光纤陀螺仪的发展及应用
- 格式:doc
- 大小:53.50 KB
- 文档页数:7
光纤陀螺的原理及应用光纤陀螺是一种基于光纤的惯性导航装置,利用光纤的特性来测量物体在空间中的转动角速度。
它的核心原理是著名的光路差原理,即利用光在不同介质中传播速度不同的性质,通过测量光信号的相位差来推测陀螺的旋转情况。
光纤陀螺的主要构成部分包括光源、光分束器、光偏置器、光栅、光检测器等。
光源发出的光经过光分束器分成两束,依次通过光偏置器,其中一束光经过光栅与另一束光混合后通过光检测器检测。
当光纤陀螺不发生旋转时,两束光的相位相同,检测器输出信号为零;当光纤陀螺发生旋转时,光栅会引起两束光之间的相位差随着陀螺旋转导致变化,通过检测器可以将转动的角速度转化为电信号输出。
光纤陀螺具有许多优势和应用前景。
首先,光纤陀螺具有高精度和高稳定性,可以测量微小的角速度变化,适用于高精度导航和姿态控制。
其次,光纤陀螺不受外部电磁干扰的影响,可以用于恶劣环境下的导航。
此外,光纤陀螺体积小、重量轻,便于安装和集成到各种设备中。
光纤陀螺广泛应用于航空、航天、航海、导弹、船舶、地质勘探以及工业自动化等领域。
在航空和航天领域,光纤陀螺可用于惯性导航系统,实现飞行器的精确定位、测速和姿态控制。
在导弹领域,光纤陀螺可以提供快速、精确的导航信息,有效支持导弹的制导和弹道控制。
在地质勘探中,光纤陀螺可以应用于油气勘探、地震监测等领域,提供地下结构和地震信号的测量。
在工业自动化中,光纤陀螺可用于机器人导航和姿态控制,提高自动化生产线的准确性和效率。
除了以上应用领域,光纤陀螺还具有许多潜在的应用前景。
例如,在虚拟现实和增强现实领域,光纤陀螺可用于实现更精确的姿态追踪和身体定位。
在医疗领域,光纤陀螺可以应用于体内导航和手术辅助等方面,提高手术精确度和安全性。
在车辆导航和自动驾驶领域,光纤陀螺可以用于精确定位和路径规划,提高车辆导航的准确性和安全性。
总之,光纤陀螺是一种基于光纤的惯性导航装置,利用光路差原理测量物体的转动角速度。
它具有高精度、高稳定性和抗干扰性强的特点,广泛应用于航空、航天、航海、导弹、船舶、地质勘探和工业自动化等领域。
干涉式光纤陀螺仪引言自从1963年制造出第一个基于Sagnac效应的环形激光陀螺仪(RLG)以来,大量光学陀螺仪得到发展,同时其性能也得到验证,其中包括光纤陀螺仪(FOG)[1]。
从20世纪60年代末,位于华盛顿的美国海军实验室就开始研究光纤陀螺技术,目的是研制出比氦氖环形激光陀螺仪成本更低、制造流程更简单、精度更高的光纤角速率传感器。
经过近几十年各国学者开展的大量研究工作,光纤陀螺仪在航海、军事、空间和民用方面都有较大的应用价值。
本报告简单介绍了干涉式光纤陀螺仪原理,类型以及应用等方面。
一、S agnac效应所有的光学陀螺仪的工作原理均基于Sagnac效应,即利用绕垂直于环面的轴旋转的环形干涉仪中两束相反传播的光信号间相移∆φ,或利用在光腔绕垂直于自身的轴旋转时,两个分别沿顺时针(CW)和逆时针(CCW)方向传播的谐振模式间的频移来实现陀螺仪的测量作用。
[1]为简便分析,首先考虑环形干涉仪内为真空的情况。
在光路中一点放置分光器,当光从该点进入干涉仪后,被分为沿顺时针和逆时针两个方向传播的信号。
当干涉仪相对于惯性坐标系静止时,沿相反方向传播的两束光光程相等,且传播速度均等于c(c为真空中光速)。
经过时间τr,两束光同时回到分光器位置,可求得传播时间τr为:τr =2πRc式中:R为环形干涉仪半径若环形干涉仪以角速度Ω顺时针旋转,则分光器在时间τr内的位移∆l=ΩRτr。
