定向凝固理论与技术发展

  • 格式:docx
  • 大小:245.77 KB
  • 文档页数:12

下载文档原格式

  / 15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定向凝固理论与技术发展

摘要

定向凝固技术是研究凝固理论和新型功能材料的重要手段。从定向凝固技术的演化过程看,是温度梯度不断提高、冷却速度不断加快的过程。简要回顾了定向凝固理论与技术的研究发展历程,分析了各种凝固技术的利弊,展望了凝固理论与技术的发展。

关键词:凝固理论,温度梯度,冷却速度,定向凝固理论

Abstract

Directional solidification technology is an important means to study the solidification theory and new functional materials. From the evolutionary process of directional solidification technology is a process of increasing temperature gradient and cooling velocity. It is a brief review of the development course of the directional solidification theory and technology, analyses the advantages and disadvantages of various solidification technology, and makes a prospect of solidification theory and technology.

Keywords: solidification theory, temperature gradient,temperature gradient,directional solidification theory

1 引言

定向凝固是指在凝固过程中采用强制手段,在凝固金属和未凝固金属熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,最终得到具有特定取向柱状晶的技术。这类材料晶界在高温受力条件下是较薄弱的地方,因为晶界处原子排列不规则,杂质较多,扩散较快[1]。于是人们利用定向凝固技术让晶粒沿受力方向生长,消除横向晶界,以提高其高温性能。

定向凝固技术的最主要应用是生产具有均匀柱状晶组织的铸件,特别是在航空领域生产高温合金的发动机叶片,与普通铸造方法获得的铸件相比,它使叶片的高温强度、抗蠕变和持久性能、热疲劳性能得到大幅度提高。对于磁性材料,应用定向凝固技术,可使柱状晶排列方向与磁化方向一致,大大改善了材料的磁性能。定向凝固技术也是制备单晶的有效方法。定向凝固技术还广泛用于自生复合材料的生产制造,用定向凝固方法得到的自生复合材料消除了其它复合材料制备过程中增强相与基体间界面的影响,使复合材料的性能大大提高。定向凝固技术作为功能晶体的生长和材料强化的重要手段,具有重要的理论意义和实际应用价值。

2 定向凝固理论基础研究发展

2.1 定量凝固科学的基础理论研究

定向凝固技术的一个重要应用就是用于凝固理论的研究,定向凝固技术的发展直接推动了凝固理论的发展和深入。从Chalmers 等的成分过冷到Mullins 等的界面稳定动力学理论(MS 理论),人们对凝固过程有了更深刻的认识。合金在凝固过程中,其固液界面形态取决于两个参数: Gl/v和Gl·v,即分别为界面前沿液相温度梯度与凝固速度的商与积。前者决定了界面的形态,而后者决定了晶体的显微组织(即枝晶间距或晶粒大小)[2]。MS 理论成功地预言了:随着生长速度的提高,固液界面形态将经历从平界面→胞晶→树枝晶→胞晶→带状组织→绝对稳定平界面的转变。近年来对MS 理论界面稳定性条件所做的进一步分析表明,MS 理论还隐含着另一种绝对性现象,即当温度梯度G 超过一临界值时,温度梯度的稳定化效应会完全克服溶质扩散的不稳定化效应,这时无论凝固速度如何,界面总是稳定的,这种绝对稳定性称为高梯度绝对稳定性

2 定向凝固技术的应用基础理论研究

定向凝固技术的应用基础研究,主要涉及定向凝固过程的热场、流动场及溶

质场的动态分析、定向组织及其控制以及组织与性能关系等。多年来通过生产实践与定向凝固应用基础研究,总结出得到优质定向组织的四个基本要素:①热流的单向性或发散度;②热流密度或温度梯度;③冷却速度或晶体生长速度;④结晶前沿液态金属中的形核控制[3]。人们围绕上述四个基本要素的控制做了大量的研究工作,随着热流控制技术的发展,凝固技术也不断向前发展。

3 常规定向凝固技术

传统的定向凝固技术主要有发热剂法( EP法) 、功率降低法( PD 法) 、高速凝固法(HRS法) 、液态金属冷却法(LMC法)等[4] 。

3.1 发热剂法[5]

发热剂法是定向凝固技术发展的起始阶段,是最原始的一种。Versnyder等早在20世纪50年代就应用于试验中。其基本原理是:将铸型预热到一定温度后,迅速放到激冷板上并立即进行浇注,冒口上方覆盖发热剂,激冷板下方喷水冷却,从而在金属液和已凝固金属中建立起一个自下而上的温度梯度,实现定向凝固(如图1)。也有采用发热铸型的,铸型不预热,而是将发热材料填充在铸型四周,底部采用喷水冷却。此方法无法调节温度梯度和凝固速度,单向热流条件很难保证,故不适合大型优质铸件的生产。但该方法工艺简单、成本又低,可应用于小型的定向凝固件生产。

图1 PD装置示意图

3.2 功率降低法

在20世纪60年代,Versnyder等人提出了功率降低法[6]。在这种工艺过程中,铸型加热感应圈分两段,铸件在凝固过程中不动,在底部采用水冷激冷板。加热时上下两部分感应圈全通电,在模壳内建立起所要求的温度场,注入过热的合金液。然后下部感应圈断电,通过调节输入上部感应圈的功率,在液态金属中形成一个轴向温度梯度。在功率降低法中,热量主要通过已凝固部分及底盘由冷却水

带走。这种工艺可达到的温度梯度较小,在10 ℃/ cm左右,制出的合金叶片,其长度受到限制,并且柱状晶之间的平行度差,甚至产生放射状凝固组织。合金

的显微组织在不同部位差异较大,目前一般不采用此工艺。

3.3高速凝固法

高速凝固法[7]是Erickson 等于1971年提出的,装置示意图如图2所示。其装置和功率降低法相似,不过多了一个拉锭机构,可使模壳按一定速度向下移动,

改善了功率降低法温度梯度在凝固过程中逐渐减小的缺点;另外,在热区底部使用辐射挡板和水冷套,在挡板附近产生较大的温度梯度。这种方法可以加大缩小凝固前沿两相区,局部冷却速度增大,有利于细化组织,提高力学性能。这种方法是借鉴Bridgman 晶体生长技术特点而发展起来的,其主要特点是:铸型以一定速度从炉中移出,或者炉子以一定速度移离铸件,并采用空冷方式。这种方法由于避免了炉膛的影响且利用空气冷却,因而所获得柱状间距变小,组织较均匀。由于大大缩小了凝固前沿两相区,局部冷却速度增大,有利于细化组织,提高力学性能。因而,在实际生产中得到了广泛应用。但HRS 法是靠辐射换热来冷却的,获得的温度梯度和冷却速度都很有限。

图2HRS装置示意图

3.4 液态金属冷却法(LMC)

在提高散热能力和增大界面液相温度梯度方面。功率降低法和高速凝固法都受到一定条件的限制,1974年出现了一种新的定向凝固方法——液态金属冷却法[8]是目前工业应用较为广泛的一种定向凝固方法(如图3)。该方法工艺过程与快速凝固法基本相同。不同的就是以液态金属代替水作为模壳的冷却介质,模壳直接浸入液态金属冷却剂中,散热大大增强,以至在感应器底部迅速发生热平衡,