小半径曲线叠合钢箱梁桥设计要点
- 格式:pdf
- 大小:196.45 KB
- 文档页数:2
小半径曲线上的预制小箱梁设计施工技术研究摘要:位于小半径曲线上的预制装配式小箱梁,在设计施工中均有比较大的困难,本文以实际工程为例,在设计中通过调整悬臂长度、在施工中通过吊模后浇变化段的悬臂及护栏,可以实现节约工期,在类似工程中具有一定的借鉴意义。
关键词:小半径曲线桥;预制小箱梁中图分类号:文献标志码:文章编号:0 引言在城市桥梁建设过程中,由于受到城市建设的制约,平面线形无法完全保证直线或较大的曲线半径。
位于小半径曲线上的桥梁,若采用现浇方案,则结构不受限制,但很多地方由于工期、施工场地等影响,无法采用现浇方案,只能采用预制装配方案。
简支变连续梁箱梁桥是使用范围较多、技术成熟的桥梁形式选择。
但由于预制小箱梁需要在预制场台座上批量预制,所以一般采用直线形,梁长、外形、悬臂长度均一致才容易批量生产。
但若桥梁位于小半径曲线上,桥梁外形难以做到采用直线,悬臂长度也随着曲线变化。
本文以车站南路桥梁为例,从小半径曲线预制小箱梁的设计、施工方面进行研究,提出针对性的设计及施工措施,以期对类似桥梁的设计、施工具有一定的借鉴意义。
1 工程概况车站南路位于长沙市雨花区,北起劳动路,南至桔园立交,道路全长1.77km,其中劳动路~洞井路以西为新建路段,洞井路以西~桔园立交为提质改造路段。
道路等级为城市次干道,设计速度为40km/h。
车站南路的建设对拉通城市断头路具有重要的意义。
本项目新建桥梁全长540m,跨径布置为:3-4×30m+2-3×30m,全桥共五联,受拆迁影响,桥位范围内拆迁不连续,致使作业面不能连续,上部结构梁体无法采取现浇方式,故采用装配式预应力混凝土简支变连续小箱梁结构,下部采用盖梁柱式墩、端承桩基础。
桥型横断面见图1。
2 桥梁情况介绍桥梁东临京广铁路,西侧为住宅小区,平面条件受限,部分桥梁处于R=350m的小半径右偏曲线上(图2),给设计和施工均带来较大的挑战。
桥梁标准宽度为28m,分两幅设计。
144研究与探索Research and Exploration ·工艺流程与应用中国设备工程 2023.03 (下)由于曲线桥预应力、温度效应、活荷载效应等因素的影响,与常规的线性、半径桥相比,其受弯扭耦合、翘曲等因素影响较大,对其上、下结构的构造和加固处理产生了较大的难度,而弯曲桥的特殊力学现象是由桥长、跨、半径、墩台、支座等因素综合影响的结果。
1 小半径曲线桥梁设计的力学特性曲线梁桥的受力性能,其弯曲半径对梁体的弯曲有一定的影响,从而使其发生弯曲,从而使其既受到弯矩的作用,又受到扭力的作用,这就是弯扭耦合。
弯曲扭转耦合的结果是,弯曲箱梁桥的受力性能主要表现在下列方面。
(1)外梁外力不均匀因外梁外力过大、内梁卸载等原因,导致梁桥外缘的弯曲应力比内缘大,外缘的变形比内缘大,内梁和外梁的内力分布不均匀,内梁和外梁的受力不均匀,在箱梁上引起内腹筋和外腹板的受力不均。
在动载荷作用下,梁的支承部分会产生负向反作用力,严重时会导致梁与支撑分离。
(2)箱梁桥的挠曲变形曲线通常大于同直径的弯桥,其弯曲变形是由弯矩和扭力叠加而成。
(3)横向水平力车辆在曲线梁桥上行驶时,会对桥面产生水平的离心力,这是一种很好的方法。
预应力、混凝土收缩徐变和温度的改变,不仅会引起桥面的纵向水平力,而且还会引起横向的水平力。
由于外部载荷作用于桥梁,其横向水平力将导致梁身的截面力矩和桥墩的弯矩增加,从而导致桥面的侧向位移和侧向偏移。
(4)弯曲变形和变形对弯箱式桥梁来说,在弯曲和扭耦合作用下,其整体截面应力比直线桥梁要大,尤其是在弯曲和变形的影响下,这种问题更严重。
但其计算结果一般仅占基础弯矩和纯扭剪应力的5%~10%,经初步估计,在设计时可采用加横梁的方法,尽量减少断面的变形。
2 工程案例以江苏省常州市金坛区金坛高铁为例,采用3×25m 的连续梁桥作为研究对象。
