=20 cm,L n=10 cm,且右管内水银面与n气柱下表面相平,如图所示.现设法使n上升与m气柱合在一起,并将U形管加热到127℃,试求m和n气柱混合后的压强和长度.(p o=75cmHg) 10.在密度为ρ=7.8 g·cm-3的钢针表面上涂一薄层不能被水润湿的油以后,再把它轻轻地横放在水的表面,为了使针在0℃时不掉落水中,不考虑浮力,问该钢针的直径最大为多少? 11.已知水的表面张力系数为σ1=7.26×10-2N·m-1,酒精的表面张力系数为σ2=2.2×10-2N·m-1.由两个内径相等的滴管滴出相同质量的水和酒精,求两者的液滴数之比.

最新新概念物理教程-力学答案详解(四)

3 v m 新力学习题答案(四) 4—1.如本题图,一质量为m 的质点自由降落,在某时刻具有速度v 。此时它相对于A 、B 、C 三参考点的距离分别为d 1、d 2、d 3。求 (1)质点对三个点的角动量; (2)作用在质点上的重力对三个点的力矩。 0sin (sin ()2(0 0sin (sin (131213121=====?=?======?=mg d M mg d mg d M mg d M g m r F r M mv d J mv d mv d J mv d J v m r J A B A C B A 方向垂直纸面向里) 方向垂直纸面向里) 方向垂直纸面向里) 方向垂直纸面向里) )解:(θθ?????? ??的力矩。 的角动量和作用在其上。求它相对于坐标原点的力方向并受到一个沿处,速度为的粒子位于(一质量为—f x j v i v v y x m y x -+=,??),.24?()( ) () ()()() i ymg k yf j xmg k mg i f j y i x g m f r F r M k myv mxv j v i v m j y i x v m r J x y y x ????????????-+=--?+=+?=?=-=+?+=?=?????????解:() () 秒弧解:依题有: 求其角速度。为普朗克常量,等于已知电子的角动量为率运动。的圆周上绕氢核作匀速,在半径为电子的质量为—/1013.1103.5101.914.321063.622),1063.6(2/103.5101.9.34172 11 3134 2 2341131?=??????=== ==????------mR h h mR Rmv J s J h h m kg πωπ ωπ什么变化? 为多少?圆锥的顶角有的速度时,摆锤,摆长拉倒时摆锤的线速度为设摆长为我们可将它逐渐拉短。,子,系摆锤的线穿过它央支柱是一个中空的管如本题图,圆锥摆的中—2211.44v l v l

2018初中物理竞赛教程(基础篇):第16讲 比热容(附强化训练题及答案)

第16讲比热容 16.1 学习提要 16.1.1 燃料的热值 1.热值的概念 燃料燃烧时能放出热量,相同质量的不同燃料完全燃烧时放出的热量不一样。1千克某种燃料完全燃烧时放出的热量叫做这种燃料的热值,用字母q表示。 2.热值的定义 热值的定义式为q=Q/m 3.热值的单位 在国际单位制中,热值的单位是焦/千克(J/Kg),读作“焦每千克”。 16.1.2 比热容 1.比热容的概念 比热容简称比热,用字母c表示,是物质的特性之一,每种物质都有自己的比热容。比热容是指单位质量的某种物质,温度升高(或降低)1℃吸收(或者放出)的热量。 2.比热容的定义式 比热容的定义式为 c = Q/m△t 3.比热容的单位 比热容的单位是一个组合单位,在国际单位制中,比热容的单位是焦/(千克.℃),读作“焦每千克摄氏度”。 4. 比热容的测定 比热容是物质的特性之一,在许多热学问题上都要用到,所以测定物质的比热容很重要。在热传递过程中,如果没有热量的损失,那么低温物体吸收的热量应该等于高温物体放出的热量。 (1)实验原理:热平衡方程式Q 吸= Q放

