离心泵的安装高允许汽蚀余量法
- 格式:pptx
- 大小:231.74 KB
- 文档页数:14
离心泵的汽蚀现象与安装高度一、离心泵的汽蚀现象离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。
避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。
二、离心泵的安装高度Hg允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。
位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为×105Pa时的值,当操作条件及工作介质不同时,需进行换算。
(1) 输送清水,但操作条件与实验条件不同,可依下式换算Hs1=Hs+(Ha--(Hυ-(2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H΄s2 汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。
若输送其它液体,亦需进行校正,详查有关书籍。
从安全角度考虑,泵的实际安装高度值应小于计算值。
又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。
例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。
已知吸入管路的全部阻力为,当地大气压为×104Pa,液体在吸入管路中的动压头可忽略。
试计算:(1) 输送20℃清水时泵的安装;(2) 改为输送80℃水时泵的安装高度。
解:(1) 输送20℃清水时泵的安装高度已知:Hs=5.7mHf0-1=1.5mu12/2g≈0当地大气压为×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为Hg=4.2 m。
汽蚀余量和泵的安装⾼度的关系先说⼀下各种汽蚀余量的概念:NPSH,汽蚀余量,是⽔泵进⼝的⽔流能量相对汽化压⼒的富余⽔头。
要谈允许汽蚀余量的由来,⾸先讲NPSH的⼀种:有效汽蚀余量NPSHa(NPSH available,也有以Δha表⽰),取决于进⽔池⽔⾯的⼤⽓压强、泵的吸⽔⾼度、进⽔管⽔头损失和⽔流的⼯作温度,这些因素均取决于⽔泵的装置条件,与⽔泵本⾝性能⽆关,所以也有叫装置汽蚀余量的。
NPSHr(NPSH required,Δhr),必需汽蚀余量。
由上所述,在⼀定装置条件下,有效汽蚀余量Δha为定值,此时对于不同的泵,有些泵发⽣了汽蚀,有些泵则没有,说明是否汽蚀还与泵的性能有关。
因为Δha仅说明泵进⼝处有超过汽化压⼒的富余能量,并不能保证泵内压⼒最低点(与泵性能有关)的压⼒仍⾼于汽化压⼒。
将泵内的⽔⼒损失和流速变化引起的压⼒降低值定义为必须汽蚀余量Δhr,也就是说要保证泵不发⽣汽蚀,必要条件是Δha>Δhr。
Δhr与泵的进⽔室、叶轮⼏何形状、转速和流量有关,也就是与泵性能相关,⽽与上述装置条件⽆关。
⼀般来讲Δhr不能准确计算,所以通常通过试验⽅法确定。
这时就引⼊临界汽蚀余量NPSHc (NPSH critical,Δhc),即试验过程泵刚好开始汽蚀时的汽蚀余量,此时Δha=Δhc=Δhr,这样即可确认Δhr。
⽽由于临界状况很难判断(因为此时性能可能并⽆⼤变化),按GB7021-86规定,临界Δhc这样确定:在给定流量情况下,引起扬程或效率(多级泵则为第⼀级叶轮)下降(2+k/2)%时的Δha值;或在给定扬程情况下,引起流量或效率下降(2+k/2)%时的Δha值。
k为⽔泵的型式数。
⽽以上均为理论值。
要保证⽔泵不发⽣汽蚀,引⼊允许汽蚀余量([NPSH],[Δh]),是根据经验⼈为规定的汽蚀余量,对于⼩泵[Δh]=Δhc+0.3m,⼤型⽔泵[Δh]=(1.1~1.3)Δhc。
最后⽔泵运⾏不产⽣汽蚀的必要条件是:装置有效汽蚀余量不得⼩于允许汽蚀余量,即Δha>=[Δh]。
离心泵的安装高度计算方法在我们平时生活应用中,离心泵的使用非常广泛,但是大部分消费者如离心泵的正确使用方法还是很迷惑,安装的具体高度也不清楚。
本文详细讲述了离心泵的高度计算步骤,以及离心泵的启动原理,希望能够在日常生活应用中帮助到大家。
离心泵的安装高度计算允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度。
而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由水泵制造厂家实验测定的值,此值附于泵样本中供用户查用。
位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。
1 输送清水,但操作条件与实验条件不同,可依下式换算Hs1=Hs+Ha-10.33 - Hυ-0.242 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1。
第二步依下式将Hs1换算成H΄s2 汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。
若输送其它液体,亦需进行校正,详查有关书籍。
吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。
例如:某泵必需汽蚀余量为4.0米,求吸程Δh?解:Δh=10.33-4.0-0.5=5.83米从安全角度考虑,泵的实际安装高度值应小于计算值。
当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。
例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。
已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。
试计算:1 输送20℃清水时离心泵的安装。
2 改为输送80℃水时离心泵的安装高度。
解:1 输送20℃清水时泵的安装高度。
汽蚀余量[]基本概念泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。
单位用米标注,用(NPSH)r。
吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
吸程=标准大气压(10.33米)-临界汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。
[]汽蚀现象液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。
把这种产生气泡的现象称为汽蚀。
汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。
这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。
泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。
在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。
水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体xx,不能正常工作。
[]汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)表示,具体分为如下几类:NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。
离心泵的气蚀余量摘要:I.离心泵气蚀余量的概念- 气蚀现象的定义- 气蚀余量的定义和作用II.离心泵气蚀余量的计算- 必需汽蚀余量和有效汽蚀余量的区别- 计算公式及其参数含义III.离心泵气蚀余量的影响因素- 液体性质- 泵的安装高度和进出口压力- 泵的类型和结构IV.防止离心泵气蚀的方法- 选择合适的泵型- 采取相应的设计措施- 调整泵的运行参数正文:离心泵的气蚀余量是指在特定条件下,液体在泵内产生汽蚀时,泵所需具备的最低吸入压力。
气蚀余量是离心泵运行中一个重要的参数,直接影响到泵的性能、效率和寿命。
离心泵气蚀余量的计算较为复杂,需要考虑多种因素。
其中,必需汽蚀余量是指在标准条件下,泵能够正常吸入液体的最小压头;有效汽蚀余量则是在实际工况下,泵能够克服液体汽蚀所需的最低压头。
两者的区别在于,必需汽蚀余量是基于标准条件下的计算,而有效汽蚀余量则考虑了实际工况下的影响。
影响离心泵气蚀余量的因素包括:1.液体性质:液体的密度、粘度、饱和蒸汽压力和温度等性质,都会对气蚀余量产生影响。
一般来说,密度越大、粘度越小、饱和蒸汽压力越低的液体,其气蚀余量越大。
2.泵的安装高度和进出口压力:泵的安装高度和进出口压力的大小关系,直接影响到泵的吸入压头。
当泵的安装高度增加或进出口压力降低时,泵所需的气蚀余量也会相应增大。
3.泵的类型和结构:不同类型的离心泵,其气蚀余量也不同。
例如,蜗壳泵的气蚀余量较小,而螺旋泵的气蚀余量较大。
此外,泵的结构和叶片的设计,也会影响到气蚀余量的大小。
为了防止离心泵气蚀,可以采取以下方法:1.选择合适的泵型:根据实际工况,选择具有较大气蚀余量的泵型,以降低气蚀现象的发生。
2.采取相应的设计措施:通过优化泵的结构和叶片设计,提高泵的抗气蚀性能。
3.调整泵的运行参数:合理调整泵的流量、扬程、进出口压力等参数,以降低气蚀余量,提高泵的运行效率和寿命。
总之,离心泵的气蚀余量是一个关键参数,对泵的性能和寿命具有重要影响。