项目地处江苏省金坛城区西南部、小桥村以南、金坛高铁枢纽金坛高铁站附近,地处常州市北部G233,S241东侧,金龙路以南,万嘉路以西。
桥梁工程中小半径曲线梁桥的设计要点摘要:随着我国城市交通压力的不断增加,大量的高架桥和立交桥被兴建,但是由于城市交通功能的要求和地形环境的诸多限制,这些桥梁多采用的是曲线型构造。
曲线型结构的桥梁受力比较复杂,其中以小半径梁桥最为特别,除了一般的受力外,还要承受扭矩和翘曲双力矩的共同作用,所以小半径曲线梁桥出现的问题较多。
本文就小半径曲线梁桥出现的问题做了相应的说明,并就这些问题进行了深入的探讨并着重说明了设计中要注意的要点。
关键词:桥梁工程;小半径曲线梁桥;设计要点Abstract: Along with the urban traffic increase of pressure, a lot of viaduct and flyovers be built, but because the city traffic function requirements and terrain environment many of the limitations of the Bridges take the form of a curve type structure. The structure of the bridge type curve stress is more complex, among them with small radius of the most special bridge, in addition to the stress of the general, but also bear torque and warp the joint action of double moment, so small radius of the problem of the curved girder Bridges is more. This paper is small radius of the problem of the curved girder Bridges related instructions, and these problems thoroughly discussed and the focus on the design to the main points of attention.Key Words: Bridge engineering; Small radius curve beam bridge; Design key points of the小半径曲线梁桥,虽说在现实生活中有了很广泛的应用,但是由于其承载量,预应力及温差引起的弯矩、扭矩等作用力的受力较复杂,因此很容易产生设计考虑不全面,支座脱空、移位甚至崩塌的问题,给人民生命财产安全带来了极大的隐患。
小半径连续曲线箱梁桥设计要点摘要:直线梁桥复杂,为保证结构安全,其设计时需验算的内容较直线桥多,尤其是箱梁剪扭组合验算及腹板束防崩设计,应引起设计人员足够的重视。
本文结合某小半径连续曲线箱梁桥的工程例子,按梁格法进行建模计算,并且总结了结构构造的处理措施。
关键词:小半径;弯梁桥;梁格法;空间分析;1 前言曲线梁桥在公路和城市立交桥的设计中,因为适应的方向线具有良好的能力,减少障碍,改变人力和材料成本,再加上曲率半径小,造型美观等优点,是一种广泛使用的桥型。
由于地形条件和线性约束,对曲线梁桥小半径曲线的出现是必然的,曲线梁桥与直梁桥的几何特性相比,具有更复杂的几何特性、决定了期更复杂的受力和变形特点。
小半径曲线梁桥不仅具有弯矩,扭矩,曲线梁桥的耦合作用,而且还有弯矩、扭矩的耦合作用,这给弯梁桥的结构设计及计算分析带来较多的困难和不便。
在本文中,结合小半径连续曲线箱箱梁匝道桥的工程实例的半径,通过计算和分析梁格法建模,结了结构构造的处理措施。