(2)实验方法:实验室一般采用混合法来测定物质的比热容。 (3)实验器材:量热器、天平、温度计、待测金属块、适量的常温下的水和沸水。 (4)实验步骤:①用天平分别测量小桶、搅动器、适量的常温下的水、待测金属块的质量; ②将金属块放入沸水(100℃)中加热一段时间; ③在量热器小筒内装入适量的常温下的水,并用温度计测出水的温度t1; ④将金属块从沸水中取出,投入量热器的小筒内,合上盖子,用搅拌器上下搅 动,直到量热器中温度达到稳定为止。 ⑤用温度计测出混合温度t2. (5)实验结果:设量热器和搅拌器是由比热容为c的同种物质做成,总质量为m; 适量的常温下的水质量为m水,比热容为c水;待测金属块的质量为m金,比热 容为c金。 由于量热器、搅拌器、常温下的水的初温均为t1,待测金属块的初温为t2=100℃, 混合后温度为t2。由热平衡方程式Q吸= Q放。可得 cm(t1-t2)+c水m水(t2-t1)= c金m金(t0-t2) c金=[(cm+c水m水)(t2-t1)]/[m金(t0-t2)] 16.2 难点释疑 16.2.1 温度和热量 温度表示物体的冷热程度。不论物体处于哪一种状态,总有某一个确定的温度。物体在热传递过程中温度会发生变化,物体从外界吸收热量,其温度一般会上升;物体向外界放出热量,其温度一般会下降。当吸收热量和放出热量的过程结束后,物体的温度仍然有一个确定的值。 热量是物体在热传递过程中,吸收或放出热的多少。一个物体有某一个确定的温度值,并不能说一个物体就具有多少热量。所以不能说温度高的物体热量大,也不能说同一温度质量大的物体热量大。热量的多少只有在热传递过程中才具有意义。说的明确一点,热量只有在物体的温度发生变化或内能发生变化时才具有意义。 物体的温度是某一个确定的值,对应于物体处于某一种状态。物体吸收(或者放出)的热量是某一个确定的值,对应于物体一定的温度变化(或物态变化)。在热传度过程中,物

物理竞赛热学专题40题刷题练习(带答案详解)

物理竞赛热学专题40题刷题练习(带答案详解) 1.潜水艇的贮气筒与水箱相连,当贮气筒中的空气压入水箱后,水箱便排出水,使潜水艇浮起。某潜水艇贮气简的容积是2m 3,其上的气压表显示内部贮有压强为2×107Pa 的压缩空气,在一次潜到海底作业后的上浮操作中利用简内的压缩空气将水箱中体积为10m 3水排出了潜水艇的水箱,此时气压表显示筒内剩余空气的压强是9.5×106pa ,设在排水过程中压缩空气的温度不变,试估算此潜水艇所在海底位置的深度。 设想让压强p 1=2× 107Pa 、体积V 1=2m 3的压缩空气都变成压强p 2=9.5×106Pa 压缩气体,其体积为V 2,根据玻-马定律则有 p 1V 1=p 2V 2 排水过程中排出压强p 2=9.5× 106Pa 的压缩空气的体积 221V V V '=-, 设潜水艇所在处水的压强为p 3,则压强p 2=9.5×106Pa 、体积为2V '的压缩空气,变成压强为p 3的空气的体积V 3=10m 3。 根据玻马定律则有 2233p V p V '= 联立可解得 p 3=2.1×106Pa 设潜水艇所在海底位置的深度为h ,因 p 3=p 0+ρ gh 解得 h =200m 2.在我国北方的冬天,即便气温很低,一些较深的河 流、湖泊、池塘里的水一般也不会冻结到底,鱼类还可以在水面结冰的情况下安全过冬,试解释水不会冻结到底的原因? 【详解】 由于水的特殊内部结构,从4C ?到0C ?,体积随温度的降低而增大,达到0C ?后开始结冰,冰的密度比水的密度小。 入秋冬季节,气温开始下降,河流、湖泊、池塘里的水上层的先变冷,密度变大而沉到水底,形成对流,到达4C ?时气温如果再降低,上层水反而膨胀,密度变小,对流停止,“漂浮”在水面上,形成一个“盖子”,而下面的水主要靠热传导散失内能,但由于水

