2020高中化学 晶体的常识 分子晶体与原子晶体(基础)知识讲解学案 新人教版选修3
- 格式:doc
- 大小:122.00 KB
- 文档页数:7
一.晶体常识
1 .晶体与非晶体比较
2 .获得晶体的三条途径
①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3 .晶胞
晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”。
4 .晶胞中微粒数的计算方法 —— 均摊 法
如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学中常见的晶胞为立方晶胞
立方晶胞中微粒数的计算方法如下:
注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状
二.四种晶体的比较
晶体熔、沸点高低的比较方法
(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体
由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅
(3)离子晶体
一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
(4)分子晶体
①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。
④同分异构体,支链越多,熔、沸点越低。
(5)金属晶体
金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。
三.几种典型的晶体模型。
晶体的常识、分子晶体与原子晶体一、晶体和非晶体1.晶体与非晶体结构特征晶体结构微粒周期性有序排列非晶体结构微粒无序排列性质特征自范性熔点异同表现有(能自发呈现多面体外形)固定各向异性无(不能自发呈现多面体外形)不固定各向同性二者区别方法间接方法科学方法看是否有固定的熔点对固体进行X-射线衍射实验注意:(1)、晶体与非晶体的本质差异表现在有无自范性和微观结构特征上。
本质上,晶体的自范性是晶体中粒子在微观空间里呈现周期性的有序排列的宏观表象;相反,非晶体中粒子的排列相对无序,因而无自范性。
(2)、晶体的特点并不仅限于外形和内部质点排列的高度有序性,它们的许多物理性质,如强度、导热性、光学性质等,常常会表现出各向异性。
2.得到晶体的途径熔融态物质凝固;气态物质冷却不经液态直接凝固(凝华);溶质从溶液中析出。
如:从熔融态结晶出来的硫晶体;凝华得到碘;从硫酸铜饱和溶液中析出的硫酸铜晶体。
二、晶胞1.晶胞:描述晶体结构的基本单元叫晶胞。
2.晶体中晶胞的排列——无隙并置①无隙:相邻晶胞之间没有任何间隙。
②并置:所有晶胞都是平行排列的,取向相同。
晶胞计算是晶体考查的重要知识点之一,也是考查学生分析问题、解决问题能力的较好素材。
晶体结构的计算常常涉及如下数据:晶体密度、N A、M、晶体体积、微粒间距离、微粒半径、夹角等,密度的表达式往往是列等式的依据。
1.“均摊法”原理原子 金属键特别提醒 ①在使用均摊法计算晶胞中微粒个数时,要注意晶胞的形状,不同形状的晶胞,应先分析任意位置上的一个粒子被几个晶胞所共有,如六棱柱晶胞中,顶点、侧棱、底面上的棱、面心依次被 6、3、4、2 个晶胞所共有。
三棱柱晶胞中,顶点、侧棱、底面上的棱、面心依次被 12、6、4、2 个晶胞所共有。
②在计算晶胞中粒子个数的过程中,不是任何晶胞都可用均摊法。
2.晶体微粒与 M 、ρ之间的关系若 1 个晶胞中含有 x 个微粒,则 1 mol 晶胞中含有 x mol 微粒,其质量为 xM g(M 为微粒的相对“分子”质量);1 个晶胞的质量为 ρa 3 g(a 3 为晶胞的体积,ρ 为晶胞的密度),则 1 mol 晶胞的质量为 ρa 3N A g ,因此有 xM =ρa 3N A 。