2 工程概况某匝道桥跨径组成为4 ×25m,桥宽为16m。
桥面铺装采用10cm 厚的水泥混凝土。
桥梁平面位于R =58m 的圆曲线及 A =40m 的缓和曲线上。
纵断面位于纵坡为1. 42% 和- 3. 96% ,半径为1500m 的竖曲线上。
桥梁设计荷载等级为公路-Ⅰ级。
以此为背景,通过结构计算分析,总结曲线箱梁受力特征,探讨其受力特点及构造处理。
3曲线梁上部结构受力特点立交匝道桥受多种因素的限制,桥面宽度窄且多为小半径曲线桥,而且设置较大超高值;为了与两侧衔接,匝道桥往往设置较大纵坡且长度较大,因此匝道桥具有斜、弯、坡、异形等特点,给桥梁的线型设计和构造处理带来很大困难。
弯扭耦合效应是曲线梁桥力学性质的最大特点,曲梁在外荷载的作用下会同时产生弯矩和扭矩,并且互相影响,使梁截面处于弯扭耦合作用的状态,其截面主拉应力往往比相应的直梁桥大得多,这是曲梁独有的受力特点。
小半径曲线桥梁设计要点作者:程亮亮来源:《科学与财富》2014年第11期摘要:因曲线桥梁受力复杂,设计及施工难度大,很多建成后的曲线桥梁在运营的过程中也逐渐出现了很多病害。
本文结合多年的设计经验,提出小半径曲线桥梁设计中应该注意的几点事项。
关键词:小半径;曲线桥梁;受力;支承方式;支座一、曲线梁桥的力学特性曲线梁桥在竖向荷载作用下,由于曲率半径的影响,必然产生扭转,而扭转又导致挠曲变形,这样梁体不仅受弯矩作用,同时还受扭矩作用,这称之为弯扭藕合作用。
弯扭耦合作用导致曲线箱梁桥具有以下几点力学特性。
(一)梁内外侧受力不均由于扭矩的作用会造成外梁超载、内梁卸载等问题,致使弯梁桥外边缘弯曲应力大于内边缘,外边缘挠度大于内边缘,内梁和外梁受力不均,反应到箱梁上则是内外腹板受力不均。
当活载偏置时,内梁支点甚至可能产生负反力,甚至会出现梁体与支座脱离的问题发生。
(二)挠曲变形曲线箱梁桥的挠曲变形一般要比相同跨径的直线桥大,弯桥的挠曲变形是弯曲和扭转的迭加。
(三)横向水平力汽车在曲线梁桥上行驶时会对桥梁产生水平方向的离心力。
预应力、混凝土收缩徐变及温度变化等不仅对桥梁会产生纵向水平力,也会产生横向水平力。
外荷载对桥梁产生的横向水平力会增大梁体截面扭矩和桥墩弯矩,并有可能造成横向的位移或者是桥梁在平面的转动。
(四)翘曲与畸变对于弯箱桥梁,由于在弯扭耦合的作用下会出现综合截面应力相对直线桥梁而言较大的问题,特别是在截面扭转以及畸变作用下,这一问题更突出。
但其数值往往只占基本弯曲应力和纯扭转剪应力的5%~10%,经过初步的估算,在设计过程中可以采取增设横隔板的设计处理方式,尽可能的控制截面畸变变形。
二、小半径曲线桥梁的设计要点(一)箱梁的设计1、箱梁跨径的选择弯梁桥的弯扭刚度比对结构的受力状态和变形状态有着直接的关系:弯扭刚度比越大,由曲率因素而导致的扭转弯形越大,因此,对于弯梁桥而言在满足竖向变形的前提下,应尽可能减小抗弯刚度、增大抗扭刚度。
浅谈小半径曲线箱梁桥设计要点作者:张春来马小花来源:《科学与财富》2012年第12期摘要:在小半径曲线箱梁桥的设计中,经常会遇到这样那样的设计问题,这些问题我们都容易忽视,但是他在设计中又不可缺少。
本文通过工程实例,介绍了在小半径曲线箱梁设计中,需要注意的三个要点,以及如何进行设计和复核。
关键词:小半径曲线箱梁跨间横隔板钢束防崩最小保护层随着城市的飞速发展,初期的交通形势已经不能缓解日益严重的交通压力,在这样的状况下,高架桥、立交桥等交通型式孕育而生。
立交桥的型式多种多样,而匝道设计也是立交设计中的重要一环。
匝道桥基本上均位于曲线上,由于地形限制,城市桥梁美观需要等等原因,匝道的曲线半径很小,墩柱多采用独柱墩。
这就不可避免给设计带来一定的难度,本文就工程实例,就小半径曲线箱梁设计需要注意的要点加以讨论。
一.工程概况渤海大道(一期)大魏家立交工程,设计荷载为公路—Ⅰ级,温度荷载为+30℃、-20℃,环境为Ⅲ类环境,设计时速主线100km/h,匝道40km/h,桥面铺装0.17m。