当光在干涉仪中完成一次往返运动时,由于干涉仪转动了一个小角度,环形干涉仪在顺时针方向光束(与Ω方向相同)的光程将略微大于2πR,而逆时针方向光束的光程就将稍小于2πR,顺时针光程L CW与逆时针光程L CCW间的光程差为∆L=L CW−L CCW=2∆l=2ΩRτr=4πΩR2c由于两束光的传播速度相同,均等于真空中的光速c,所以沿逆时针方向的光波先到达分光器处,两束光到达分光器处的时间差等于∆t=∆Lc=4πΩR2c2由干涉仪转动引起的两束光相移∆φ可表示为∆φ=∆t 2πcλ=8π2R2cλΩ式中:λ为光的波长当在有效折射率n eff >1的真实光纤中时,不能直接将c m =cn eff 代入上式。
光纤陀螺用途一、引言随着科技的不断发展,光纤陀螺作为一种新型的惯性导航技术,越来越受到人们的关注。
它具有高精度、高稳定性和长寿命等优点,在航空、航天、军事、海洋等领域得到了广泛应用。
本文将详细介绍光纤陀螺的用途。
二、光纤陀螺概述光纤陀螺是利用光学原理实现惯性导航的一种装置,其基本原理是利用磁悬浮技术将旋转体浮起,通过角速度传感器检测旋转体的旋转角速度,再通过信号处理电路计算出姿态信息。
与传统机械式陀螺相比,光纤陀螺具有更高的精度和稳定性。
三、航空领域1.民用飞机导航系统在民用飞机中,光纤陀螺被广泛应用于惯性导航系统(INS)中。
INS是一种独立于地面设施的全球定位系统(GPS)辅助导航系统,可以提供飞机在三维空间中的位置、速度和姿态信息,具有高精度、高可靠性和长时间稳定性等优点。
光纤陀螺作为INS中的核心部件,可以实现飞机在空中的准确导航。
2.军用飞机导航系统在军用飞机中,光纤陀螺也被广泛应用于INS中。
与民用飞机不同的是,军用飞机需要更高的安全性和隐蔽性。
光纤陀螺具有高精度、高稳定性和防干扰能力强等特点,可以满足军用飞机对导航系统的严格要求。
四、航天领域1.卫星姿态控制在卫星上,光纤陀螺可以作为卫星姿态控制系统(ACS)中的一部分,实现卫星在轨道上的精确定位和精确控制。
ACS可以通过调整卫星各个部分的姿态来实现多种功能,如通信、遥感、导航等。
光纤陀螺具有高精度、长寿命和抗辐射能力强等特点,在卫星姿态控制方面具有重要应用价值。
2.空间望远镜空间望远镜是一种用于观测天体的装置,需要具备高精度、高稳定性和长时间稳定性等特点。
光纤陀螺可以作为空间望远镜的姿态控制系统,实现望远镜的精确定位和精确控制,提高观测精度和可靠性。
五、军事领域1.导弹制导系统在导弹制导系统中,光纤陀螺可以作为惯性导航系统(INS)中的核心部件。
利用INS可以实现导弹的准确制导和打击目标。
光纤陀螺具有高精度、高稳定性和抗干扰能力强等特点,在军事领域具有重要应用价值。
光纤陀螺仪原理及应用
光纤陀螺仪是一种对换向微调良好的光学传感器,被广泛用于传感器与控制系统中,
以测量非接触式的角度、速度和加速度。
光纤陀螺仪的测量可用于航天器的姿态控制,机
场的推进装置,为工业机械的定位、测控提供重要参考。
特点
光纤陀螺仪的优势在于可以同时取代多种传感器,例如陀螺仪、加速度计等,仅使用
一部份元件就能够测量姿态和力矩,大大降低系统成本,增加系统灵活性。
此外,光纤陀
螺仪具有微小体积、低损耗等优点。
工作原理
光纤陀螺仪的结构,由多侧封装在一起的小型横向光纤芯绞在一起组成一个悬链结构,使其具有一定的弹性。
当绞线外力的作用下产生位移,。
2023年光纤陀螺仪行业市场调研报告一、行业概况光纤陀螺仪是利用光路中的传感器、激光器和光纤等元器件相结合的装置,可以检测和测量旋转、角加速度等物理量。
它广泛应用于惯性导航、车辆导航、卫星通信、气象探测、地震勘探、水下探测等领域。
相比传统机械陀螺仪,光纤陀螺仪具有高精度、高灵敏度、低功耗、长寿命、体积小、重量轻等优点,市场前景广阔。
二、市场规模当前,光纤陀螺仪主要集中在三大市场:航空航天、国防安防和工业自动化。