分子的性质【学习目标】1、知道极性共价键和非极性共价键;结合常见物质分子立体结构会判断极性分子和非极性分子。
2、理解范德华力、氢键的概念及其对物质性质的影响。
3、从分子结构的角度,认识“相似相溶”规律。
4、了解“手性分子”的结构及其在生命科学等方面的应用。
5、能用分子结构的知识解释无机含氧酸分子的酸性。
【要点梳理】要点一、共价键的极性--极性键和非极性键【高清课堂:分子结构与性质#键的极性与分子的极性】1、分类依据:共用电子对是否偏移,发生偏移为极性键;不发生偏移为非极性键。
说明:极性键中共用电子对偏向的一方带负电荷用δ-表示;共用电子对偏离的一方带正电荷用δ+表示。
2、判断技巧:形成共价键的两原子是否为同种原子,如相同,为非极性键;如不同,为极性键。
原子电负性(元素非金属性)差值越大的,共用电子对偏移程度大,键的极性就越大。
要点诠释:化学键类型和物质类别的关系1)、不含有化学键的物质:稀有气体分子。
2)、只含非极性共价键的物质:同种非金属元素构成的单质。
如:H2、P4、金刚石等3)、只含极性共价键的物质:一般是不同非金属元素构成的共价化合物。
如:HCl、NH3等4)、既有非极性共价键又有极性共价键的物质:如:H2O2、C2H2、CH3CH3、C6H6等5)、只含有离子键的物质:活泼金属与活泼非金属元素形成的化合物。
如:Na2S、CsCl、K2O、NaH等6)、既有离子键又有非极性键的物质:如:Na2O2、CaC2等7)、既有离子键又有极性键的物质:如:NaOH8)、有离子键、共价键、配位键组成的物质:如:NH4Cl要点二、分子的极性1、非极性分子:正负电荷中心重合的分子称为非极性分子,它的分子中各个键的极性的向量和等于零。
例如:X2型双原子分子(如H2、Cl2、Br2等)、XY n型多原子分子中键的极性互相抵消的分子(如CO2、CCl4等)都属非极性分子。
2、极性分子:正负电荷中心不重合的分子称为极性分子,它的分子中各个键的极性向量和不等于零。
高考化学普通高中课程标准实验教科书—化学选修3人教版]第二课时复习]分子晶体的有关内容。
过渡]下面我们学习微观空间里没有分子的晶体—原子晶体。
板书] 二、原子晶体讲解]有的晶体的微观空间里没有分子,原子晶体就是其中之一。
在原子晶体里,所有原子都以共价键相互结合,整块晶体是一个三维的共价键网状结构,是一个“巨分子”,又称共价晶体。
板书]1、原子晶体:原子都以共价键相结合,是三维的共价键网状结构。
投影]图3-14金刚石的多面体外型、晶体结构、晶胞示意图:讲解]金刚石是典型的原子晶体。
天然金刚石的单一晶体经常呈现规则多面体的外形,在金刚石晶体中,每个碳原子以四个共价单键对称地与相邻的4个碳原子结合,C--C--C夹角为109°28′,即金刚石中的碳取sp3杂化轨道形成共价键。
板书]2、金刚石结构:正四面体网状空间结构,C--C--C夹角为109°28′,sp3杂化。
设问]金刚石的物理性质与C--C共价键参数有什么关系?讲解]金刚石里的C--C共价键的键长(154 pm)很短,键能(347.7kJ/mo1)很大,这一结构使金刚石在所有已知晶体中硬度最大,而且熔点(>3 550℃)也很高。
高硬度、高熔点是原子晶体的特性。
板书]特点:硬度最大、熔点高。
讲述] 自然界里有许多矿物和岩石,化学式都是Si02,也是典型的原子晶体。
SiO2具有许多重要用途,是制造水泥、玻璃、人造宝石、单晶硅、硅光电池、芯片和光导纤维的原料。
板书]3、SiO2原子晶体:制水泥、玻璃、宝石、单晶硅、硅光电池、芯片和光导纤维等。
投影]以二氧化硅为原料的高科技产品:讲述]常见的原子晶体。
