离心泵的汽蚀详细介绍
- 格式:pdf
- 大小:4.83 MB
- 文档页数:27
离心泵汽蚀的原因及处理方法离心泵是一种常见的机械设备,广泛应用于工业、农业、建筑、市政等领域。
然而,在离心泵的使用过程中,汽蚀问题经常会出现,给设备的正常运行带来很大的困扰。
本文将从离心泵汽蚀的原因及处理方法两个方面进行探讨。
一、离心泵汽蚀的原因1.液体中的气体液体中的气体是离心泵汽蚀的主要原因之一。
当液体中存在一定量的气体时,它们会随着液体一起被吸入离心泵中,进入泵腔内部。
当液体通过泵轮时,气体会被压缩,形成气泡,这些气泡在后续的工作中会不断扩大,最终破裂,形成高速的水击波,从而对离心泵的叶轮、泵壳等零部件造成损坏。
2.液体的温度液体的温度也是离心泵汽蚀的重要原因之一。
当液体的温度升高时,液体中的气体容易溶解,从而导致气体的含量下降。
此时,当液体流经离心泵时,由于气体含量的减少,水泵中的压力也会下降,进而形成真空,使液体内部的气体被迫从液体中释放出来,形成气泡,从而引起汽蚀。
3.液体的粘度液体的粘度也是离心泵汽蚀的原因之一。
当液体的粘度较高时,液体在流动过程中的阻力较大,使得液体的流速变慢。
此时,液体中的气体容易在液体内部积聚,形成气泡,从而引起汽蚀。
4.泵的设计泵的设计也是离心泵汽蚀的原因之一。
泵的设计不合理,如叶轮的进口角度太陡,泵的进口管道过长等,都会导致液体在流动过程中产生较大的阻力,从而引起汽蚀。
二、离心泵汽蚀的处理方法1.改善液体的供给方式改善液体的供给方式是减少汽蚀的有效方法之一。
在液体的供给过程中,应尽量避免液体中的气体被吸入泵内。
为此,可以采取以下措施:(1)改善进口管道的设计,减少管道的弯曲和阻力,保持管道的通畅。
(2)增加进口管道的口径,使液体的流速降低,减少气体的混入。
(3)增加进口管道的长度,延长液体在管道内停留的时间,使气体有更多的时间溶解在液体中。
2.改善液体的物理性质改善液体的物理性质也是减少汽蚀的有效方法之一。
在液体的物理性质方面,主要是液体的温度和粘度。
为此,可以采取以下措施:(1)保持液体的温度稳定,避免液体温度的过高或过低。
离心泵的气蚀现象及原因离心泵的气蚀现象及原因(1)气蚀现象离心泵的叶轮在高速旋转时产生很大的离心力,液体在离心力的作用下,使泵的入口处产生低于离心泵的气蚀现象及原因(1)气蚀现象离心泵的叶轮在高速旋转时产生很大的离心力,液体在离心力的作用下,使泵的入口处产生低于大气压的真空度,当入口压力达到在该温度下的液体气化压力时,液体就开始汽化形成气泡。
这样,在运动的液体中形成的气泡随液体一起流动。
当气泡达到静压超过饱和蒸汽压区域时,气泡迅速溃灭。
周围的液体以高速向气泡中心运动,这就形成了高频的水锤作用,打击叶轮表面,并产生噪音和振动。
这种气泡的产生和破灭过程反复进行就对这一区域的叶轮表面产生破坏作用,使泵流量减少,扬程下降,效率降低等,这种现象叫气蚀现象。
(2)造成汽蚀的主要原因有:a.进口管路阻力过大或者管路过细;b.输送介质温度过高;c.流量过大,也就是说出口阀门开的太大;d.安装高度过高,影响泵的吸液量;e.选型问题,包括泵的选型,泵材质的选型等。
(3)离心泵的气缚:由于泵内气体的存在,离心泵的叶轮在高速旋转时,由于气体的密度小,其离心力不能产生足够的真空度,而无法将液体吸上来。
气缚是泵体内有空气,一般发生在泵启动的时候,主要表现在泵体内的空气没排净;而汽蚀是由于液体在一定的温度下达到了它的汽化压力,和输送介质,工况有密切的关系.(4)气蚀余量:泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。
单位用米标注,用(NPSH)r。
吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
离心泵吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)水泵气蚀余量有两个概念:其一是与安装方式有关,称有效的气蚀余量NPSHA,它是指水流经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;其二是与泵结本身有关,称必需的气蚀余量NPSHR,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。