新概念物理教程热学答案 第一章 温度

第一章温度 1-1 在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标? 1)解:( 当,解得时,即可由 故在时 )又2 ( 则即时当 解得: 时,故在 3 () 则有若 的情况。显而易见此方程无解,因此不存在 1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。 (1)用温度计测量300K的温度时,气体的压强是多少? (2)当气体的压强为68mmHg时,待测温度是多少? 解:对于定容气体温度计可知: (1) (2) 1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压 强与水的三相点时压强之比的极限值。 解:根据 冰点已知 。 1-4用定容气体温度计测量某种物质的沸点。原来测温泡在水的三相点时,其中气体的压 ,;当测温泡浸入待测物质中时,测得的压强值为强当从 使,,200mmHg减为时,重新测得当再抽出一些测温泡中抽出一些气体 .试确定待测沸点的理想气体温度测得. 气体使减为100mmHg时,

解:根据 依以上两次所测数据,作从理想气体温标的定义:T-P图看趋势得出 400.5K. 亦即沸点为400.5K约为,T时. 题1-4图 1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。 解:依题给条件可得 则 故 做线性变化随温度t在历史上,对摄氏温标是这样规定的:假设测温属性X,1-6 。即,并规定冰点为,汽化点为 分别表示在冰点和汽化点时X的值,试求上式中的常数a和设和b。 解: 由题给条件可知 1)得(由(2)-

高中物理竞赛教程(超详细)电场

第一讲电场 §1、1 库仑定律和电场强度 1.1.1、电荷守恒定律 大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持 k 数, 0ε q F E = 式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。 借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为 2 2r Q k q r Qq k q F E === 式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。

1.1.4、场强的叠加原理 在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。 原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。 例1、如图1-1-1(a )所示,在半径为R 、体电荷密度 为ρ的均匀带电球体内部挖去半径为R '的一个小球,小球球心O '与大球球心O 相距为a ,试求O '的电场强度,并证明空腔内电场均匀。 ρ,R O 1.1.5.电通量、高斯定理、 (1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ 为截面与磁感线的夹角。与此相似,电通量是指穿过某一截面的电场线的条数,其大小为 θ?sin ES = θ为截面与电场线的夹角。 高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为 ∑=i q k π?4 ( 041πε= k ) Nm C /1085.82120-?=ε为真空介电常 数 O O ' P B r a )

式中k是静电常量,∑i q为闭合曲面所围的所有电荷电量的代数和。由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通 量的计算。尽管高中教学对高斯定律不作要求,但笔者认为简单了解高斯定律的内容,并 利用高斯定律推导几种特殊电场,这对掌握几种特殊电场的分布是很有帮助的。 (2)利用高斯定理求几种常见带电体的场强 ①无限长均匀带电直线的电场 一无限长直线均匀带电,电荷线密度为η,如图1-1-2(a)所示。考察点P到直线的 距离为r。由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零, 即径向分布,且关于直线对称。取以长直线为主轴,半径为r,长为l的圆柱面为高斯面, E 图1-1-5

图像讨论法在热学中的应用

浅谈图像讨论法在热学中的应用 李娟 (西华师范大学物理与电子信息学院2006级4班) 摘要:物理图像具有形象、直观、动态变化过程清晰等 特点,能使物理问题简化明了,能将物理学科与数学、信息 技术等学科有机地结合起来,物理图像法是物理学中分析问 题常用的科学方法之一。在教学中教师应有意识地引导学生 应用物理图像法来分析问题和处理问题,这是提高学生科学 素养,启迪思维,触发灵感的好方法。利用物理图像可以很 直观地讨论一些热力学问题,试图探索一条不同于传统做法 的、概括和表述热学基本定路律的途径,对热学教学和科研则 是一种有效的方法. 关键词: 图像法;P-V图;T-S图 The application of diagram in teaching and study of heat Li juan (college of physics and electronic information ,china west normal university nanchong sichuan 637002) Abstract:The expression of quasi-static process and cycle process on diagram is introduced. In this paperwe try to explore away for summarizing and expressing the fundamental laws of heat, entirely different form the usual practices, the discussion uses diagram method, which aremore simple and intuitive.

