晶体学基本知识
- 格式:ppt
- 大小:5.31 MB
- 文档页数:39
《晶体》知识清单一、晶体的定义与基本特征晶体,指的是内部原子、离子或分子在空间按一定规律周期性重复排列构成的固体物质。
这种周期性的排列赋予了晶体一系列独特的特征。
首先,晶体具有规则的几何外形。
这是因为其内部结构的周期性和对称性,使得晶体在生长过程中自然形成了特定的几何形状,如立方体、八面体等。
其次,晶体具有固定的熔点。
在加热过程中,当温度达到晶体的熔点时,晶体开始熔化,并且在整个熔化过程中温度保持不变,直到完全熔化。
再者,晶体具有各向异性。
这意味着晶体在不同方向上的物理性质,如导电性、导热性、光学性质等,可能存在差异。
二、晶体的分类1、按照晶体中粒子间结合力的类型,晶体可以分为离子晶体、原子晶体、分子晶体和金属晶体。
离子晶体是由阴、阳离子通过离子键结合而成,典型的离子晶体有氯化钠、氯化铯等。
离子晶体具有较高的熔点和沸点,硬度较大,在熔融状态或水溶液中能导电。
原子晶体中,原子之间通过共价键相互连接,形成一个巨大的三维网状结构,例如金刚石、二氧化硅等。
原子晶体通常具有很高的熔点和硬度。
分子晶体中,分子之间依靠分子间作用力结合在一起,像干冰、冰等都是分子晶体。
分子晶体一般熔点和沸点较低,硬度较小。
金属晶体则是由金属阳离子和自由电子通过金属键结合而成,常见的金属如铁、铜、铝等都属于金属晶体。
金属晶体具有良好的导电性和导热性。
2、按照晶体是否具有对称性,可分为对称晶体和非对称晶体。
对称晶体具有一定的对称元素,如对称轴、对称面等,使得晶体在外观和物理性质上表现出对称性。
而非对称晶体则不具备这些对称元素。
三、晶体的形成晶体的形成通常有两种方式:从液体中结晶和从气相中结晶。
从液体中结晶,常见的有降温结晶和蒸发结晶。
降温结晶是通过降低溶液的温度,使溶质的溶解度降低,从而析出晶体。
蒸发结晶则是通过蒸发溶剂,使溶液浓度增大,溶质析出。
从气相中结晶,一般在真空中或在特定的气氛条件下进行。
气相中的粒子在一定条件下凝聚形成晶体。
晶体相关知识点总结一、基本概念1. 晶体的定义晶体是由原子、离子或分子按照一定的规则排列而形成的固体结构。
晶体具有高度有序性,具有一定的周期性和对称性。
晶体是凝聚态物质的一种主要形式,占据了固态物质的绝大部分。
2. 晶体的种类根据晶体结构的不同,晶体可以分为离子晶体、共价晶体、金属晶体和分子晶体等几种基本类型。
不同类型的晶体具有不同的物理性质和化学性质。
3. 晶体的分类根据晶体的外部形态,晶体可以分为单斜晶、正交晶、菱形晶、六方晶、四方晶、立方晶等几种基本类型。
不同类型的晶体具有不同的外部形态和对称性。
二、晶体结构1. 晶体的晶体结构晶体结构是指晶体中原子、离子或分子的排列方式和规律。
晶体结构可以分为周期性结构和非周期性结构两种形式。
周期性结构是指晶体中原子、离子或分子的排列具有一定的周期性,具有明显的晶格和对称性。
非周期性结构是指晶体中原子、离子或分子的排列没有明显的周期性,没有规则的晶格和对称性。
2. 晶体的晶格晶体的晶格是指晶体中原子、离子或分子所构成的三维空间排列的规则结构。
晶格可以分为周期性晶格和非周期性晶格两种类型。
周期性晶格是指晶格具有明显的周期性,有规则的排列和对称性。
非周期性晶格是指晶格没有明显的周期性,没有规则的排列和对称性。