离心泵的汽蚀现象及其防范措施离心泵的用途十分广泛,如化工、采矿、火力发电,建筑消防、给排水等。
水泵的汽蚀、磨蚀及其联合作用的破坏一直是水泵运行、维护及管理工作中的一个重要问题。
泵在运行过程中,由于设计不合理、吸入口压力过低或输送液体温度过高等原因,会发生气蚀。
汽蚀对水泵危害很大,使离心泵不能正常工作,甚至停运。
一、汽蚀现象由于水的物理特性,我们知道,水和汽可以互相转化,转化的条件即温度与压力。
一个大气压下的水,当温度上升到100℃时就开始汽化。
但在高原地区,水在不到1O0℃就开始汽化。
如水温一定,降低水的压力,当压力下降到某一数值时,水就开始汽化并产生汽泡,此时的压力就称作该对应水温下的汽化压力。
汽化发生后,就有大量的蒸汽及溶解在水中的气体逸出,形成许多蒸汽与流体混合的小汽泡。
当汽泡随水从低压区流向高压区时,在高压作用下,迅速凝结而破裂。
在破裂瞬间,产生局部空穴,高压水以极高的速度流向原汽泡占有空间,形成一个冲击力。
由于汽泡中的气体和蒸汽来不及在瞬间全部溶解和凝结,在冲击力作用下又形成小汽泡再被高压水压缩凝结,如此多次反复,在流道表面极微小的面积上,冲击力形成的压力可高达几百甚至上千兆帕,冲击频率可达每秒几百万次。
材料表面在水击压力的作用下,形成疲劳而遭严重破坏,从开始的点蚀到严重的海绵状空洞,甚至蚀穿材料壁面。
另外,产生的汽炮中还夹杂着某种活性气体如氧气,它们借助气泡凝结时放出的热量可使局部温度升至200—300℃,对金属起化学腐蚀作用。
我们把这种汽化产生汽泡,汽泡进入高压区破裂以致材料受到破坏的全部过程称为汽蚀现象。
关于汽泡形成机理的研究发现,如果液体与固体的接触面上的缝隙中存在微波的气核,在汽化发生时,缝隙中的这些微笑气核首先迅速成长成为肉眼可见的气泡(或称空泡),而汽核的存在对汽化产生的压力具有明显的影响,在无气核条件下,汽化发生于热力学平衡态所对应的饱和蒸汽压力;气核越大对应的汽化压力也比热力学饱和蒸汽压力高出越多。
离心泵的气蚀余量(最新版)目录1.离心泵气蚀余量的定义2.气蚀余量的重要性3.气蚀余量的计算方法4.气蚀余量的应用和影响因素5.离心泵气蚀余量的注意事项正文一、离心泵气蚀余量的定义离心泵气蚀余量是指离心泵在运行过程中,泵入口处液体所具有的总水头高出液体汽化压力的部分。
它也被称为净正吸上水头,用 npsh(net positive suction head)表示,国内用 h 表示。
气蚀余量是衡量离心泵抗汽蚀能力的重要参数,能够有效地防止泵的汽蚀现象。
二、气蚀余量的重要性气蚀余量对于离心泵的运行至关重要。
如果气蚀余量不足,液体在泵入口处就会发生汽蚀,导致泵性能下降,噪音增大,严重时可能损坏泵。
因此,保持足够的气蚀余量是确保离心泵正常运行的关键。
三、气蚀余量的计算方法气蚀余量的计算方法通常根据泵的吸入压力、操作温度、介质密度等因素来确定。
常见的计算公式为:h = (p - ρgh) / (ρ - ρ汽)其中,h 为气蚀余量,p 为泵入口处的绝对压力,ρ为液体密度,g 为重力加速度,h 为液体汽化压力。
四、气蚀余量的应用和影响因素气蚀余量在离心泵选型、设计和运行过程中具有重要作用。
在选型时,需要根据输送介质的特性和泵的工况条件,选择具有合适气蚀余量的泵。
在设计时,需要根据泵的工作条件,合理确定泵的结构和参数,以保证足够的气蚀余量。
在运行过程中,需要根据泵的实际工况,调整泵的运行参数,确保气蚀余量满足要求。
气蚀余量的影响因素主要有:液体的物理性质(如密度、粘度、汽化压力等)、泵的结构和参数(如叶轮形式、叶片数、泵转速等)、泵的运行条件(如吸入压力、流量、温度等)等。
五、离心泵气蚀余量的注意事项为确保离心泵的正常运行,应注意以下几点:1.选择合适的泵:在选型时,应根据输送介质的特性和泵的工况条件,选择具有合适气蚀余量的泵。
2.合理设计:在设计时,应根据泵的工作条件,合理确定泵的结构和参数,以保证足够的气蚀余量。
离心泵气蚀现象
离心泵是工业生产中常用的一种泵类,其通过转子的高速旋转将液体靠离心力向外抛出,实现输送液体的功能。
在某些情况下,离心泵会出现气蚀现象,导致其正常运行受到影响。
下面我们将介绍离心泵气蚀现象的一般特征。