新概念物理教程力学答案详解(三)27

新力学习题答案(三) 3—1.有一列火车,总质量为M ,最后一节车厢为m ,若m 从匀速前进的列车中脱离出来,并走了长度为s 在路程后停下来。若机车的牵引力不变,且每节车厢所受的摩擦力正比于其重量而与速度无关。问脱开的那节车厢停止时,它距离列车后端多远 解: 3—2.一质点自球面的顶点由静止开始下滑,设球面的半径为R 球面质点之间的摩擦可以忽略,问质点离开顶点的高度h 多大时开始脱离球面 ()()s m M m s s s s m M m s g s g m M m g s gs at t v s t g m M m m M g m M Mg a g m M g s g gs a v t v m gs v v as m g m mg a mg f m Mg F ?-+ =+∴?-+ =?-?+=+ =-= ---= -=== →=?=== ==3'22212221',122022:02000 002 0所求的距离为为:时间内火车前进的路程所以在这火车加速度为此时火车的摩擦力为由于牵引力不变) (所需时间为从速度为最终其加速度的水平力作用力离开列车后,仅受摩擦,则机车的牵引力为设摩擦系数为μμμμμμμμμμμμμμμμμ3 2321) 3(cos ) 2(cos :0cos ) 1(22 12 2 2R h R gh R h R g R h R R v g N R mv N mg F gh v mgh mv = ∴=--==== -==?=)得: ),(),(联立(又:时有当受力分析有::解:依机械能守恒律有向心θθθ

3—3.如本题图,一重物从高度为h 处沿光滑轨道下滑后,在环内作圆周运动。设圆环的半径为R ,若要重物转至圆环顶点刚好不脱离,高度h 至少要多少 3—4.一物体由粗糙斜面底部以初速度v 0冲上去后又沿斜面滑下来,回到底部时的速度为v 1,求此物体达到的最大高度。 解:设物体达到的最大高度为h ,斜面距离为s ,摩擦力为f 。 3—5.如本题图:物体A 和B 用绳连接,A置于摩擦系数为的水平桌面上,B滑轮下自为 m A ,m B ,求物体B从静止下降一个高度h 后所获得的速度。 解:由绳不可伸长,得A ,B 两物体速度相等。 依动能定理有: h R ()() R h gR v N R mv N mg F R h g v mv R h mg v 2 5 21)2(0 )1(222 122 2 ≥ ≤?≥= -=-=∴=-)式得:),(联立(而此时,则有: 的速度为若设重物在环顶部具有解:依机械能守恒得: 向心g v v h fs fs mv mgh fs mgh mv 421 2 12 120212 0+= +=+=,得:两式消去滑下来的过程中:冲上去的过程中:依动能定理,有:

高中物理热学教程

图3-4-1 3.4 液体的表面张力 3.4.1、表面张力和表面张力系数 液体下厚度为分子作用半径的一层液体,叫做液体的表面层。表面层内的分子,一方面受到液体内部分子的作用,另一方面受到气体分子的作用,由于这两个作用力的不同,使液体表面层的分子分布比液体内部的分子分布稀疏,分子的平均间距较大,所以表面层内液体分子的作用力主要表现为引力,正是分子间的这种引力作用,使表面层具有收缩的趋势。 液体表面的各部分相互吸引的力称为表面张力,表面张力的方向与液面相切,作用在任何一部分液面上的表面张力总是与这部分液面的分界线垂直。 表面张力的大小与所研究液面和其他部分的分界线长度L 成正比,因此可写成 L f σ= 式中σ称为表面张力系数,在国际单位制中,其单位是N/m ,表面张力系数σ的数值与液体的种类和温度有关。 3.4.2表面能 我们再从能量角度研究张力现象,由于液面有自动收 缩的趋势,所以增大液体表面积需要克服表面张力做功,由图3-4-1可以看出,设想使AB 边向右移动距离△x ,则此过程中外界克服表面张力所做的功为 S x AB x f x F W ?=??=?=?=σσ22外 式中△S 表示AB 边移动△x 时液膜的两个表面所增加的总面积。若去掉外力,AB 边会向左运动,消耗表面自由能而转化为机械能,所以表面自由能相当于势能,凡势能都有减小的趋势,而S E ∞,所以液体表面具有收缩的趋势,例如体