其中,航空航天占据光纤陀螺仪市场最大份额,预计占比将在2025年达到37%。
国防安防和工业自动化市场也将成为光纤陀螺仪主要应用领域。
根据“全球光纤陀螺仪市场调研报告 2020-2025”数据显示,未来几年光纤陀螺仪市场仍将保持稳步增长,2025年全球市场规模预计将达到59亿美元,年复合增长率达到7.5%。
三、市场竞争格局现在,光纤陀螺仪市场主要被美国、英国、德国等发达国家主导。
在国际市场上,美国公司型如Honeywell、Northrop Grumman、KVH等、英国公司型如Sagem、FLIR Systems等、德国公司型如iXBlue、Gyroptic Systems、AT-Automation Technology等企业,在技术上已占据了相当程度的市场份额。
中国大陆地区较有名气公司有 Sunny Optical Technology Group、安阳鑫达等。
四、技术发展趋势自2000年以来,光纤陀螺仪技术的发展经历了几个重要的里程碑。
其中最重要的是将被动环型陀螺仪(PBG)转变为主动环型陀螺仪(FBG),这种陀螺仪使用电控制光栅,可以扫描光纤以达到精准的控制。
此外,光纤陀螺仪的新型式应用场景也逐渐扩大,其中医疗设备和智能音箱等智能家居产品,暗藏人们行动的数据,据《全球光纤陀螺仪市场调研报告 2020-2025》显示,到2025年,智能手机等消费电子市场将占据市场份额的12%。
五、市场机遇与挑战随着光纤陀螺仪技术的不断发展和应用的扩大,市场机遇越来越多。
2024年激光陀螺仪市场发展现状激光陀螺仪是一种基于激光技术的高精度惯性传感器,广泛应用于航天、航海、导航、工业自动化等领域。
本文将详细介绍激光陀螺仪市场的发展现状。
1. 激光陀螺仪市场概述随着科技的进步和工业化的发展,激光陀螺仪市场正迅速增长。
激光陀螺仪具有高精度、长寿命、无衰减等优点,逐渐替代了传统的机械陀螺仪和电子陀螺仪。
激光陀螺仪的应用领域多样,包括导航仪器、航天卫星、惯性导航系统等。
2. 激光陀螺仪市场需求激光陀螺仪在现代工业和军事装备中的需求不断增长。
其高精度、稳定性和可靠性使其成为许多应用领域的首选。
特别是在航天、航海和导航领域,激光陀螺仪已经取代了传统的陀螺仪技术。
此外,工业自动化和无人驾驶技术的发展也进一步推动了激光陀螺仪市场的需求。
3. 激光陀螺仪技术进展随着科技的不断创新,激光陀螺仪的技术也在不断进步。
目前,激光陀螺仪已经实现了更高的测量精度和更小的体积。
微纳光学技术的发展使得激光陀螺仪可以实现更高的灵敏度和更快的响应速度。
同时,激光陀螺仪的自动化生产技术也在不断提高,降低了生产成本,进一步推动了市场的发展。
4. 激光陀螺仪市场竞争态势当前,激光陀螺仪市场竞争激烈。
众多厂商涌入市场,推出各种各样的产品。
其中,国际知名企业和一些创新型企业在市场上占据重要地位。
这些企业通过不断研发新技术和产品来提高竞争力。
此外,一些新兴国家的企业也逐渐崛起,对市场格局产生了一定的冲击。
随着市场的不断扩大,竞争将更加激烈。
5. 激光陀螺仪市场前景激光陀螺仪市场的前景广阔。
随着科技的进步,对高精度、高稳定性的惯性传感器的需求将越来越大。
激光陀螺仪作为其中的一种重要技术手段,将在航天、航海、导航、工业自动化等领域得到广泛应用。
同时,激光陀螺仪在无人驾驶车辆、虚拟现实、增强现实等新兴领域的发展也将带来新的机遇。
结论总之,激光陀螺仪市场正处于快速发展阶段。
高精度、高稳定性的激光陀螺仪在航天、航海、导航、工业自动化等领域的应用前景广阔。
光纤陀螺仪在导航系统中的精度提升一、光纤陀螺仪概述光纤陀螺仪(Fiber Optic Gyroscope, FOG)是一种利用光波导原理工作的角速度传感器,它具有高精度、高可靠性、长寿命等优点,在现代导航系统中扮演着重要角色。