气蚀是指离心泵中由于液体内部存在空气、气体或蒸汽,造成气体在高压区域突然膨胀形成瞬态空化,再在低压区域瞬间坍塌产生冲击波,最终导致流动噪音、振动和泵的效率下降的现象。
当离心泵内部存在气蚀时,其工作状态将受到较大的干扰。
气蚀现象的主要表现是在离心泵的进口和叶轮(或叶片)之间产生气泡或气腔,这些气泡和气腔以一定频率在液体中传播并瞬间坍塌。
气蚀通常伴随着明显的噪音和振动,同时也会导致泵的性能下降,流量减小,扬程降低,甚至无法正常工作。
这会对生产系统带来严重的影响。
气蚀的产生原因很多,包括泵内装置不当、泵入口管道设计不良、工作介质中含有过多的气体或蒸汽等等。
为了避免气蚀现象的发生,需要正确选择泵的技术参数,保证泵的进口压力足够,避免进口压力过低;合理设计泵的进口管道,减少出现流动涡旋和气体积聚的位置;在选用泵时,应当提前分析液体中是否含有气体,并采取相应的措施减少或排出气体。
气蚀现象是离心泵运行中的一种常见故障,会导致泵的性能下降和生产工艺的中断。
对于离心泵的运行,我们需要进行科学的设计和合理的操作,以避免气蚀现象的发生,并保证生产过程的正常进行。
书山有路勤为径,学海无涯苦作舟离心泵的汽蚀现象解释以及防止的几种措施一、离心泵的汽蚀现象液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。
把这种产生气泡的现象称为汽蚀。
汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。
这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。
离心泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。
在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。
水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。
二、离心泵汽蚀基本关系式离心泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。
因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为NPSHc≤NPSHr≤[NPSH]≤NPSHaNPSHrNPSHc 泵开始汽蚀NPSHaNPSHaNPSHrNPSHc 泵无汽蚀式中NPSHa 装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;。
离心泵气蚀原因
离心泵气蚀是泵的常见问题,可能会导致泵的性能下降、噪音增加,甚至损坏泵。
气蚀产生的原因有很多,包括操作不当、设计不合理、环境因素等等。
常见的气蚀原因有以下几种:
1.泵进口压力过低。
泵进口压力低于所需压力时,会产生空化现象,从而使气体进入泵内。
2.气体进入泵内。
当液体中存在气体或在泵内有气体积聚时,就会发生气蚀。
这可能是由于设计不合理、管道泄漏或操作不当导致的。
3.泵运行过程中产生的振动、冲击和水锤现象。
这些现象会使液体中的气体被释放,形成气蚀。
4.液体温度过高。
当液体温度过高时,液体中的气体很容易被释放,从而形成气蚀。
为了避免气蚀现象的发生,我们可以采取一些措施,例如:
1.确保泵进口压力符合要求。
2.定期检查泵的进出口阀门和管道连接是否紧固。
3.使用适当的泵设计和材料。
4.使用液体中的气体排出设备,在泵进口处安装气泵或空气放气阀。
5.降低液体温度。
注意以上几点,可以避免离心泵气蚀的发生,并确保泵的正常运行。
- 1 -。
离心泵汽蚀和汽缚汽蚀:离心泵工作时,在叶轮中心区域产生真空形成低压而将液体吸上。
如果形成的低压很低,则离心泵的吸上能力越强,表现为吸上高度越高。
但是,真空区压强太低,以致于低于液体的饱和蒸汽压,则被吸上的液体在真空区发生大量汽化产生气泡。
含气泡的液体挤入高压区后急剧凝结或破裂。
因气泡的消失产生局部真空,周围的液体就以极高的速度流向气泡中心,瞬间产生了极大的局部冲击力,造成对叶轮和泵壳的冲击,使材料受到破坏。