板书]4、(1)某些非金属单质,如硼(B)、硅(Si)和锗(Ge)等; (2)某些非金属化合物,如碳化硅(SiC,俗称金刚砂)、氮化硼(BN)等;(3)某些氧化物,如氧化铝(A12O3)等。
探究思考]1、怎样从原子结构的角度理解金刚石、硅和锗的熔点和硬度依次下降?2.“具有共价键的晶体叫做原子晶体”。
1.下列说法错误的是()A.非晶体都没有固定的熔点B.晶体与玻璃体的本质差别是二者的硬度不同C.可通过X-射线衍射实验科学地区分晶体和非晶体D.构成玻璃的粒子无周期性排列,是无序的解析:晶体的熔点固定,而非晶体无固定的熔点,A正确;玻璃体是非晶体,与晶体的本质差别在于构成固体的粒子在微观空间里是否呈现周期性的有序排列,B错误,D正确;区分晶体与非晶体最科学的方法是对固体进行X-射线衍射实验,C正确。
答案:B2.普通玻璃和水晶的根本区别在于()A.外形不一样B.普通玻璃的基本构成微粒无规则排列,水晶的基本构成微粒按一定规律做周期性重复排列C.水晶有固定的熔点,普通玻璃无固定的熔点D.水晶可用于能量转换,普通玻璃不能用于能量转换解析:普通玻璃为非晶体,水晶为晶体,它们的根本区别在于内部微粒是否按一定规律做周期性重复排列,即晶体具有自范性。
两种物质在性质上的差异正是其内部结构不同的体现。
答案:B3.关于晶体的自范性,下列叙述正确的是()A.破损的晶体能够在固态时自动变成规则的多面体B.缺角的氯化钠晶体在饱和NaCl溶液中慢慢变为完美的立方体块C.圆形容器中结出的冰是圆形的,体现了晶体的自范性D.由玻璃制成规则的玻璃球体现了晶体的自范性解析:晶体的自范性指的是在适宜条件下,晶体能够自发地呈现封闭的规则的多面体外形的性质,这一适宜条件一般指的是自动结晶析出的条件,A选项所述过程不可能实现;C选项中的圆形并不是晶体冰本身自发形成的,而是受容器的限制形成的;D项中玻璃是非晶体。
答案:B4.晶体具有各向异性。
如蓝晶石(Al2O3·SiO2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1∶1000。
晶体各向异性的主要表现是()①硬度②导热性③导电性④光学性质A.①③B.②④C.①②③D.①②③④解析:晶体的各向异性反映了晶体内部质点排列的有序性,表现在硬度,导热性、导电性、光学性质等方面。
... ... 晶体的常识 分子晶体与原子晶体
【学习目标】 1、初步了解晶体的知识,知道晶体与非晶体的本质差异,学会识别晶体与非晶体的结构示意图; 2、知道晶胞的概念,了解晶胞与晶体的关系,学会通过分析晶胞得出晶体的组成; 3、了解分子晶体和原子晶体的特征,能以典型的物质为例描述分子晶体和原子晶体的结构与性质的关系; 4、知道分子晶体与原子晶体的结构粒子、粒子间作用力的区别。 【要点梳理】 要点一、晶体与非晶体【高清课堂:分子晶体与原子晶体#晶体与非晶体】 1、概念: ①晶体:质点(分子、离子、原子)在空间有规则地排列成的、具有整齐外型、以多面体出现的固体物质。晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。 ②非晶体:非晶态物质内部结构没有周期性特点,而是杂乱无章地排列,如:玻璃、松香、明胶等。非晶体不具有晶体物质的共性,某些非晶态物质具有优良的性质 要点诠释:晶体与非晶体的区分: 晶体是由原子或分子在空间按一定规律周期性地重复排列构成的固体物质。周期性是晶体结构最基本的特征。许多固体的粉末用肉眼是看不见晶体的,但我们可以借助于显微镜观察,这也证明固体粉末仍是晶体,只不过晶粒太小了。 晶体的熔点较固定,而非晶体则没有固定的熔点。区分晶体和非晶体最可靠的科学方法是对固体,进行X—射线衍射实验,X射线透过晶体时发生衍射现象。 特别注意:一种物质是否晶体,是由其内部结构决定的,而非由外观判断。
2、分类:
3、晶体与非晶体的本质差异: 自范性 微观结构 晶体 有(能自发呈现多面体外形) 原子在三维空间里呈周期性有序排列 非晶体 没有(不能自发呈现多面体外形) 原子排列相对无序 说明: ①自范性:晶体能自发性地呈现多面体外形的性质。所谓自范性即“自发”进行,但这里要注意,“自发”过程的实现仍需一定的条件。例如:水能自发地从高处流向低处,但若不打开拦截水流的闸门,水库里的水不能下泻; ②晶体自范性的条件之一:生长速率适当; ③晶体自范性的本质:是晶体中粒子微观空间里呈现周期性的有序排列的宏观表象。
4、晶体形成的途径: ①熔融态物质凝固,例:熔融态的二氧化硅,快速冷却得到玛瑙,而缓慢冷却得到水晶。 ②气态物质冷却不经液态直接凝固(凝华); ③溶质从溶液中析出。 ... ... 5、晶体的特性: ①有规则的几何外形; ②有固定的熔沸点; ③各向异性(强度、导热性、光学性质等); 说明:因研究角度不同而产生差异,即为各向异性。 例如:蓝晶石(Al2O3·SiO2)在不同方向上的硬度不同; 石墨在与层垂直的方向上的导电率是层平行的方向上的导电率1/104。 ④自发的形成多面体外形; ⑤有特定的对称性; ⑥使X射线产生衍射。
要点二、晶胞【高清课堂:分子晶体与原子晶体#晶胞】 1、定义:晶体中重复出现的最基本的结构单元。 晶体可看作是数量巨大的晶胞“无隙并置”而成,所谓“无隙”是指相邻晶胞之间没有任何间隙,所谓“并置”是指所有晶胞都是平行排列的,取向相同。 说明:划分晶胞要遵循2个原则:一是尽可能反应晶体内部结构的对称性,二是尽可能小。
2、三种典型的立方晶体结构:
说明:晶胞的顶角原子是8个晶胞共用的,晶胞棱上的原子是4个晶胞共用的,晶胞面上的原子是2个晶胞共用的。
3、晶胞中原子个数的计算: 位于晶胞顶点的微粒,实际提供给晶胞的只有1/8; 位于晶胞棱边的微粒,实际提供给晶胞的只有1/4; 位于晶胞面心的微粒,实际提供给晶胞的只有1/2; 位于晶胞中心的微粒,实际提供给晶胞的只有1。
要点三、晶胞中原子个数的计算: 在一个晶胞结构中出现的多个原子,这些原子并不是只为这个晶胞所独立占有,而是为多个晶胞所共有,那么,在一个晶胞结构中出现的每个原子,这个晶体能分摊到多少比例,这就是分摊法。分摊法的根本目的是算出一个晶胞单独占有的各类原子的个数。 分摊法的根本原则是:晶胞任意位置上的一个原子如果是被x个晶胞所共有,那么,每个晶胞对这个原子分得的份额就是1/x。在立体晶胞中,原子可以位于它的顶点,也可以位于它的棱上,还可以在它的面上(不含棱),当然,它的体内也可以有原子。每个顶点被8个晶胞共有,所以晶胞对自己顶点上的每个原子只占1/8份额;每条棱被4个晶胞共有,所以晶胞对自己棱上的每... ... 个原子只占1/4份额;每个面被2个晶胞共有,所以晶胞对自己面上(不含棱)的每个原子只占1/2份额;晶胞体内的原子不与其他晶胞分享,完全属于该晶胞。 ①每个晶胞涉及A原子数目m个,每个A原子为n个晶胞共有,则每个晶胞占有A原子:m×1/n。 ②计算方法
位置 顶点 棱边 面心 体心 贡献 1/8 1/4 1/2 1
要点四、判断晶体类型的依据: (1)看构成晶体的微粒种类及微粒间的相互作用 对于分子晶体,构成晶体的微粒是分子,微粒间的相互作用是分子间作用力; 对于原子晶体,构成晶体的微粒是原子,微粒间的相互作用是共价键。 (2)看物质的物理性质(如:熔、沸点或硬度等) 一般情况下,不同类晶体熔点高低顺序是:原子晶体>分子晶体。原子晶体比分子晶体的熔沸点高得多。 (3)依据物质的分类判断 金属氧化物(如K2O、Na2O2等)、强碱(如NaCl、KOH等)和绝大多数的盐类是离子晶体。大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼外)、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除有机盐外)是分子晶体。常见的原子晶体单质有金刚石、石墨、晶体硅、晶体硼等;常见的原子晶体化合物有碳化硅、二氧化硅等。金属单质(除汞外)与合金都是金属晶体。