G、H匝道上部结构为20m+20m+20m三跨一联普通钢筋混凝土箱梁,曲线半径为65m。
主梁为单箱单室结构,具体截面尺寸见箱梁横断面图a。
F匝道由于上跨主路,故此净空有一定要求,桥梁上部结构采用32m+36m+32m三跨一联预应力混凝土箱梁,曲线半径为185m。
主梁结构为单箱双室,具体截面尺寸见箱梁断面图b。
二.设计中需要注意的要点与计算方法1.在刚刚接触和对规范不熟悉的设计人员中,很容易忽略一个常见但是必须要注意的设计要点。
在内半径小于240m的弯箱梁设计中,箱梁应在跨径之间设置跨间横隔板。
设置跨间横隔板,可以增大横向刚度,提高箱梁的抗扭惯性矩。
对于钢筋混凝土箱梁而言,需要设置的跨间横隔梁的间距不应大于10m,对于本工程而言,G、H匝道为20m等跨径箱梁,故此设计人员在跨中设置了一道0.5m的跨中横隔板。
而针对预应力混凝土箱梁则需要经过结构分析确定,对于F匝道箱梁,通过Midas,对箱梁进行抗扭验算,得出结论只需在跨中设置一道0.5m横隔梁即可。
小半径曲线桥梁设计方法分析摘要本文结合多年工作实践,主要介绍小半径曲线桥梁的力学特性,分析曲线桥梁存在的病害及成因,提出了小半径曲线桥梁设计应该注意事项。
关键词曲线桥梁;设计方法;特性;成因近年来,随着经济的快速增长,城市交通的发展也越来越迅猛,由于受原有地物或地形的限制,以及城市交通功能的需要,小半径曲线桥梁在城市立交中应用越来越广泛。
因曲线桥梁受力复杂,设计及施工难度大,很多建成后的曲线桥梁在运营的过程中也逐渐出现了很多病害。
本文结合多年的设计经验,提出小半径曲线桥梁设计中应该注意的几点事项。
1曲线桥梁受力特性1)梁体的弯扭耦合作用。
曲线梁在外荷载的作用下会同时产生弯矩和扭矩,并且互相影响,使梁截面处于弯扭耦合作用的状态,其截面主拉应力往往比相应的直线梁桥大得多,这是曲梁独有的受力特点。
曲线梁桥由于受到强大的扭矩作用,产生扭转变形,其曲线外侧的竖向挠度大于同跨径的直桥;由于弯扭耦合作用,在梁端可能出现翘曲;当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势。
2)内梁和外梁受力不均匀。
在曲线梁桥中,由于存在较大的扭矩,因而通常会使外梁超载、内梁卸载,尤其在宽桥情况下内、外梁的差异更大。
由于内、外梁的支点反力有时相差很大,当活载偏置时,内梁甚至可能产生负反力,这时如果支座不能承受拉力,就会出现梁体与支座的脱离,即“支座脱空”现象。
3)离心力作用。
由于内外侧支座反力相差较大,使各墩柱所受垂直力出现较大差异。
曲线梁桥下部结构墩顶水平力,除了与直线桥一样有制动力、温度变化引起的内力、地震力等外,还存在离心力和预应力张拉产生的径向力。
因预应力钢束所具有的空间曲率,使得预应力束对于梁体将有水平径向力,这种径向力将对梁体的剪切中心产生扭转,而该扭转的存在又会使得曲线梁中产生附加的弯矩和扭矩,即在曲线梁中产生更显著的“弯、剪、扭”效应。
2现实中曲线桥梁存在的病害及成因1)曲线梁体向曲线外侧径向整体侧移。
支座布置不合理。
通工程中,并且取得了很好的使用效果。
再者,由于钢箱梁自重较轻,同等跨径时可采用较小的梁高,梁体外观轻盈,可取得较好的景观效果。
1连续曲线钢箱梁的主要特征根据以往城市立交桥设计经验,跨径30~60 m 连续钢箱梁时一般可满足立交桥的总体布置要求,对于这些中等跨径的钢箱梁可采用等高度断面[1]。
与混凝土连续箱梁不同,连续钢箱梁有以下一些明显的特点:①钢结构的自重质量较轻,其单位面积质量要远远低于混凝土连续结构;②钢材凭借其较强的抗拉压性能,可通过调整钢板的厚度来满足受力需求。
③钢箱梁采用工厂加工制作,临时墩支撑,分段吊车安装就位,施工方便快捷,对现况道路交通影响小。
④钢箱梁梁高较小,可取得较好的景观效果。
尽管钢箱梁优点众多,但其加工复杂,技术要求高,需要专业的加工队伍,且造价和后期维护费用较高。