把泵内气泡的形成和破裂而使叶轮材料受到破坏的过程,称为气蚀现象。
汽缚:离心泵启动时,若泵内存有空气,由于空气密度很小,旋转后产生的离心力小,因而叶轮中心区所形成的低压不足以吸入液体,这样虽启动离心泵也不能完成输送任务,这种现象称为气缚。
这表示离心泵无自吸能力,所以离心另在启动前必须向泵内灌满被输送的液体。
当然若将离心泵的吸入口置于被输送液体的液面之下,液体会自动流入泵内,这是一种特殊情况。
离心泵吸入管路装有底阀,以防止启动前灌入的液体从泵内流出,滤网可以阻拦液体中的固体吸入而堵塞管道和泵壳排出管路中装有的调节阀是供开泵停泵和调节流量时使用。
从造成汽蚀和气缚的原因不同来看:气缚是泵体内有空气,一般发生在泵启动的时候,主要表现在泵体内的空气没排净;而汽蚀是由于液体在一定的温度下达到了它的汽化压力,可见和输送介质,工况有密切的关系。
造成汽蚀的主要原因有:1.进口管路阻力过大或者管路过细;2.输送介质温度过高;3.流量过大,也就是说出口阀门开的太大;4.安装高度过高,影响泵的吸液量;5.选型问题,包括泵的选型,泵材质的选型等。
解决办法:1.清理进口管路的异物使进口畅通,或者增加管径的大小;2.降低输送介质的温度;3.减小流量;4.降低安装高度;5.重新选泵,或者对泵的某些部件进行改进,比如选用耐汽蚀材料等等。
气缚是由于泵体内存在空气,是由于没有使泵体内灌满液体或者液体内所夹带的气体过多所造成的。
解决办法:1.清理进口管路的异物使进口畅通,或者增加管径的大小;2.降低输送介质的温度;3.减小流量;4.降低安装高度;5.重新选泵,或者对泵的某些部件进行改进,比如选用耐汽蚀材料等等。
离心泵汽蚀原因及处理方法
离心泵是一种常用的流体输送设备,但在使用过程中,可能会出现汽
蚀现象。
汽蚀会导致离心泵的性能下降、噪音增大、甚至设备损坏。
因此,了解离心泵汽蚀的原因及处理方法非常重要。
1. 汽蚀的原因
(1)液体中气体含量过高。
当液体中气体含量超过一定范围时,气泡就会在叶轮前缘产生,并随着液体进入叶轮中心区域。
在这个区域内,压力低于饱和压力,气泡就会瞬间膨胀和破裂,产生高速水锤冲击叶
轮表面。
(2)进口压力过低。
当进口压力低于某一临界值时,液体将沸腾并形成气泡,在叶轮前缘产生汽蚀现象。
(3)进口流速过大。
当进口流速超过一定范围时,流动状态将变得不稳定,在叶轮前缘产生湍流现象,并引起汽蚀。
2. 汽蚀的处理方法
(1)降低液体中气体含量。
通过加装气体分离器、提高进口液位等方
法,可以有效降低液体中气体含量。
(2)增加进口压力。
通过增加进口管道直径、减小管道弯曲程度等方法,可以提高进口压力,避免汽蚀。
(3)减小进口流速。
通过增加进口管道长度、减小管道截面积等方法,可以有效减小进口流速,避免产生湍流现象。
(4)改变叶轮结构。
采用特殊的叶轮结构或材料,可以提高叶轮的抗汽蚀性能。
(5)安装抗汽蚀衬里。
在泵的内部安装抗汽蚀衬里,可以有效保护泵的叶轮和壳体不受汽蚀损伤。
总之,离心泵汽蚀是一种常见的问题,在实际使用中需要注意液体中
气体含量、进口压力和流速等因素,并采取相应的处理措施来避免产
生汽蚀现象。
离心泵的汽蚀现象及其防范措施离心泵的汽蚀现象及其防范措施离心泵被广泛应用于石化、冶金、水利、电力及核电等工业领域,在各种生产装置中对液体介质进行动力输送,其性能可靠性对于装置的正常运行有着非常重要的作用。
汽蚀是离心泵运行中的一个重要现象,是影响离心泵运行可靠性和使用寿命最常见的问题,同时也是影响其向大流量、高转速方向发展的一个巨大的障碍,因此汽蚀成为目前泵类研究中的一个重要课题。
1.汽蚀的产生原理汽蚀是一种液体动力学现象,发生的根本原因在于液体在流动过程中出现了局部压力降,形成了低压区。
根据物理学知识可以知道,对于某种液相介质,在一定温度下对应着一定的饱和蒸汽压Pv,当介质的压力小于Pv时就会发生汽化。
离心泵运转时,介质进入泵吸入口后,在叶轮没有对介质做功前,压力是逐渐降低的,当压力降低到该处相应温度下的饱和蒸汽压时,介质就会沸腾汽化,使原来流动的介质出现大量的气泡,气泡中包含着输送介质的蒸汽以及原来溶解在介质中而逸出的空气。
当气泡随同液流从低压区流向高压区时,由于转动的叶轮对介质做功,介质压力迅速上升,当压力大于该处相应温度下的饱和蒸汽压Pv时,气泡又会重新凝结成为液相,瞬间形成大量的空穴,而周围的液相介质以高速冲向空穴相互撞击,使得空穴处的局部压力陡增。