积相同的物体以球体的表面积最小,所以若无其他作用力的影响,液滴等均应为球体。 例 将端点相连的三根细线掷在水面上,如图3-4-2所示,其中1、2线各长1.5cm ,3线长1cm ,若在图中A 点滴下某种杂质,使表面张力系数减小到原来的0.4,求每根线的张力。然后又把该杂质滴在B 点,求每根线的张力:已知水的面表张力系数α=0.07N/m 。 A 滴入杂质后,形成图3-4-3形 状,取圆心角为θ的一小段圆弧,该线段在线两侧张力和表面张力共同 作用下平衡,则有 1 )4.0(2 sin R a a aT θθ -=,式中 cm R πθ θ 25 .2,2 2 sin 1= ≈ 代入后得 0,1067.11432=?===-T N T T T 。 B 中也滴入杂质后,线3松弛即03='T ,形成圆产半径 π23 2= R cm ,仿上面 解法得 N aR T T 4 2211026.0-?=='='。 3.4.3、表面张力产生的附加压强 表面张力的存在,造成弯曲液面的内、外的压强差,称为附加压强,其中最简单的就是球形液面的附加压强,如图3-4-4所示,在半径为R 的球形液滴上任取一球冠小液块来分析(小液块与空气的分界面的面积是S ',底面积是S ,底面上的A 点极靠近球面),此球冠形小液体的受力情况为: 在S 面上处处受与球面垂直的大气压力作用,由对称性易知,大气压的合力方向垂直于S 面,大小可表示为 S p F 0=。 A B 1 2 3 图3-4-2 图3-4-3

物理书籍整理

科普: 《定性与半定量物理学》赵凯华 《边缘奇迹:相变和临界现象》于渌 《QED: A Strange Theory about Light and Matter》Feynman 《大宇之形》丘成桐 《Gauge Fields, Knots and Gravity》Baez 《趣味力学》别莱利曼 《趣味刚体力学》刘延柱(小书,挺有意思) 考研习题集用超星图书里的那本清华大学编写的普通物理学考研辅导教材(大约这个名字) 数学分析: 书目: 《数学分析教程》常庚哲 《数学分析新讲》张筑生 《数学分析》卓里奇 《数学分析八讲》辛钦 《数学分析讲义》陈天权 《数学分析习题课讲义》谢惠民等 《数学分析习题集》北大版? 《特殊函数概论》王竹溪 线性代数Linear Algebra 内容:行列式、矩阵代数、线性方程组、线性空间、线性变换、欧几里得空间、n元实二次型等。 书目: 《高等代数简明教程》蓝以中 《Linear Algebra and Its Applications》Gilbert Strang 《Linear Algebra and Its Applications》Peter D. Lax 《Linear Algebra and Its Applications》David C. Lay 力学Mechanics 先修课程:高等数学 内容:质点运动学、质点动力学、动量定理和动量守恒定律、功和能及碰撞问题、角动量、刚体力学、固体的弹性、振动、波动和声、流体力学、相对论简介。 书目: 《力学》赵凯华 《力学》舒幼生 《经典力学》朗道 《An Introduction To Mechanics》Daniel Kleppner、Robert Kolenkow 狭义相对论:《狭义相对论》刘辽 《The Principle of Relativity》Einstein 广义相对论:《Einstein Gravity in a Nutshell》Zee 《Spacetime and Geometry》Carroll

物理竞赛热学专题精编大全(带答案详解)