3. 晶体的晶胞晶胞是指晶体中最小的具有完整晶体结构的基本单位。
晶胞可以分为原胞和扩展晶胞两种类型。
原胞是指晶体中最小的具有完整晶体结构的基本单位,包含了一个或多个原子、离子或分子。
扩展晶胞是指原胞在晶体结构中的重复排列,是构成晶体的基本单位。
三、晶体的生长1. 晶体生长的基本过程晶体生长是指在溶液、熔体或气相中,原子、离子或分子从溶液中萃取并在已生成的晶体上沉积,形成新晶体的过程。
晶体生长的基本过程包括成核、生长和成形几个阶段,成核是指溶液中原子、离子或分子聚集形成晶体的核心;生长是指晶体核心上原子、离子或分子的进一步沉积和排列生长;成形是指晶体的表面形态和结晶过程。
晶体学基础必学知识点1. 晶体的定义:晶体是由原子、离子或分子以有序排列形成的固态物质。
2. 结晶学:研究晶体的结构、性质以及晶体的生长过程。
3. 晶体的晶格:晶体具有规则的周期性排列结构,可以用晶格来描述。
4. 晶胞:晶体中最小的重复单元,可以通过平移来产生整个晶体结构。
5. 晶体的晶系:根据晶胞的对称性,晶体可以分为七个晶系,分别为三斜晶系、单斜晶系、正交晶系、四方晶系、六方晶系、菱方晶系和立方晶系。
6. 晶体的晶面和晶向:晶体表面上的平面称为晶面,晶体内部的线段称为晶向。
7. 晶体的点阵和晶格常数:晶胞中的基本单位称为点阵,晶体的晶格常数是指晶格中基本单位的尺寸参数。
8. 布拉格方程:描述X射线或中子衍射中晶体衍射角度与晶格参数之间的关系。
9. 动态散射理论:描述X射线或中子与晶体中原子、离子或分子相互作用的过程。
10. 逆格子:描述晶格的倒数空间,逆格子与晶格的结构存在对偶关系。
11. 晶体缺陷:晶体中的缺陷包括点缺陷、线缺陷和面缺陷,晶体缺陷对晶体的性质和行为有重要影响。
12. 晶体生长:研究晶体从溶液或气体中的形成过程,包括核化、生长和晶面的形态演化等。
13. 晶体的结构表征方法:包括X射线衍射、中子衍射、电子衍射、扫描电子显微镜和透射电子显微镜等。
14. 晶体结构的解析和精修:通过衍射数据和晶体学软件对晶体的结构进行解析和精修,得到晶体的准确原子位置和结构参数。
15. 晶体的物理和化学性质:晶体的结构对其性质有重要影响,包括光学性质、电学性质、磁学性质和力学性质等。
16. 晶体学的应用:晶体学在材料科学、化学、生物学、地质学和矿物学等领域有广泛的应用,如材料合成、催化剂设计、药物研发和矿石勘探等。
晶体学复习1 结晶学基础1.1概述1.2 第一章:晶体和非晶质体1.2.1 概念(格子、举例)晶体:具有格子构造的固体非晶质体:不具有格子构造的物质晶体的现代定义是:晶体是内部质点在三维空间成周期性重复排列的固体;或者说,晶体是具有格子构造的固体。
相应地,内部质点在三维空间成周期性重复排列的固体,便称为结晶质晶体的分布极为广泛,不只局限于矿物的范畴。
本质:在一切晶体中,组成它们的质点(原子、离子、离子团、分子等)在空间都是按格子构造的规律来分布的。
例如,石墨、石英、玻璃。
结论:一定化学成分的矿物,大部分都具有由原子规则排列的内部结构。
1.2.2 基本性质(6个)①最小内能:②稳定性:③对称性:④异向性:⑤均一性:⑥自限性:1.2.3 晶体的对称要素组合及规律(9个要素)对称指:物体相同部分的有规律重复.晶体的对称性也是相对的,而不对称则是绝对的。