与传统的机械陀螺仪相比,光纤陀螺仪没有旋转部件,因此具有更高的稳定性和更低的维护成本。
1.1 光纤陀螺仪的工作原理光纤陀螺仪的工作原理基于萨格纳克效应(Sagnac Effect),即当光在闭合路径上传播时,由于存在角速度,逆时针和顺时针方向上的光速会有所不同。
通过测量两个方向上光程差,可以计算出角速度。
1.2 光纤陀螺仪的组成光纤陀螺仪主要由光源、光纤环、光电探测器、信号处理器等部分组成。
光源发出的光信号通过耦合器进入光纤环,光纤环的一端固定,另一端可以旋转。
当光纤环旋转时,逆时针和顺时针方向上的光信号会产生相位差,这个相位差由光电探测器检测,并转换为电信号,最后由信号处理器进行处理和分析。
1.3 光纤陀螺仪的优势光纤陀螺仪的优势主要体现在以下几个方面:- 高精度:由于光纤陀螺仪测量的是光的相位差,因此其测量精度非常高。
- 高稳定性:光纤陀螺仪没有机械旋转部件,因此不受机械磨损和振动的影响。
- 长寿命:由于光纤陀螺仪的稳定性和可靠性,其使用寿命非常长。
- 抗干扰能力强:光纤陀螺仪对电磁干扰和温度变化具有很好的抵抗能力。
二、光纤陀螺仪在导航系统中的应用光纤陀螺仪在导航系统中的应用非常广泛,包括航空、航天、航海、陆地车辆导航等领域。
在这些领域中,光纤陀螺仪主要用于提供高精度的角度信息,以实现精确导航。
2.1 航空导航系统在航空导航系统中,光纤陀螺仪可以提供飞机的姿态信息,包括俯仰角、滚转角等。
这些信息对于飞机的稳定飞行和精确导航至关重要。
2.2 航天导航系统在航天导航系统中,光纤陀螺仪可以用于测量卫星或航天器的姿态变化,为航天器的轨道控制和姿态调整提供重要数据。
2.3 海上导航系统在海上导航系统中,光纤陀螺仪可以为船舶提供准确的航向信息,帮助船舶在复杂的海洋环境中保持正确的航向。
光纤陀螺的原理及应用1. 引言光纤陀螺(Fiber Optic Gyroscope,简称FOG)是一种利用光学原理测量旋转的装置。
它通过光的干涉效应来感知旋转角速度,广泛应用于导航、航天、船舶、航空等领域。
本文将介绍光纤陀螺的工作原理和应用。
2. 光纤陀螺的工作原理光纤陀螺的工作原理基于Sagnac效应。
当光沿着一个闭合环路传播时,如果环路在一个平面内以某一速度旋转,光将会沿着环路两个方向分别传播一段距离,而在环路中会产生两束具有不同光程差的光。
当这两束光重新相遇时,它们会发生干涉。
根据Sagnac效应,干涉产生的结果与旋转角速度成正比。
通过测量干涉信号的相移,可以获得旋转角速度的信息。
3. 光纤陀螺的结构光纤陀螺一般由光纤环路、光源、探测器和信号处理器等部分组成。
光纤环路是光纤陀螺中最核心的部分,通常采用一个闭合的环路,光纤被环绕在其中。
环路一般通过一定的结构和材料来保持其稳定性和刚度。
光源发出一束光,经过分光器分成两束光,分别经过光纤环路的两个不同方向传播。
这里的光源一般采用激光器,因为激光的光线干涉效应最为显著。
探测器接收到光纤环路中两束光重新相遇后产生的干涉信号,并将其转化为电信号。
信号处理器对探测器接收到的电信号进行放大、滤波和数字化处理,然后通过算法获取旋转角速度的信息。
4. 光纤陀螺的优势相比传统的机械陀螺,光纤陀螺具有以下优势:•高精度: 光纤陀螺可以实现更高的精度,达到0.01度/小时甚至更高的级别。
•高灵敏度: 光纤陀螺可以感知更小的旋转角速度,对于微小运动的测量非常有优势。
•快速响应: 光纤陀螺的响应速度非常快,可以在毫秒甚至微秒级别对旋转进行测量。
•高可靠性: 光纤陀螺不需要机械部件,减少了零部件运动带来的磨损和故障风险。
•可扩展性: 光纤陀螺可以通过增加光纤环路的长度来提高精度和灵敏度。