2小半径曲线钢箱梁的常见病害及成因小半径曲线钢箱梁作为曲线梁的一种,自然继承了曲线梁的不足和缺点,同时因其自身的特殊性,其常见病害表现在如下几个方面[2]。
(1)梁体向曲线外侧径向侧移。
曲线匝道桥一般都是单向行驶,在活载的离心力和制动力作用下,主梁容易产生向曲线外侧及汽车制动力方向的水平错位。
当支座布置不合理时,在上述径向力和切线力作用下,严重时可使主梁滑落。
(2)梁体曲线内侧支座脱空及整体倾覆。
钢箱梁相对混凝土梁自重较轻,当支座设置不合理时,可提供的抗扭能力低,在车辆活载作用下曲线内侧的支座往往会出现脱空现象。
在极端偏载情况下甚至可能出现梁体整体倾覆的现象。
现实中经常出现重车列队偏载在一侧行驶或停车的情况,最终导致梁体整体倾覆。
摘要 对于受地形、地表及地下构筑物限制的城市桥梁,曲线钢箱梁因交通影响小且施工工期较短而成为首选。
曲线钢箱梁受力复杂,与直线桥梁相比更具设计难度,一旦设计不合理,将会对后续使用产生一系列后果。
本文通过分析曲线钢箱梁的受力特征、常见病害及成因,结合某小半径曲线钢箱梁的实际设计案例,对其设计要点进行探讨,以期为同类型曲线钢箱梁的设计提供借鉴和参考。
小半径曲线薄壁钢箱梁制作与质量控制◎ 艾磊 中交投资南京有限公司摘 要:为提升城市景观环境,越来越多的异形结构应用在城市公用工程当中,其中异形天桥对于城市景观的提升尤为重要。
本文以温州高铁新城空中连廊一期工程为例,对小半径曲线薄壁钢箱梁加工制作及质量控制要点进行分析。
关键词:小半径;曲线;钢箱梁;制作;质量控制1.前言钢结构人行天桥具有外形美观、易于造型、自重小、跨度大、安装便捷等特点,同时又可以将过街通道提升,实现人车分流,避免交通拥堵,常用于提升城市景观效果。
尤其在各大商圈中,常常将特殊造型的钢结构人行天桥用于打造地标建筑,提升地段商业价值。
而用于人行天桥的钢箱梁往往具有截面高度小、壁板薄、内部工作空间小等特点,这些特点是人行天桥箱梁加工必须面对的困难,而对于小半径的曲线薄壁箱梁,这样的加工难度更为突出。
2.工程简介温州高铁新城空中连廊一期工程位于温州市高铁新城动车南站东侧,新建空中连廊全长约1.6km,宽4.0- 6.0m,部分桥面宽8.5m、9.5m。
主桥采用钢拱斜拉组合体系,由钢箱梁、钢拱肋、斜拉索组成。
钢箱梁采用单箱双室结构均为1.8m梁高,主桥面宽6—11m 。
拱肋断面为矩形空心断面。
斜拉索为高强镀锌平行钢丝。
桥梁下部结构柱墩采用柱式墩,“一”字型桥台,桩基础。
主桥钢箱梁为环形布置,最小曲线半径为48m 。
标准段采用单箱双室结构,宽度为6m,加宽段采用单箱多室结构,宽度为6—11m,高度均为1.8m。
钢材采用Q345qC钢材,顶、底板厚度均为12m m ,腹板为14mm。
3.钢箱梁加工重难点(1)钢箱梁为单箱双室或多室梁。
厂内制造全焊钢结构梁段,节段单板厚度与刚度较小,焊缝密集、种类多、焊接工位转换多、焊缝要求级别高,且箱室高度较小,作业空间小,作业难度大。
(2)钢箱梁为小半径曲线(连续)梁,在制造和现场拼装时需要同时保证梁段平曲线及横坡变化影响,制造精度要求高,控制难度大。
(3)B段桥钢箱梁为环形曲面结构,最小半径仅为48m,且存在变宽设计,箱梁线形复杂,且箱室宽度较大,分段制造,断面尺寸控制及钢箱梁成桥线形控制难度大。
小半径曲线桥梁设计要点探析一、小半径曲线桥梁的结构受力特点小半径曲线桥梁由于主梁的平面弯曲使得下部结构墩柱的支承点不在同一条直线上,形成了其独有的受力特点:(1)主梁受曲率影响,梁截面发生竖向弯曲的同时会产生扭转,而产生的弯矩和扭矩相互影响,使梁处于弯扭耦合状态;(2)由于弯扭耦合作用,弯桥的变形比同跨径的直桥要大,主梁外边缘的挠度大于内边缘的,而且曲率半径越小,桥越宽,这一趋势越明显。
同时在梁端可能出现翘曲,当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势;(3)曲线桥梁上汽车荷载的偏心布置及其行驶时的离心力,也会造成曲线梁桥向外偏转并增加主梁扭矩和扭转变形。