晶体宏观对称要素:①对称中心(C):假想的一个点,相应的操作是对于这个点的反伸。
其作用相当于一个照相机.结论:晶体如具有对称中心,晶体上的所有晶面,必定全都成对地呈反向平行的关系。
其对称中心必定位于几何中心。
符号为“C”标志:晶体上的所有晶面都两两平行,同形等大,方向相反。
②对称面:为一假想的面,对称操作为对此平面的反映。
方法:P 2P 3P…… 9PP与面、棱有着的关系:(1)对称面垂直并平分晶体上的晶面晶棱;(2)垂直晶面并平分它的两个晶棱的夹角;(3)包含晶棱③对称轴(L n):为一假想的直线。
对称操作为绕此直线的旋转,可使晶体上的相同部分重复出现。
使相同部分重复出现的最小旋转角,称为基转角(α),旋转一周中,相同部分重复出现的次数,称为轴次( n )。
α、 n 之间的关系为:n = 360o/ α对称定律:晶体外形上可能出现的对称轴的轴次,不是任意的,只能是1 2 3 4 6 。
高次对称轴:轴次高于2的对称轴称(3、4、6)对称轴在晶体中可能出露的位置是:(1)两个相对晶面的连线;(2)两个相对晶棱中点的连线;(3)相对的两个角顶的连线(4)一个角顶与之相对的晶面之间的连线④旋转反身轴(L i n)旋转反伸轴是一假想直线和其上一点所构成的一种复合对称要素。
1、结晶学:以晶体为研究对象,以晶体的对称规律为主要研究内容的一门基础基础性的自然科学。
2、矿物学:以矿物晶体为研究对象,主要研究各具体矿物晶体的成分、物理性质、成因特点等。
3、晶体:内部结构具有周期重复性,即具有格子构造的固体。
晶体结构=点阵(或空间格子)+结构基元4、格子构造:晶体结构的周期重复规律,这种规律是可以用格子状的图形-空间格子表示的。
5、空间格子:表示晶体结构周期重复规律的简单几何图形。
6、相当点:满足以下两个条件的点:性质相同,周围环境相同。
7、空间格子的四要素①结点: 空间格子中的点,代表具体晶体结构中的相当点。
结点间距:同一行列中相邻结点间的距离。
②行列: 结点在直线上的排列。
③面网: 结点在平面上的分布。
面网密度:面网上单位面积内结点的密度。
面网间距:任意两相邻面网间的垂直距离。
(面网密度与面网间距成正比)④平行六面体: 结点在三维空间形成的最小重复单位。
平行六面体对应的实际晶体中相应的范围叫晶胞。
8、晶体的基本性质①自限性: 晶体能够自发地生长成规则的几何多面体形态。
②均一性:同一晶体的不同部分物理化学性质完全相同。
晶体是绝对均一性,非晶体是统计的、平均近似均一性。
③异向性:同一晶体不同方向具有不同的物理性质。
例如:蓝晶石的不同方向上硬度不同。
④对称性:同一晶体中,晶体形态相同的几个部分(或物理性质相同的几个部分)有规律地重复出现。
⑤最小内能性:晶体与同种物质的非晶体相比,内能最小。
晶体具有固定的熔点。
⑥稳定性:晶体比具有相同化学成分的非晶体稳定。
1、实际晶体形态(歪晶):偏离理想的晶体形态。
2、面角守恒定律:同种矿物的晶体,其对应晶面间的角度守恒。
(意义:结晶学发展的奠基石)3、晶体测量:就是测量晶面之间的夹角。
方法:①接触测角(接触测角仪)②反射测角(单圈、双圈反射测角仪)4、晶体的投影:将晶面的空间分布转化为平面图。
①极射赤平投影:晶面的球面投影,晶体的球面坐标,晶体的极射赤平投影,吴氏网②心射极平投影1、对称:物体相同部分有规律的重复。