5. 光纤陀螺的应用光纤陀螺在以下领域有广泛的应用:5.1 航天导航光纤陀螺被广泛用于航天器的姿态控制和导航系统。
2023年光纤陀螺仪行业市场调查报告光纤陀螺仪是一种基于光纤技术和马赫曾德干涉原理制作的陀螺仪,其主要功能是测量物体的角度和转速。
光纤陀螺仪具有高精度、高稳定性和长寿命等特点,广泛应用于航天、导航、地震监测、航海、无人机等领域。
光纤陀螺仪行业市场调查显示,随着科技的不断发展和市场需求的增加,光纤陀螺仪市场规模不断扩大并呈现稳定增长态势。
以下是关于光纤陀螺仪行业市场调查的报告:一、市场规模和增长趋势光纤陀螺仪市场规模从2015年到2019年保持了稳步增长,总体市场规模达到了XX 亿元。
预计未来几年光纤陀螺仪市场仍将保持较稳定的增长趋势。
这主要受到航天、导航、地震监测、航海、无人机等领域需求的增加以及技术的不断创新影响。
二、市场应用1.航天领域:光纤陀螺仪在航天领域中被广泛应用于导航系统和定位系统,如卫星定位、空间朝向和姿态测量等。
2.导航领域:光纤陀螺仪在汽车、飞机、火车等交通工具的导航和定位系统中起到重要作用,可以提供精确的定位服务。
3.地震监测领域:光纤陀螺仪能够测量地震发生时的地震波传播速度和方向,对地震监测和预测具有重要意义。
4.航海领域:光纤陀螺仪广泛应用于海洋导航和定位系统,如船舶定位、航向和姿态测量等。
5.无人机领域:光纤陀螺仪是无人机导航和姿态控制系统的重要组成部分,可以实现无人机稳定飞行和准确定位。
三、竞争格局光纤陀螺仪市场竞争激烈,主要厂商包括霍尼韦尔、北方工业公司、安川科技、西安光学精密机械研究所等。
这些厂商在技术研发、产品质量、市场推广等方面都有一定优势。
四、市场发展趋势1.技术创新:随着科技的不断进步,光纤陀螺仪的技术也在不断创新。
未来,光纤陀螺仪将更加注重提高精度、降低成本和体积。
2.应用扩展:光纤陀螺仪的应用领域将进一步扩展,尤其是在无人驾驶、虚拟现实、增强现实等新兴领域中。
3.市场竞争加剧:随着市场规模的扩大,光纤陀螺仪市场竞争也将加剧,厂商将加大研发力度,不断提高产品质量和性能。
光纤陀螺仪的原理和精度提升技术光纤陀螺仪是一种利用光纤的波导特性测量角速度和角位移的高精度仪器。
它利用光束经过光纤的传播速度可受到旋转的影响这一原理来实现测量。
光纤陀螺仪广泛应用于导航、航天、航海、地震、无人驾驶等领域,并且随着技术的不断提升,其精度也在不断提高。
一、光纤陀螺仪的原理光纤陀螺仪的工作原理可以简单描述为:当光束通过光纤中心轴进入光纤时,会以高度集中在纤芯中心的方式传播。
如果光纤处于静止状态,那么光束经过光纤后会保持原样。
但是,如果光纤发生旋转,由于光纤的波导特性,光束在传播过程中会发生折射,导致光束的传播方向发生改变。
利用这种光纤的特性,我们可以通过测量光束传播方向的改变来计算出光纤的旋转角速度。
二、光纤陀螺仪的精度提升技术在实际应用中,光纤陀螺仪的精度是十分重要的。
为了提升光纤陀螺仪的精度,人们在不同方面做出了一系列的改进和创新。
1. 光纤质量的提升精度提升的第一步就是提升光纤的质量。
目前,制备光纤的技术已经非常成熟,可以制造出质量极高的光纤。
高质量的光纤具有以下特点:纤芯和包层之间的折射率差小、纤芯材料的纯度高、光纤的直径均匀等。
这些特点使得光纤在传播光束时能够更加稳定和准确。
2. 光源和光探测器的改进另一个提升精度的关键是改进光源和光探测器。
光源的稳定性和光束发散度对光纤陀螺仪的精度有着重要影响。
传统的光源如半导体激光器已经无法满足要求,逐渐被更加稳定和发散度更小的光源所取代。
光探测器也在不断研究中,以提高光纤陀螺仪的精确测量。
3. 温度和振动的控制温度和振动的控制对于光纤陀螺仪的精度提升也非常关键。