另外,曲线桥梁即使在对称荷载作用下也会产生较大的扭矩,该扭矩通常会使得外梁超载,内梁卸载;(4)主梁的扭转传递到梁端部时,会造成端部各支座横向受力分布严重不均,通常呈曲线外侧支反力变大,内侧变小的趋势,有时内侧支座甚至会出现负反力。
(5)曲线桥的中横梁是保持全桥稳定的重要构件,与直线桥相比,其刚度一般较大。
(6)采用连续梁体系的曲线桥,预应力效应对支反力的分配有较大的影响,在计算支座反力时必须考虑预应力效应的影响。
二、小半径曲线桥梁的设计要点(一)小半径曲线桥梁支座的布置形式曲线箱梁桥支座的布置型式通常采用三种形式(如下图):a. 全部采用抗扭支承, b. 两端设置抗扭支承,中间设单支点铰支承,c.两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承。
近年来,在曲线箱梁桥工程实际应用中,两端为抗扭支座(双支座),联内安置几个单点铰支座,即中支点下部采用独柱支承的曲线桥多次发生侧倾事故。
其主要原因多为主梁在偏心荷载作用下发生扭转,当转角大到一定程度时,支反力的下滑分力将超过支座侧向的约束能力,扭矩将全部转移到梁端造成曲线内侧支座脱空,主梁发生倾覆。
所以此类支座布置的形式在工程应用中已不多见。
对于小半径的曲线箱梁,通常全部采用抗扭支承。
应用技术与设计2018年第18期631 项目概述由于平面线型的限制,上跨主桥初步为25m+36m+ 36m+25m 预应力混凝土连续曲线箱梁,曲线半径为80m。
2 设计标准(1)设计载荷:城-A 级。
(2)温度荷载:结构体系温差为±22℃,温度梯度为10cm 沥青路面参数。
(3)桥宽:8.0m。
(4)设计车速:40km/h。
3 设计参数3.1 箱梁结构桥梁上部结构为四跨预应力混凝土连续曲线箱梁,位于圆弧曲线上,曲线平缓,最小半径为80m。
分跨布置为:25m+36m+36m+25m=122m。
主梁是单箱单室截面。
梁高在第一跨内从1.4m 逐渐变为2.0m,并在第三跨中从2.0m 进一步变为1.4m,梁高是跨径的1/17。
顶板宽度8.0m,底版宽度4.0m,箱梁翼板悬臂2.0m,腹板厚度50cm,底板厚度20厘米。
支点处有横隔梁,中横隔梁宽2.0m,端横隔梁宽1.0m,横隔梁位于支点处。
3.2 预应力布置箱梁采用单向预应力系统。
纵向预应力筋采用高强度,低松弛的股绳(12-7ф5和7-7ф5)。
箱梁跨中预应力钢束布置见图 1图1 箱梁跨中横截面(单位:cm)3.3 崩钢筋设置小半径曲线桥的纵向预应力钢绞线沿箱梁腹板的平面曲线水平排列。
预应力钢绞线对混凝土产生较大的径向力,将相邻的两根预应力钢绞线分开。
除了对混凝土施加局部压力外,预应力梁与箱梁内部弧面之间的混凝土也受到崩弹作用,因此该径向力对箱梁的受力非常不利。
为了解决这个问题,当布置钢梁时,在两个相邻的预应力钢梁之间留下14cm 的混凝土厚度,并且在箱梁腹板上留下18cm 的混凝土厚度保护层以抵抗这种侧向崩弹力,同时在腹板内设置防崩钢筋。
防崩钢筋示意图见图2。
图2 防崩钢筋示意图4 设计要点(1)由于曲线梁桥比直线梁桥的受力复杂,对结构的抗弯、抗扭性能要求高于同跨径的直线梁桥,故采用整体性好、抗扭刚度大就地浇注的连续箱形梁桥比较好。
(2)影响曲线桥和线形桥受力的主要因素有:中心角(反映主梁弯曲程度),桥宽与曲率半径的比值,比值弯曲扭转刚度和扇区EI ω的惯性矩。
具有跨径大,经济性相对较好等优势,的圆曲线及其缓和曲线上。
该桥以约60°的大角度斜交上跨既有高速,该高速为进出昆明的主要干因此采用先顶推架设钢结构,再浇筑混凝土桥面板的施工方法。
本桥跨径大,负弯矩区平曲线半径较小,弯桥效应突保通和施工安全压力较大。
综合来本桥的设计规范采用公路体系,设计类,设计安全等级为一级,设计车速为50km/h,桥面标准宽度护栏=10m。