物理竞赛热学专题精编大全(带答案详解) 一、多选题 1.如图所示为一种简易温度计构造示意图,左右两根内径粗细均匀的竖直玻玻璃管下端通过软管相连接,在管中灌入某种液体后环境的温度。重复上述操作,便可在左管上方标注出不同的温度刻,将左管上端通过橡皮塞插入小烧瓶中。调节右管的高度,使左右两管的液面相平,在左管液面位置标上相应的温度刻度。多次改变烧瓶所在度,为了增大这个温度计在相同温度变化时液面变化的髙度,下列措施中可行的是() A.增大液体的密度B.增大烧瓶的体积C.减小左管的内径D.减小右管的内径 【答案】BC 2.如图所示为两端封闭的U形玻璃管,竖直放置,管内左、右两段封闭空气柱A、B 被一段水银柱隔开,设原来温度分别为T A和T B,当温度分别升高△T A和△T B时,关于水银柱高度差的变化情况,下列说法中正确的是() A.当T A=T B,且△T A=△T B时,h一定不变 B.当T A=T B,且△T A=△T B时,h一定增大 C.当T A<T B,且△T A<△T B时,h一定增大 D.当T A>T B,且△T A=△T B时,h一定增大 【答案】BD 【解析】 【详解】 AB.由于左边的水银比右边的高?,所以右边的气体的压强比左边气体的压强大,即P B> P A,设在变化的前后AB两部分气体的体积都不发生变化,即AB做的都是等容变化,则

根据P T =ΔP ΔT 可知,气体的压强的变化为ΔP=PΔT T ,当T A=T B,且ΔT A=ΔT B时,由于P B> P A,根据ΔP=PΔT T 可知ΔP B>ΔP A,?一定增大,故选项A错误,B正确; C.当T AP A,根据ΔP=PΔT T 可知不能判断ΔP B和ΔP A变化的大小,所以不能判断?的变化情况,故选项C错误; D.当T A>T,且ΔT A=ΔT B时,由于P B>P A,根据ΔP=PΔT T 可知ΔP B>ΔP A,?一定增大,故选项D正确; 3.下列叙述正确的是() A.温度升高,物体内每个分子的热运动速率都增大 B.气体压强越大,气体分子的平均动能就越大 C.在绝热过程中外界对气体做功,气体的内能必然增加 D.自然界中进行的涉及热现象的宏观过程都具有方向性 【答案】CD A.温度升高,气体分子的平均动能增大,但是个别分子运动速率可能减小,故A错误; B.温度是气体分子的平均动能变化的标志。气体压强越大,温度不一定增大,故B错误; C.在绝热过程中,外界对气体做功,由热力学第一定律得气体的内能增大,故C正确; D.热力学第二定律表明,自然界中进行的一切与热现象有关的宏观过程都具有方向性,故D正确。 4.夏天,如果将自行车内胎充气过足,又放在阳光下暴晒,车胎极易爆裂.关于这一事例有以下描述(设爆裂前的过程中内胎容积几乎不变),其中正确的是()A.车胎爆裂,是车胎内气体温度升高,气体分子间斥力急剧增大的结果 B.车胎爆裂,是车胎内气体温度升高,分子热运动加剧,气体压强增大的结果 C.在车胎爆裂前,胎内气体吸热,内能增加 D.在车胎突然爆裂的瞬间,胎内气体内能减少 【答案】BCD A.气体分子间间距较大,分子力(斥力)可忽略不计,故A项不合题意; B.自行车在爆裂前受暴晒的过程中,车胎内气体吸热温度升高,分子平均动能增加,而气体体积不变,单位体积内的分子数不变,因此气体压强增大,故B项符合题意. C.爆裂前内胎容积不变W=0,但暴晒吸热Q>0,根据热力学第一定律ΔU=Q+W,可知ΔU>0,即爆裂前气体内能应增大,故C项符合题意. D.突然爆裂的瞬间等效为等温膨胀,气体对外界做功,其内能应减少,故D项符合题意.

相关主题
文本预览
相关文档 最新文档