光纤陀螺仪的性能受到温度和振动的影响较大,因此,为了提高精度,需要采取相应的控制措施。
如采用温度稳定性好的材料、防振设计以及振动补偿等技术手段,可以有效地减小温度和振动对光纤陀螺仪的影响,提高其精度。
4. 数据处理算法的优化除了硬件上的改进,优化数据处理算法也是提升光纤陀螺仪精度的一种重要手段。
光纤陀螺产业发展趋势分析光纤陀螺是一种利用光纤作为感应元件来测量和检测角度和角速度变化的高精度仪器。
它具有测量精度高、响应速度快、抗干扰能力强等优势,广泛应用于航空航天、国防军工、船舶导航、地震监测等领域。
随着科技的不断进步和需求的不断增长,光纤陀螺产业也在不断发展壮大。
本文将分析光纤陀螺产业的发展趋势。
一、技术发展趋势1. 高性能化:随着技术的不断进步,光纤陀螺的性能将会越来越高。
在测量精度上,光纤陀螺将实现亚角度级别的测量,甚至达到纳米级别的测量精度。
在响应速度上,光纤陀螺将实现亚毫秒级别的响应速度,适用于更加复杂和高速的应用场景。
2. 多功能化:在功能上,光纤陀螺将不仅仅能够测量角度和角速度变化,还可以实现姿态判断和三维重建等功能。
这将使得光纤陀螺在航空航天、地震监测等领域的应用更加广泛和多样化。
3. 多传感器融合:为了提高测量的精度和可靠性,光纤陀螺将与其他传感器进行融合。
比如,光纤陀螺可以与GPS、加速度传感器等进行数据融合,从而实现地面、空中和水下三维位置的准确定位和导航。
4. 微纳化:为了满足小型化、轻量化的应用需求,在光纤陀螺的制造过程中,将采用微纳加工技术和集成电路技术,使得光纤陀螺的尺寸更小、重量更轻、功耗更低。
二、应用领域分析1. 航空航天:光纤陀螺在航空航天领域的应用前景广阔。
它可以用于飞行器的导航、稳定和姿态控制,提高飞行安全性和精度。
2. 地震监测:光纤陀螺可以用于地震监测和勘探,能够测量地壳的微弱变形和地震波的传播速度,为地震预警提供重要的数据支持。
3. 汽车导航:随着自动驾驶技术的不断发展,光纤陀螺作为一种高精度的导航传感器,将会在汽车导航系统中得到广泛应用。
4. 智能手机:在智能手机中,光纤陀螺可以用于图像稳定和陀螺仪功能,提供更好的拍摄和游戏体验。
三、市场趋势分析1. 市场需求不断增长:随着国家科技水平的不断提高和产业结构的升级,对高精度、高可靠性的光纤陀螺的需求将会不断增长。
光纤陀螺仪的发展及应用
摘要:
作为光纤传感器的一种,光纤陀螺仪具有了更多的优点,它具有结构紧凑,灵敏度高,工作可靠等等优点,就是因为这些优点,光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。
本文主要介绍了光纤陀螺仪的工作原理,特点,分类,应用及发展现状。
关键词:
光纤传感器,陀螺仪,光纤陀螺仪,导航系统。
Abstract:
As one of the fiber sensors,FOG has more advantages.It has a compact structure,high sensitivity,high reliability and so on.Just because of these advantages,FOG nearly replace all the traditional mechanical gyroscopes and become the critical component of modern navigational instruments.This paper introduces the working principle,the features,sorts,usage and statues of development of the FOG.
Key words:
fiber sensors,gyroscopes,FOG,navigation system.
引言:
现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,
它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。
传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。
自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。
光纤陀螺仪是新一代无惯性陀螺仪,它可以保障未来现代技术的发展和国防以及民用领域采用新的技术措施。
现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。
1.光纤传感技术的介绍
光纤传感技术是20世纪70年代伴随着光导纤维及光纤通信技术的发展而发展起来的一种以光为载体、光纤为煤质,感知和传输外界信号的新型传感技术。
其基本原理是将光源的光经入射光纤送人调制区,光在调制区内与外界被测参数相互作用,使光的光学性质(如强度、波长、频率、相位、偏正态等)发生变化而成为被调制的信号光,再经出射光纤送入光探测器、解调器而获得被测参数。
光纤传感器与常规传感器相比的最大优点是对电磁干扰的高度防卫度,而且它可以制成小型紧凑的器件,具有多路复用的能力,以及可以制成分布式的传感器结构等,不少光纤传感器与对应的常规传感器相比,在灵敏度、动态范围、可靠性等方面也具有明显的优势。
2.陀螺仪的概述
陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实
用的陀螺仪器问世以来已有大半个世纪,但直到现在,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。
陀螺仪最主要的基本特性是它的稳定性和进动性。
人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。
研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。
陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。
人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。
陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。
然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。
3.光纤陀螺仪
光纤陀螺仪光纤传感器的一种,光纤陀螺仪是新一代无惯性陀螺仪。
它可以保障未来现代技术的发展和国防以及民用领域采用新的技术措施。
由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。
3.1 光纤陀螺仪的工作原理
现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。
塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动
速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。
也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。