为增强结构的抗扭性能,主梁截面箱支承于槽型梁和小纵梁上翼缘,挑臂长度1.75m,横向计算跨径3.25m;挑臂端部板厚18cm,横向跨中板厚25cm,翼缘板上方厚35cm。
钢结构顶宽6.5m,底宽5.1m,腹板高3.1~3.13m,腹板斜率为3150:750,顶板厚度为20~50mm,底板厚度为20~40mm,腹板厚度为16~20mm,底板设有9道20×240mm板式加劲肋。
小纵梁高度600mm,上翼缘宽度600mm,厚度14mm,下翼缘宽度250mm,厚度20mm,腹板高度560mm,厚度10mm。
钢主梁端支点设置实腹式端横梁,中支点位置设置实腹式中横梁,跨间每隔5m设置1道箱内横撑,箱内横撑为空腹式桁架结构。
桁架杆件为L100×8mm规格的双肢角钢,为增强杆件的单肢稳定性,在杆件中部设置一块填板。
(图1)图1主梁标准断面板双层组合结构,利用混凝土抗压能力好的特性,改善了中支点底板的受力,同时减小了中支点底板的钢板厚度。
负弯矩区混凝土桥面板抗裂措施负弯矩区桥面板裂缝控制一直是钢混组合梁桥的设计难点,本桥由于跨径较大,负弯矩区桥面板开裂风险更为突出。
常规预应力在组合梁桥中施加效率不高,并且小4钢混组合桥面板设计常规组合梁桥一般采用支架模板浇筑混凝土桥面板,本桥由于上跨既有高速,支模和拆模不仅施工周期长,且对桥下道路的通行存在较大安全隐患。
因此本桥采用钢混组合桥面板,不需要在现场进行模板作业,显著提升了施工的便捷性和安全性。
浅谈小半径曲线桥梁的设计要点作者:邓天琦来源:《建筑工程技术与设计》2014年第35期【摘要】随着我国基础建设投入不断加大,交通运输事业不断发展,尤其是高速公路、城市立交和高架道路日益增多。
为使交通线路的规划能够很好的适应地形、地物限制的要求,使交通线路的布置趋于合理和科学,曲线梁桥的建造需求变得越来越多。
然而,小半径曲线桥梁在设计时存在许多不容忽视的控制要点,如不充分考虑它空间受力的特性,将会使曲线桥在使用过程中出现严重的病害,如支座脱空、侧向位移甚至侧向倾覆等。
本文将针对这些问题以及问题产生的原因进行分析,为曲线桥梁的设计积累经验。
【关键词】小半径;曲线桥梁;偏心一、小半径曲线桥梁的结构受力特点小半径曲线桥梁由于主梁的平面弯曲使得下部结构墩柱的支承点不在同一条直线上,形成了其独有的受力特点:(1)主梁受曲率影响,梁截面发生竖向弯曲的同时会产生扭转,而产生的弯矩和扭矩相互影响,使梁处于弯扭耦合状态;(2)由于弯扭耦合作用,弯桥的变形比同跨径的直桥要大,主梁外边缘的挠度大于内边缘的,而且曲率半径越小,桥越宽,这一趋势越明显。
同时在梁端可能出现翘曲,当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势;(3)曲线桥梁上汽车荷载的偏心布置及其行驶时的离心力,也会造成曲线梁桥向外偏转并增加主梁扭矩和扭转变形。
另外,曲线桥梁即使在对称荷载作用下也会产生较大的扭矩,该扭矩通常会使得外梁超载,内梁卸载;(4)主梁的扭转传递到梁端部时,会造成端部各支座横向受力分布严重不均,通常呈曲线外侧支反力变大,内侧变小的趋势,有时内侧支座甚至会出现负反力。
(5)曲线桥的中横梁是保持全桥稳定的重要构件,与直线桥相比,其刚度一般较大。
(6)采用连续梁体系的曲线桥,预应力效应对支反力的分配有较大的影响,在计算支座反力时必须考虑预应力效应的影响。
二、小半径曲线桥梁的设计要点(一)小半径曲线桥梁支座的布置形式曲线箱梁桥支座的布置型式通常采用三种形式(如下图):a. 全部采用抗扭支承, b. 两端设置抗扭支承,中间设单支点铰支承,c.两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承。
浅析小半径曲线梁桥的设计要点与构造措施摘要:总结了曲线梁桥的受力特点和关键问题,主要是弯扭耦合效应下结构呈现出来的受力行为。