这种液击是一种高强度、高频率的冲击,其压力可达数百个大气压以上,水击频率高达25000次/秒,材料壁面上因受到如此高频率、高压力的重复载荷作用而逐渐产生疲劳破坏。
在某些工况下,泵送介质中可能溶解有活性气体(如氧气等),借助于介质由气相凝结成液相时会释放大量的热量,对金属产生电化学腐蚀,加速腐蚀破坏的速度,致使金属表面出现麻点、穿孔甚至断裂。
这种在泵内出现的液相介质汽化、凝结、冲击,以致金属材料腐蚀破坏的现象总称离心泵的汽蚀。
2.汽蚀的危害汽蚀会影响离心泵的正常运行,引发许多严重后果。
2.1汽蚀会使离心泵的性能下降离心泵是通过叶轮的旋转将能量传递给介质,转化为介质的压力能,但汽蚀会对叶轮和液体之间的能量传递造成严重干扰。
优秀水泵制造商-上海沈泉泵阀制造有限公司是一家专业生产,销售管道泵,排污泵,消防泵,化工泵等给排水设备的厂家,产品涉及工矿企业、农业、城市供水、石油化工、电站、船舶、冶金、高层建筑、消防供水、工业水处理和纯净水、食品、制药、锅炉、空调循环系统等行业领域。
今天,上海沈泉管道泵厂家就来为大家简单的讲解下关于离心泵气蚀现象这一问题,大家请跟着小编一起来看看下面的内容吧。
气蚀现象(或汽蚀现象):一般是指离心泵在安装高度提高时,就会导致泵体内的压力降低,而泵体内压力的zui低点通常都是在叶轮叶片进口稍后附近一点的位置。
而当此处的压力降至被输送液体此时温度下的饱和蒸气压时,就会发生沸腾,其所产生出来的蒸汽泡将会随着液体从入口向外周流动中,又会因为压力的迅速增加而几句冷凝,这样便会使液体以很大的速度从周围冲向气泡中心,从而产生出频率很高且瞬时压力很大的冲击现象,这种现象就被称为汽蚀现象。
气蚀的形成原因是由于冲击应力造成的表面疲劳破坏,但液体的化学和电化学作用加速了气蚀的破坏过程。
疲劳破坏:当液体在与固体表面接触处的压力低于它的蒸汽压力时,将在固体表面附近形成气泡。
另外,溶解在液体中的气体也可能析出而形成气泡。
随后,当气泡流动到液体压力超过气泡压力的地方时,气泡变溃灭,在溃灭瞬时产生极大的冲击力和高温。
固体表面经受这种冲击力的多次反复作用,材料发生疲劳脱落,使表面出现小凹坑,进而发展成海绵状。
严重的其实可在表面形成大片的凹坑,深度可达20mm。
好了,以上内容由上海沈泉泵阀制造有限公司为大家提供,希望能够对大家有所帮助。
一、离心水泵的汽蚀现象离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。
避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。
二、离心水泵的安装高度Hg允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。
位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。
(1)输送清水,但操作自吸泵条件与实验条件不同,可依下式换算Hs1=Hs+(Ha-10.33)-(Hυ-0.24)(2)输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s2汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。
若输送其它液体,亦需进行校正,详查有关书籍。
从安全角度考虑,泵的实际安装高度值应小于计算值。
又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。
例2-3某离心泵从样本上查得允许吸上真空高度Hs=5.7m。
已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。
试计算:(1)输送20℃清水时泵的安装;(2)改为输送80℃水时泵的安装高度。
解:(1)输送20℃清水时泵的安装高度已知:Hs=5.7mHf0-1=1.5mu12/2g≈0当地大气压为9.81×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为Hg=5.7-0-1.5=4.2m。