利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。
从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。
光纤陀螺仪具有很高的精度和灵敏度。
现在比较先进的光纤陀螺仪已经达到0.01度/hr。
比较典型的光纤陀螺应该具有量程宽,精度高,响应快,灵敏度高,,模拟和数字输出,坚固可靠,不受电磁,震动影响等特点.因此光纤陀螺已成为准确控制,高精度角速度测量的首选应用。
3.2 光纤陀螺仪的分类
光纤陀螺根据其工作方式可分为干涉型和环形谐振腔型两大类。
干涉式光纤陀螺(Ⅱ-FOG):
在线圈面积一定的条件下,通过增加线圈匝数可以增强塞格尼克效应。
干涉式光纤陀螺就是利用多匝低耗单模光纤构成的双波环形干涉仪。
通过改变光纤线圈的面积和匝数改变光纤陀螺的工作范围,可以得到不同性能要求的产品,满足不同用户的需要,这也是光纤陀
螺相对于传统机电陀螺的一大优点。
目前干涉型光纤陀螺技术已经非常成熟,世界各国开发的使用产品几乎都是干涉型光纤陀螺。
谐振式光纤陀螺(R-FOG ):
谐振式光纤陀螺是利用塞格尼克效应,通过检测旋转非乎易性造成的顺、逆时针两行波的频率差来测量角速度。
图1 谐振式光纤陀螺原理图
相干光经定向耦合器C4分成两路,分别经过耦合器C2,C3传至C1并从两端注入光纤环形谐振腔,形成相向传播的相干光束。
当谐振腔满足谐振条件并达到稳态时,环形腔中的光强达到最大。
当陀螺旋转时,两束光的谐振频率分裂产生频差;
A 为环形谐振腔包围的面积,L 为光纤的长度,λ为光波长。
谐振式光纤传感器克服了干涉型光纤陀螺的诸多缺点,具有很
大的发潜力。
目前还处于实验室研究阶段,离实用化还有一定的距离。
4.光纤陀螺仪的应用及发展现状
自从1976年美国犹他大学的VALI 和SHORTHILL 等人成功研制第Ω
=-=∆L A f f f ccw cw λ/4
1个光纤陀螺(fiber-optic gyroscope, FOG)以来,光纤陀螺已经发展了30多年。
在30多年的发展过程中,许多基础技术如光纤环绕制技术等都得到了深入地研究。
光纤陀螺仪的突出特点使其在航天航空、机载系统和军事技术上的应用十分理想,因此受到用户特别是军队的高度重视,以美、日、法为主体的光纤陀螺仪研究工作已取得很大的进展。
光纤陀螺仪研究工作大部分集中在干涉式,只有少数公司仍在研究谐振式光纤陀螺。
光纤陀螺的商品化是在上世纪90年代初才陆续展开,中低精度的光纤陀螺(特别是干涉式光纤陀螺)己经商品化,并在多领域内应用,高精度光纤陀螺仪的开发和研制正走向成熟阶段。
光纤陀螺成本低、维护简便,正在许多已有系统上替代机械陀螺,从而大幅度提高系统的性能、降低和维护系统成本。
现在,光纤陀螺已充分发挥了其质量轻、体积小、成本低、精度高、可靠性高等优势,正逐步替代其他型陀螺。
5.结论
到目前为止,光纤陀螺已从供战术应用的低精度型向导航用的中精度和高精度型发展,以光纤陀螺为基础的惯性系统也开始在越来越多的场合得到应用。
今后光纤陀螺的研究趋势有: (1)采用三轴测量代替单轴,研发多功能集成光学芯片、保偏技术等,加大光纤陀螺的小型化、低成本化力度;(2)深入开发中、低精度光纤陀螺的应用,特别是民用惯性导航技术;(3)加强精密级光纤陀螺的技术与应用研究,开发新型的
光纤陀螺B-FOG和FRLG等。
参考文献:
【1】许江宁,朱涛,卞鸿巍.海军工程大学学报.2006.
【2】王惠文,等.光纤传感器技术与应用[M].北京:国防工业出版社,1996.
【3】王巍,张桂才,杨清生.光纤陀螺仪及其工程化技术研究[J].导航与控制,2002,1(1).
【4】何慧灵,赵春梅,陈丹,赵晓峰,阮昊.激光与光电子学进展,2004.。