针对小半径曲线梁桥的设计,从线形设计与优化、宽跨比设计、断面设计与构造、支撑方式选择等方面,详细讨论了设计要点和构造处理方法,提高小半径曲线梁桥的设计安全性与稳定性。
关键词:桥梁工程;施工;安全问题;稳定性;管理措施1前言在我国公路建设迅速发展的背景下,桥梁的设计线形需要更好地适应道路路线规划需求,这使得出现了诸多曲线桥梁结构,特别是城市立交及山区公路的设计建造中,曲线的半径很小。
曲线梁具有显著的弯扭耦合特性,即在竖向荷载作用下梁桥不仅发生弯曲变形还有扭转效应,这使得弯桥相对直桥受力更为不利。
在施工过程中,曲线梁外侧荷载要高于内侧,导致容易发生翻转引起施工安全,需要采用临时措施确保其稳定;运营过程中,活载作用下内梁卸载外梁超载,会导致支座脱空严重的引起桥梁倾覆失稳,例如近年来国内发生的多起重车作用下曲线梁桥倾覆倒塌事故[1][2]。
因此,需要掌握曲线梁桥的受力特点和荷载传递机理,特别是针对小半径曲线梁桥结构。
在设计中针对小半径曲线梁桥提出设计方法与要点,通过构造处理方法确保桥梁的整体稳定性,这对于保障桥梁工程作为公路交通运输的生命线节点非常重要。
2曲线梁桥的受力特点及关键问题曲线梁桥相对于直桥结构最显著的就是弯扭耦合效应,无论是恒载还是活载作用下,曲线梁呈现出来的荷载传递机理和受力表现型式都与弯扭耦合效应相关。
需要指出的是,小曲线梁桥将弯扭耦合效应推到极限状态,过小的曲线半径一方面使得行车安全性难以保证,另一方面使得外梁超载严重而内梁卸载显著,极容易发生横向失稳。
2.1内外梁承载与受力的不均匀性曲线梁在结构自重荷载作用下,内外梁的弧线长度不同,外梁跨度显著大于内梁,使得外梁在结构自重作用下变形要大于内梁,内外梁变形的不一致性就产生了向外扭转变形的趋势,即弯扭耦合效应。
因此,在施工过程中如果是小半径曲线梁桥,起吊和安装过程中如果不进行横向支撑处理,会发生梁体翻转问题,产生施工安全风险。
小半径曲线桥箱梁架设工艺小半径曲线简支转连续箱梁桥由于半径小、超高大,对架设设备的选择和施工工艺有诸多限制,和位于直线和大半径曲线上的桥梁相比,箱梁架设施工难度大,本文以通沈高速公路赶马河大桥为例,通过对架桥设备及施工工艺的改进,利用现有普通双导梁架桥机短期内成功完成全桥箱梁安装。
标签:小半径曲线桥架设箱梁1 箱梁架设工艺及施工难点1.1 赶马河大桥上部结构形式为9×30m连续箱梁,三跨一联,一跨半幅五片箱梁。
本桥位于半径R=700m左偏圆曲线上,横向超高5%,左右半幅桥墩不在同一断面,错开约10m左右,下部构造为扩大基础+双柱+挑臂式预应力盖梁。
1.2 设计箱梁架设顺序:①张拉盖梁4、3号预应力束。
②架设纵向一端内侧(靠近墩柱)三片箱梁,后架设纵向同一端(远离墩柱)两片箱梁。
③然后架设纵向另一端内侧(靠近墩柱)三片箱梁,后架设纵向同一端(远离墩柱)两片箱梁。
④张拉盖梁剩余其他6、5、2、1号预应力束。
1.3 施工难点:①本桥曲线半径仅700m,而箱梁长30m,架设时翼板宽度2.4m(边梁2.8m),箱梁喂入架桥机难度大。
②桥面横坡5%,对架桥机横移影响大。
③小半径曲线桥上,架桥机过孔就位难度大。
2 架桥机选择和施工工艺的确定2.1 因该桥工期紧,采购可以进行曲线桥梁架设的架桥机成本高、时间长,利用工地现有架桥机进行改进,满足喂梁、过孔、横移等需求更为合理,短期内即可投入使用。
现有架桥机为贝雷片拼装双导梁结构,总长度66m,双导梁中心间距5.2m。
架桥机共前中后三排横移轨道,前-中支腿间距32.8m,中-后支腿间距33.2m。
2.2 箱梁架设施工工艺:铺设架桥机轨道→架桥机过孔→固定(临时)支座安装→架桥机后部喂梁→带梁横移→落梁就位→固定箱梁,以上工序重复进行。
3 架桥机及架设工艺改进要满足本桥的箱梁架设,主要针对以下三个方面对架桥机进行改进:3.1 喂梁:本桥曲线半径700m,每两跨梁纵向角度偏移约2.43度,架桥机全长66m,架桥机平行于所吊装跨箱梁,则架桥机尾部将偏离运梁轨道1.68m左右,如此以来导致无法喂梁。