讲座1-3 离散频谱校正技术(DOC)
- 格式:doc
- 大小:1.43 MB
- 文档页数:18
频谱校正方法
温馨提示:文档内容仅供参考
频谱校正是指对频谱信号进行校正以消除信号中的误差或非线性响应。
下面介绍几种常见的频谱校正方法:
线性插值法:该方法适用于频谱信号中的离散点不均匀分布的情况。
线性插值法通过在频率域上的两个离散点之间线性插值,获得一条直线,从而对频谱信号进行插值。
多项式拟合法:该方法适用于频谱信号中的误差具有一定的规律性。
多项式拟合法通过将原始信号拟合成一个多项式函数,从而对频谱信号进行校正。
傅里叶变换法:该方法适用于频谱信号中的非线性响应较为明显的情况。
傅里叶变换法通过将原始信号进行傅里叶变换,将频域中的非线性响应转换为时域中的线性响应,从而对频谱信号进行校正。
平滑法:该方法适用于频谱信号中存在噪声的情况。
平滑法通过对频谱信号进行平滑处理,从而减少噪声对频谱信号的影响。
需要根据实际情况选择适当的频谱校正方法进行使用。
离散频谱分析误差产生的原因及离散频谱校正技术【建筑工程类独家文档首发】离散频谱校正理论和技术,不知道大家对这个名词熟不熟悉。
近来在声振论坛上看到一些帖子讨论为何经FFT得到的幅值、频率和相位不准的。
其实前面我也发过一篇介绍离散频谱校正的综述性的文章,可能大家都忙,没时间去看,呵呵,这里我就我的理解,把离散频谱分析的误差来源和校正方法做个简单的介绍。
离散频谱分析的误差产生的原因主要来自两方面,一方面是由于时域加窗截断产生的频域连续化,另一方面是由于计算机只能对有限的离散的频率进行计算,也即是频域离散化的结果。
其中,加窗截断的影响使一个无穷长单频率信号在频域对应的一根谱线,变成一个连续谱,以加矩形窗为例,则是变成一个sinc型函数的形状,其峰值对应的频率即为单频信号的频率。
但是由于频域的离散化,我们用FFT计算的频率一般都不会刚好会落在峰值处,这就是我们平时常说的泄露,这时我们就只能把计算得到的峰值谱线对应的频率做为估计的频率,如果以频率分辨率fs/N做归一 (即把频率分辨率看成1)的话,这个估计的频率的最大绝对值误差就是0.5,而幅值误差则依赖于加的窗的类型,由于矩形窗主瓣宽度为2,频谱开状较尖,幅值误差也就大。
至于相位的最大误差则会相应的达到正负90度,已经完全不能用了。
离散频谱校正就是针对这种误差提出的各种校正出实际的频率、幅值和相位的一门理论和技术。
国内现在比较常用的方法有比值(插值)法、能量重心法、FFT FT法和相位差法,都有其各自的特点和优缺点。
这里我给出一个比值校正法的程序供大家一起研究下。
当然,对于多频率成分的信号来说,离散频谱分析的另一个误差是来自于频率之间的相互干涉,这也是由于泄露所引起的,这个误差则主要靠加窗抑制旁瓣和减小频率分辨率、拉大频率间的距离(可通过ZFFT实现)来尽量减小。
%SpectrumCorrect_Test.mclose all;clear all;clc;fs=1024;N=1024;t=(0:N-1)/fs;x=4*cos(2*pi*80*t 30*pi/180) 3*cos(2*pi*150.232*t 80*pi/180)1*cos(2*pi*253.5453*t 240*pi/180);xf=fft(x);xf=xf(1:N/2)/N*2;XfCorrect=SpectrumCorrect(xf,3,1);XfCorrect(:,1)=XfCorrect(:,1)*fs/N;XfCorrectw=hann(N,’periodic’);xfw=fft(x.*w’);xfw=xfw(1:N/2)/N*4;XfCorrectW=SpectrumCorrect(xfw,3,2);XfCorrectW(:,1)=XfCorrectW(:,1)*fs/N;XfCorrectW%离散频谱比值校正法%by yangzj 2007.4.28%%xf为FFT后的复数谱%CorrectNum为校正的谱线条数%即校正最大的CorrectNum条%WindowType为加窗类型%1为矩形窗,2为Hanning窗%%SpectrumCorrect.mfunction XfCorrect=SpectrumCorrect(xf,CorrectNum,WindowType) XfCorrect=zeros(CorrectNum,3);for i=1:CorrectNumA=abs(xf);[Amax,index]=max(A);phmax=angle(xf(index));%比值法%加矩形窗if (WindowType==1)indsecL=A(index-1)>A(index 1);df=indsecL.