要点五、晶体熔、沸点比较规律: (1)不同晶体类型的物质:原子晶体>分子晶体; (2)同一晶体类型的物质,需比较晶体内部粒子间的作用力,作用力越大,熔沸点越高。 原子晶体:要比较共价键的强弱,一般地说,原子半径越小,形成共价键的键长越短,键能越大,其晶体熔沸点越高,如熔点:金刚石>碳化硅>晶体硅。 分子晶体:分子组成和结构相似的物质,相对分子质量越大,熔沸点越高, 如熔沸点:O2>N2、HI>HBr>HCl。 组成结构不相似的物质,分子的极性越大,其熔沸点就越高, 如熔沸点:CO>N2。 由上述可知,同类晶体熔沸点比较思路为:原子晶体→共价键键能→键长→原子半径、分子晶体→分子间作用力→相对分子质量。
要点六、分子晶体【高清课堂:分子晶体与原子晶体#分子晶体】 1、定义: 含分子的晶体称为分子晶体,也就是说,分子间以分子间作用力相结合的晶体叫做分子晶体。 例:干冰晶体中只含有CO2分子,碘晶体中只含有I2分子。
2、构成微粒:分子。 3、微粒间的作用力:分子间作用力——范德华力和氢键 一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔沸点就越高。但是有些氢化物的熔点和沸点的递变不完全符合此规律。例如: H2O的沸点就出现反常。因为H2O分子之间的主要作用力是氢键(当然也存在范德华力)。 氢键形成的过程: ①氢键形成的条件:半径小,吸引电子能力强的原子(N、O、F)与H原子; ②氢键的定义:半径小、吸引电子能力强的原子与H原子之间的静电吸引作用。氢键可看作是一种比较强的分子间作用力; ... ... ③氢键对物质性质的影响:氢键使物质的熔沸点升高。如H2O、HF、NH3的沸点出现反常现象。
4、较典型的分子晶体: ①所有非金属氢化物,如水、硫化氢、氨、氯化氢、甲烷等; ②部分非金属单质,如卤素X2、氧(O2)、硫(S8)、氮(N2)、白磷(P4)、碳60(C60)等; ③部分非金属氧化物,如CO2、P4O6、P4O10、SO2等; ④几乎所有的酸; ⑤绝大多数有机物的晶体。
5、分子晶体的物理特性: 熔沸点较低、易升华、硬度小。一般都是绝缘体,固态和熔融状态都不导电。
6、分子晶体的结构特点: ①对于大多数分子晶体结构,如果分子间作用力只是范德华力。以一个分子为中心,其周围通常可以有几个紧邻的分子。如O2、C60,把这一特征叫做分子紧密堆积。
实例:干冰的晶体结构晶胞模型。 干冰晶体中CO2分子之间只存在分子间作用力不存在氢键,因此干冰中CO2分子紧密堆积。每个CO2分子周围,最近且等距离的CO2分子数目有12个。 一个CO2分子处于三个相互垂直的面的中心,在每个面上,处于四个对角线上各有一个CO2分子,所以每个CO2分子周围最近且等距离的CO2分子数目是12个。 ②分子间除范德华力外还有其他作用力(如氢键),如果分子间存在着氢键,分子就不会采取紧密堆积的方式。 实例:冰的晶体结构。 在冰的晶体中,每个水分子周围只有4个紧邻的水分子,形成正四面体。氢键不是化学键,比共价键弱得多却跟共价键一样具有方向性,而氢键的存在迫使四面体中心的每个水分子与四面体顶角方向的4个相邻水分子的相互吸引,这一排列使冰晶体中空间利用率不高,皆有相当大的空隙,使得冰的密度减小。 说明:分子的密度取决于晶体的体积,取决于紧密堆积程度,分子晶体的紧密堆积由两个因素决定:范德华力和分子间氢键。
要点七、原子晶体:【高清课堂:分子晶体与原子晶体#原子晶体】 1、定义:相邻原子间以共价键相结合而形成的空间网状结构的晶体。
2、构成微粒:原子。