*A(index-1)./(Amax A(index-1))-(1-indsecL).*A(index 1)./(Amax A(index 1));XfCorrect(i,1)=index-1-df;XfCorrect(i,2)=Amax/sinc(df);XfCorrect(i,3)=(phmax pi*df)*180/pi;xf(index-2:index 2)=zeros(1,5);end%比值法%加Hanning窗if (WindowType==2)indsecL=A(index-1)>A(index 1);df=indsecL.*(2*A(index-1)-Amax)./(AmaxA(index-1))-(1-indsecL).*(2*A(index 1)-Amax)./(Amax A(index 1)); XfCorrect(i,1)=index-1-df;XfCorrect(i,2)=(1-df )*Amax/sinc(df);XfCorrect(i,3)=(phmax pi*df)*180/pi;xf(index-4:index 4)=zeros(1,9);endXfCorrect(i,3)=mod(XfCorrect(i,3),360);XfCorrect(i,3)=XfCorrect(i,3)-(XfCorrect(i,3)>180)*360;end运行结果:XfCorrect =80.0014 4.0016 29.8261150.2333 2.9981 79.7127253.5397 0.9996 -118.7272XfCorrectW =80.0000 4.0000 30.0000150.2320 3.0000 80.0000253.5453 1.0000 -120.0002本文由声振论坛会员yangzj原创,结语:任何一个人,都要必须养成自学的习惯,即使是今天在学校的学生,也要养成自学的习惯,因为迟早总要离开学校的!自学,就是一种独立学习,独立思考的能力。
fft算法离散频谱校正FFT(Fast Fourier Transform)算法是一种快速计算离散傅里叶变换(Discrete Fourier Transform)的算法。
它的主要思想是通过对称性将N点的DFT分解为两个N/2点的DFT,再通过重组得到最终结果。
该算法的时间复杂度为O(NlogN),相较于传统的DFT算法,其计算速度更快,因此广泛应用在信号处理、图像处理、通信等领域中。
离散频谱校正是指在频域中对信号进行处理,以消除或校正频谱中的不良效应。
在进行频域处理时,可能会出现混叠效应(频谱重叠)或频率偏移等问题,这会导致信号的失真或干扰。
离散频谱校正的目的就是通过一系列算法和技术,对频谱进行调整和修正,以恢复信号的原始特性。
离散频谱校正的方法有很多种,下面将简要介绍几种常见的方法。
1. 频谱外插频谱外插是一种常见的频谱校正方法,它通过在频谱中插入一定数量的零值来改变信号的频谱特性。
这样可以使频谱变得更加平滑,并且减小混叠效应。
频谱外插在FFT算法中很容易实现,只需要将原始信号补零到2的幂次方长度即可。
2. 频谱滤波频谱滤波是指通过滤波器对频谱进行处理,以去除或衰减不需要的频率分量。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器等。
滤波器可以选择不同的截止频率、通带宽度和阻带宽度,以满足不同的要求。
3. 频谱修正频谱修正是一种校正频谱幅度和相位的方法。
通常在进行频域分析时,频率响应对于不同频率的信号可能有不同的增益和相位差,这就需要进行补偿和修正。
频谱修正的方法包括经验修正和数学模型修正等,可以根据信号的特性进行选择。
4. 非线性变换非线性变换是一种通过对频谱进行非线性操作,以改变频谱特性的方法。
常见的非线性变换包括幂律变换、对数变换、绝对值变换等。
非线性变换可以改变频谱的动态范围和分辨率,从而提取出信号的细节或增强信号的特征。
5. 频率域插值频率域插值是指通过对频谱进行插值,以增加频率的分辨率或减小频率的间隔。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。